Which trace elements are accumulated in fronds of the Athyrium filix-femina fern? a study from the Czech Republic
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ0074
Norway grants
CZ0074
Norway grants
IP00027073
VÚKOZ
LM2023073
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
40555890
PubMed Central
PMC12187792
DOI
10.1007/s10661-025-14201-4
PII: 10.1007/s10661-025-14201-4
Knihovny.cz E-zdroje
- Klíčová slova
- Athyrium filix-femina, Bioconcentration factors, Element accumulation, Enrichment factors, Lanthanides (REE),
- MeSH
- kapradiny * chemie metabolismus MeSH
- látky znečišťující půdu * analýza metabolismus MeSH
- monitorování životního prostředí * MeSH
- půda chemie MeSH
- stopové prvky * analýza metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- látky znečišťující půdu * MeSH
- půda MeSH
- stopové prvky * MeSH
A screening test using XRF spectroscopy was done to map element concentrations in fronds of the Athyrium filix-femina fern growing at 244 coniferous forest plots across the Czech Republic. In the next step, 45 elements in fronds of the ferns coming from selected sites with contrasting geological and climatic conditions were determined using prevalently ICP-OES and ICP-MS methods. To our knowledge, such a number of elements analyzed is unprecedented in literature data of this important fern species. Element contents of forest floor humus, topsoil and subsoil from the same sites were adopted from previously performed analyses. To estimate element uptake and accumulation by ferns, the element distribution in fern fronds was correlated with that of soil covers and with selected site-specific factors. Bioconcentration and enrichment factors referred to the element contents in forest floor humus and soil were used for estimation of fern abilities to accumulate elements in fronds. Besides accumulation of macronutrients, fern fronds moderately accumulated Ba, Cd, Hg, Mo, Mn, Ni, Zn and mainly lanthanides (REEs). Only several of the trace elements concentrated in granites (Rb, Cs, Be, Tl, U) have significant positive correlation between contents in fronds and those in mineral soil. Anthropogenic pollution was mainly relevant for Fe in the Ostrava industrial region.
Zobrazit více v PubMed
Árvay, J., Demková, L., Hauptvogl, M., Michalko, M., Bajčan, D., Stanovič, R., Tomáš, J., Hrstková, M., & Trebichalský, P. (2017). Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: Spatial distribution and accumulation of mercury in four different ecosystems. PubMed
Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination.
Barrat, J.-A., Bayon, G., & Lalonde, S. (2023). Calculation of cerium and lanthanum anomalies in geological and environmental samples.
Bau, M., & Koschinsky, A. (2009). Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts.
Burnison, B. K. (1998). Review of bioconcentration, bioaccumulation and K
ČGS (2024).
Cornara, L., Roccotiello, E., Minganti, V., Drava, G., De Pellegrini, R., & Mariotti, M. G. (2007). Level of trace elements in Pteridophytes growing on serpentine and metalliferous soils.
Czerwiński, Z., & Pracz, J. (1995). Content of mineral components in the over-ground parts of herb layer plants in the
Eslava-Silva, F. D. J., Muñíz-Díaz de León, M. E., & Jiménez-Estrada, M. (2023).
Grosjean, N., Blaudez, D., Chalot, M., Gross, E. M., & Jean, M. L. (2020). Identification of new hardy ferns that preferentially accumulate light rare earth elements: A conserved trait within fern species.
Güsewell, S. (2004). N: P ratios in terrestrial plants: Variation and functional significance. PubMed
Jedynak, L., Kowalska, J., Harasimowicz, J., & Golimowski, J. (2009). Speciation analysis of arsenic in terrestrial plants from arsenic contaminated area. PubMed
Kaplan, Z., Koutecký, P., Danihelka, J., Šumberová, K., Ducháček, M., Štěpánková, J., Ekrt, L., Grulich, V., Řepka, R., Kubát, K., Mráz, P., Wild, J., & Brůna, J. (2018).Distribution of vascular plants in the Czech Republic. Part 6.
