Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kongresy
PubMed
28346345
PubMed Central
PMC5412289
DOI
10.3390/ijms18040703
PII: ijms18040703
Knihovny.cz E-zdroje
- Klíčová slova
- autophagy, exosomes, intercellular channels, leaderless proteins, protein secretion, trafficking mechanisms, unconventional secretion,
- MeSH
- biologie buňky * MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- transport proteinů MeSH
- vývojová biologie * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- kongresy MeSH
- Názvy látek
- membránové proteiny MeSH
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on "Unconventional Protein and Membrane Traffic" (UPMT) during 4-7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes.
Centre for Plant Science School of Biology University of Leeds Leeds LS2 9JT UK
Clinical Biochemistry Institute of Metabolic Science University of Cambridge Cambridge CB2 1TN UK
Department of Experimental Medicine University of Perugia 06132 Perugia Italy
Institute for Microbiology Heinrich Heine University Düsseldorf Düsseldorf 40225 Germany
Institute of Experimental Botany v v i the Czech Academy of Sciences 16502 Prague 6 Czech Republic
School of Life Sciences University of Warwick Coventry CV4 7AL UK
Zobrazit více v PubMed
Vitale A., Denecke J. The Endoplasmic Reticulum—Gateway of the Secretory Pathway. Plant Cell. 1999;11:615–628. doi: 10.2307/3870888. PubMed DOI PMC
Bonifacino J.S., Glick B.S. The mechanisms of vesicle budding and fusion. Cell. 2004;116:153–166. doi: 10.1016/S0092-8674(03)01079-1. PubMed DOI
Viotti C. ER to Golgi-Dependent Protein Secretion: The Conventional Pathway. In: Pompa A., De Marchis F., editors. Unconventional Protein Secretion, Methods in Molecular Biology. Volume 1459. Humana Press Inc.; New York, NY, USA: 2016. pp. 3–29. PubMed
Robinson D.G., Ding Y., Jiang L. Unconventional protein secretion in plants: A critical assessment. Protoplasma. 2016;253:31–43. doi: 10.1007/s00709-015-0887-1. PubMed DOI
Davis D.J., Kang B.-H., Heringer A.S., Wilkop T.E., Drakakaki G. Unconventional Protein Secretion in Plants. In: Pompa A., De Marchis F., editors. Unconventional Protein Secretion, Methods in Molecular Biology. Volume 1459. Humana Press Inc.; New York, NY, USA: 2016. pp. 47–63. PubMed
Ng F., Tang B.L. Unconventional Protein Secretion in Animal Cells. In: Pompa A., De Marchis F., editors. Unconventional Protein Secretion, Methods in Molecular Biology. Volume 1459. Humana Press Inc.; New York, NY, USA: 2016. pp. 31–46. PubMed
Bhattacharya A., Prakash Y.S., Eissa N.T. Secretory function of autophagy in innate immune cells. Cell Microbiol. 2014;16:1637–1645. doi: 10.1111/cmi.12365. PubMed DOI
Nickel W., Rabouille C. Mechanisms of regulated unconventional protein secretion. Nat. Rev. Mol. Cell Biol. 2009;10:148–155. doi: 10.1038/nrm2617. PubMed DOI
Gerke V., Moss S.E. Annexins: From structure to function. Physiol. Rev. 2002;82:331–371. doi: 10.1152/physrev.00030.2001. PubMed DOI
Valapala M., Maji S., Borejdo J., Vishwanatha J.K. Cell surface translocation of annexin A2 facilitates glutamate-induced extracellular proteolysis. J. Biol. Chem. 2014;289:15915–15926. doi: 10.1074/jbc.M113.511550. PubMed DOI PMC
Zheng L., Maji S., Borejdo J., Vishwanatha J.K. Tyrosine 23 phosphorylation-dependent cell-surface localization of annexin A2 is required for invasion and metastases of pancreatic cancer. PLoS ONE. 2011;6:e19390. doi: 10.1371/journal.pone.0019390. PubMed DOI PMC
Hayes M.J., Longbottom R.E., Evans M.A., Moss S.E. Annexinopathies. Subcell. Biochem. 2007;45:1–28. PubMed
Sidera K., Patsavoudi E. Extracellular HSP90: Conquering the cell surface. Cell Cycle. 2008;7:1564–1568. doi: 10.4161/cc.7.11.6054. PubMed DOI
Sheokand N., Malhotra H., Kumar S., Tillu V.A., Chauhan A.S., Raje C.I., Raje M. Moonlighting cell-surface GAPDH recruits apotransferrin to effect iron egress from mammalian cells. J. Cell Sci. 2014;127:4279–4291. doi: 10.1242/jcs.154005. PubMed DOI
Rabinovich G.A., Rubinstein N., Fainboim L. Unlocking the secrets of galectins: A challenge at the frontier of glyco-immunology. J. Leukoc. Biol. 2002;71:741–752. PubMed
Pinedo M., Regente M., Elizalde M., Quiroga I.Y., Pagnussat L.A., Jorrin-Novo J., Maldonado A., de la Canal L. Extracellular sunflower proteins: Evidence on non-classical secretion of a jacalin-related lectin. Protein Pept. Lett. 2012;19:270–276. doi: 10.2174/092986612799363163. PubMed DOI
Tkach M., Théry C. Communication by extracellular vesicles: Where we are and where we need to go. Cell. 2016;164:1226–1232. doi: 10.1016/j.cell.2016.01.043. PubMed DOI
Cocucci E., Meldolesi J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25:364–372. doi: 10.1016/j.tcb.2015.01.004. PubMed DOI
Kowala J., Arras G., Colombo M., Jouvea M., Morath J.P., Primdal-Bengtson B., Dingli F., Loew D., Tkach M., Théry C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA. 2016;113:E968–E977. doi: 10.1073/pnas.1521230113. PubMed DOI PMC
Prada I., Meldolesi J. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets. Int. J. Mol. Sci. 2016;17:E1296. doi: 10.3390/ijms17081296. PubMed DOI PMC
Lavieri R., Rubartelli A., Carta S. Redox stress unbalances the inflammatory cytokine network: Role in autoinflammatory patients and healthy subjects. J. Leukoc. Biol. 2016;99:79–86. doi: 10.1189/jlb.3MR0415-159R. PubMed DOI PMC
Rubartelli A. Autoinflammatory diseases. Immunol. Lett. 2014;161:226–230. doi: 10.1016/j.imlet.2013.12.013. PubMed DOI
Piccioli P., Rubartelli A. The secretion of IL-1β and options for release. Semin. Immunol. 2013;25:425–429. doi: 10.1016/j.smim.2013.10.007. PubMed DOI
Zacherl S., La Venuta G., Muller H.M., Wegehingel S., Dimou E., Sehr P., Lewis J.D., Erfle H., Pepperkok R., Nickel W. A direct role for ATP1A1 in unconventional secretion of fibroblast growth factor 2. J. Biol. Chem. 2015;290:3654–3665. doi: 10.1074/jbc.M114.590067. PubMed DOI PMC
Steringer J.P., Bleicken S., Andreas H., Zacherl S., Laussmann M., Temmerman K., Contreras F.X., Bharat T.A.M., Lecgner J., Muller H.M., et al. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent oligomerization of fibroblast growth factor 2 (FGF2) triggers the formation of a lipidic membrane pore implicated in unconventional secretion. J. Biol. Chem. 2012;287:27659–27669. doi: 10.1074/jbc.M112.381939. PubMed DOI PMC
Muller H.M., Steringer J.P., Wegehingel S., Bleicken S., Münster M., Dimou E., Unger S., Weidmann G., Andreas H., García-Sáez A.J., et al. Formation of disulfide bridges drives oligomerization, membrane pore formation, and translocation of fibroblast growth factor 2 to cell surfaces. J. Biol. Chem. 2015;290:8925–8937. doi: 10.1074/jbc.M114.622456. PubMed DOI PMC