Koerselman, W., & Meuleman, A. F. M. (1996). The vegetation N: P ratio: A new tool to detect the nature of nutrient limitation.
Kovařiková, M., Tomášková, I., & Soudek, P. (2019). Rare earth elements in plants.
Krawczyk, J., Letachowicz, B., Klink, A., & Krawczyk, A. (2006). Zróżnicowanie kumulacji metaliciȩżkich w
Larsen, J.A. (1982).
Meharg, A. A. (2003). Variation in arsenic accumulation – Hyperaccumulation in ferns and their allies. PubMed
Reznicek, A. A., Meusel, H., & Jager, E. J. (1993). Vergleichende Chorologie der Zentraleuropaischen Flora.
Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: A review.
Musilova, J., Arvay, J., Vollmannova, A., Toth, T., & Tomas, J. (2016). Environmental contamination by heavy metals in region with previous mining activity. PubMed
Neite, H., Neikes, N., & Wittig, R. (1991). Verteilung von Schwermetallen im Wurzelbereich und den Organen von Waldbodenpflanzen aus Buchenwäldern. (Distribution of heavy metals in the root area and in organs of herbaceous plants in beech forests. In German).
Parzych, A. (2010). Azot, fosfor i węgiel w roślinności leśnej Słowińskiego parku narodowego w latach 2002–2005. (Nitrogen, phosphorus and carbon in forest plants in the Słowiński national park in 2002–2005, In Polish).
Parzych, A., & Astell, A. (2018). Accumulation of N, P, K, Mg and Ca in 20 species of herbaceous plants in headwater riparian forest.
Parzych, A., & Jonczak, J. (2018a). Comparison of nitrogen and phosphorus accumulation in plants associated with streams and peatbogs in mid-forest headwater ecosystems.
Parzych, A., & Jonczak, J. (2018b). Bioaccumulation of Macro-and Microelements in Herbaceous Plants in the River Valley.
Prats, K. A., Roddy, A. B., & Brodersen, C. R. (2024). Stomatal behaviour and water relations in ferns and lycophytes across habits and habitats. PubMed PMC
Samecka-Cymerman, A., Kolon, K., Stankiewicz, A., Kaszewska, J., Mróz, L., & Kempers, A. J. (2011). Rhizomes and fronds of
Srivastava, M., Santos, J., Srivastava, P., & Ma, L. Q. (2010). Comparison of arsenic accumulation in 18 fern species and four PubMed
Stapulionytė, A., Lazutka, J.R., Orland, A., Naujalis, J.R., & Krøkje, A. (2018).
Suchara, I., Sucharova, J., Hola, M., Reimann, C., Boyd, R., Filzmoser, P., & Englmaier, P. (2011). The performance of moss, grass, and 1- and 2-year old spruce needles as bio-indicators of contamination: A comparative study at the scale of the Czech Republic. PubMed
Suchara, I., Sucharová, J., & Holá, M. (2017). A quarter century of biomonitoring atmospheric pollution in the Czech Republic. PubMed
Tolasz, R., Míková, T., Valeriánová, A., Voženílek, V., et al. (2007).
Van, T. K., Kang, Y., Fukui, T., Sakurai, K., Iwasaki, K., Yoshio Aikawa, Y., & Phuong, N. M. (2006). Arsenic and heavy metal accumulation by
Vtorova, V.N., & Solntseva, O.N. (1983). Role of herbaceous cover in exchange processes in coniferous forests.
Xie, Q.-e, Yan, X.-l, Liao, X.-y, & Li, X. (2009). The arsenic hyperaccumulator fern PubMed
Zhang, S. J., Li, T. X., Huang, H. G., Zhang, X. Z., Yu, H. Y., Zheng, Z. C., Wang, Y. D., Zou, T. J., Hao, X. Q., & Pu, Y. (2014). Phytoremediation of cadmium using plant species of