Mandelkow E.M., Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med. 2012;2:a006247. doi: 10.1101/cshperspect.a006247. PubMed DOI PMC
De Torre-Minguela C., Barberà-Cremades M., Gómez A.I., Martín-Sánchez F., Pelegrín P. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process. Sci. Rep. 2016;6:22586. doi: 10.1038/srep22586. PubMed DOI PMC
Martin-Sanchez F., Diamond C., Zeitler M., Gomez A.I., Baroja-Mazo A., Bagnall J., Spiller D., White M., Daniels M.J., Mortellaro A., et al. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death Differ. 2016;23:1219–1231. doi: 10.1038/cdd.2015.176. PubMed DOI PMC
Bianco F., Perrotta C., Novellino L., Francolini M., Riganti L., Menna E., Saglietti L., Schuchman E.H., Furlan R., Clementi E., et al. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J. 2009;28:1043–1054. doi: 10.1038/emboj.2009.45. PubMed DOI PMC
Antonucci F., Turola E., Riganti L., Caleo M., Gabrielli M., Perrotta C., Novellino L., Clementi E., Giussani P., Viani P., et al. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J. 2012;31:1231–1240. doi: 10.1038/emboj.2011.489. PubMed DOI PMC
Verderio C., Muzio L., Turola E., Bergami A., Novellino L., Ruffini F., Riganti L., Corradini I., Francolini M., Garzetti L., et al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann. Neurol. 2012;72:610–614. doi: 10.1002/ana.23627. PubMed DOI
Joshi P., Turola E., Ruiz A., Bergami A., Libera D.D., Benussi L., Giussani P., Magnani G., Comi G., Legname G., et al. Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death Differ. 2014;21:582–593. doi: 10.1038/cdd.2013.180. PubMed DOI PMC
Agosta F.M., Dalla Libera D., Spinelli E.G., Finardi A., Canu E., Bergami A., Bocchio Chiavetto L., Baronio M., Comi G., Martino G., et al. Myeloid microvescicles in cerebrospinal fluid are associated with myelin damage and neuronal loss in mild cognitive impairment and Alzheimer disease. Ann. Neurol. 2014;76:813–825. doi: 10.1002/ana.24235. PubMed DOI
Richards A.L., Jackson W.T. Intracellular Vesicle Acidification Promotes Maturation of Infectious Poliovirus Particles. PLoS Pathog. 2012;8:e1003046. doi: 10.1371/journal.ppat.1003046. PubMed DOI PMC
Curwin A.J., Brouwers N., Alonso Y., Adell M., Teis D., Turacchio G., Parashuraman S., Ronchi P., Malhotra V. ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion. Elife. 2016;26:e16299. doi: 10.7554/eLife.16299. PubMed DOI PMC
Cruz-Garcia D., Curwin A.J., Popoff J.F., Bruns C., Duran J.M., Malhotra V. Remodeling of secretory compartments creates CUPS during nutrient starvation. J. Cell Biol. 2014;207:695–703. doi: 10.1083/jcb.201407119. PubMed DOI PMC
Langner T., Özturk M., Hartmann S., Cord-Landwehr S., Moerschbacher B., Walton J.D., Göhre V. Chitinases are essential for cell separation in Ustilago maydis. Eukaryot. Cell. 2015;14:846–857. doi: 10.1128/EC.00022-15. PubMed DOI PMC
Stock J., Terfrüchte M., Schipper K. A Reporter System to Study Unconventional Secretion of Proteins Avoiding N-glycosylation in Ustilago maydis. In: Pompa A., de Marchis F., editors. Unconventional Protein Secretion, Methods in Molecular Biology. Volume 1459. Humana Press Inc.; New York, NY, USA: 2016. pp. 149–160. PubMed
Stock J., Sarkari P., Kreibich S., Brefort T., Feldbrügge M., Schipper K. Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. J. Biotechnol. 2012;161:80–91. doi: 10.1016/j.jbiotec.2012.03.004. PubMed DOI
Pallotta M.T., Orabona C., Volpi C., Vacca C., Belladonna M.L., Bianchi R., Servillo G., Brunacci C., Calvitti M., Bicciato S., et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat. Immunol. 2011;12:870–878. doi: 10.1038/ni.2077. PubMed DOI
De Marchis F., Bellucci M., Pompa A. Unconventional pathways of secretory plant proteins from the endoplasmic reticulum to the vacuole bypassing the Golgi complex. Plant Signal. Behav. 2013;8:e25129. doi: 10.4161/psb.25129. PubMed DOI PMC
Viotti C. ER and vacuoles: Never been closer. Front. Plant. Sci. 2014;5:20. doi: 10.3389/fpls.2014.00020. PubMed DOI PMC
Jennelle L., Hunegnaw R., Dubrovsky L., Pushkarsky T., Fitzgerald M.L., Sviridov D., Popratiloff A., Brichacek B., Bukrinsky M. HIV-1 protein Nef inhibits activity of ATP-binding cassette transporter A1 by targeting Endoplasmic Reticulum chaperone Calnexin. J. Biol. Chem. 2014;289:28870–28884. doi: 10.1074/jbc.M114.583591. PubMed DOI PMC
Kulich I., Pečenková T., Sekereš J., Smetana O., Fendrych M., Foissner I., Höftberger M., Zárský V. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic. 2013;14:1155–1165. doi: 10.1111/tra.12101. PubMed DOI
Pedrazzini E., Caprera A., Fojadelli I., Stella A., Rocchetti A., Bassin B., Martinoia E., Vitale A. The Arabidopsis tonoplast is almost devoid of glycoproteins with complex N-glycans, unlike the rat lysosomal membrane. J. Exp. Bot. 2016;67:1769–1781. doi: 10.1093/jxb/erv567. PubMed DOI PMC
Pedrazzini E., Komarova N.Y., Rentsch D., Vitale A. Traffic routes and signals for the tonoplast. Traffic. 2013;14:622–628. doi: 10.1111/tra.12051. PubMed DOI
Stigliano E., Faraco M., Neuhaus J.M., Montefusco A., Dalessandro G., Piro G., Di Sansebastiano G.P. Two glycosylated vacuolar GFPs are new markers for ER-to-vacuole sorting. Plant Physiol. Biochem. 2013;73:337–343. doi: 10.1016/j.plaphy.2013.10.010. PubMed DOI
Occhialini A., Gouzerh G., Di Sansebastiano G.P., Neuhaus J.M. Dimerization of the Vacuolar Receptors AtRMR1 and -2 from Arabidopsis thaliana Contributes to Their Localization in the trans-Golgi Network. Int. J. Mol. Sci. 2016;17:E1661. doi: 10.3390/ijms17101661. PubMed DOI PMC
Staudt C., Puissant E., Boonen M. Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View. Int. J. Mol. Sci. 2017;18:47. doi: 10.3390/ijms18010047. PubMed DOI PMC
De Marcos Lousa C., Denecke J. Lysosomal and vacuolar sorting: Not so different after all! Biochem. Soc. Trans. 2016;44:891–897. doi: 10.1042/BST20160050. PubMed DOI PMC
Hilscher J., Kapusi E., Stoger E., Ibl V. Cell layer-specific distribution of transiently expressed barley ESCRT-III component HvVPS60 in developing barley endosperm. Protoplasma. 2016;253:137–153. doi: 10.1007/s00709-015-0798-1. PubMed DOI PMC
Meyer D., Pajonk S., Micali C., O’Connell R., Schulze-Lefert P. Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J. 2009;57:986–999. doi: 10.1111/j.1365-313X.2008.03743.x. PubMed DOI
Richter S., Kientz M., Brumm S., Nielsen M.E., Park M., Gavidia R., Krause C., Voss U., Beckmann H., Mayer U., et al. Delivery of endocytosed proteins to the cell-division plane requires change of pathway from recycling to secretion. Elife. 2014;8:e02131. doi: 10.7554/eLife.02131. PubMed DOI PMC
Otero S., Helariutta Y., Benitez-Alfonso Y. Symplastic communication in organ formation and tissue patterning. Curr. Opin. Plant Biol. 2016;29:21–28. doi: 10.1016/j.pbi.2015.10.007. PubMed DOI
Knox J.P., Benitez-Alfonso Y. Roles and regulation of plant cell walls surrounding plasmodesmata. Curr. Opin. Plant Biol. 2014;22:93–100. doi: 10.1016/j.pbi.2014.09.009. PubMed DOI
Gerdes H.H., Rustom A., Wang X. Tunneling nanotubes, an emerging intercellular communication route in development. Mech. Dev. 2013;130:381–387. doi: 10.1016/j.mod.2012.11.006. PubMed DOI
Knox K., Wang P., Kriechbaumer V., Tilsner J., Frigerio L., Sparkes I., Hawes C., Oparka K. Putting the Squeeze on Plasmodesmata: A Role for Reticulons in Primary Plasmodesmata Formation. Plant Physiol. 2015;168:1563–1572. doi: 10.1104/pp.15.00668. PubMed DOI PMC
Kriechbaumer V., Botchway S.W., Slade S.E., Knox K., Frigerio L., Oparka K., Hawes C. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane. Plant Physiol. 2015;169:1933–1945. doi: 10.1104/pp.15.01153. PubMed DOI PMC
Heinlein M. Plasmodesmata: Channels for viruses on the move. Methods Mol. Biol. 2015;1217:25–52. PubMed
Amari K., Di Donato M., Dolja V.V., Heinlein M. Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus. PLoS Pathog. 2014;10:e1004448. doi: 10.1371/journal.ppat.1004448. PubMed DOI PMC
Niehl A., Wyrsch I., Boller T., Heinlein M. Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol. 2016;211:1008–1019. doi: 10.1111/nph.13944. PubMed DOI
Dettmer J., Ursache R., Campilho A., Miyashima S., Belevich I., O’Regan S., Mullendore D.L., Yadav S.R., Lanz C., Beverina L., et al. CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication. Nat. Commun. 2014;5:4276. doi: 10.1038/ncomms5276. PubMed DOI
Vatén A., Dettmer J., Wu S., Stierhof Y.D., Miyashima S., Yadav S.R., Roberts C.J., Campilho A., Bulone V., Lichtenberger R., et al. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell. 2011;21:1144–1155. doi: 10.1016/j.devcel.2011.10.006. PubMed DOI
Mattila P.K., Lappalainen P. Filopodia: Molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 2008;9:446–454. doi: 10.1038/nrm2406. PubMed DOI
Delage E., Cervantes D.C., Pénard E., Schmitt C., Syan S., Disanza A., Scita G., Zurzolo C. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes. Sci. Rep. 2016;6:39632. doi: 10.1038/srep39632. PubMed DOI PMC
Abounit S., Bousset L., Loria F., Zhu S., de Chaumont F., Pieri L., Olivo-Marin J.C., Melki R., Zurzolo C. Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J. 2016;35:2120–2138. doi: 10.15252/embj.201593411. PubMed DOI PMC
Bodemann B.O., Orvedahl A., Chenget T., Ram R.R., Ou Y.H., Formstecher E., Maiti M., Hazelett C.C., Wauson E.M., Balakireva M., et al. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell. 2011;144:253–267. doi: 10.1016/j.cell.2010.12.018. PubMed DOI PMC
Pecenková T., Hála M., Kulich I., Kocourková D., Drdová E., Fendrych M., Toupalová H., Žársky V. The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J. Exp. Bot. 2011;62:2107–2116. doi: 10.1093/jxb/erq402. PubMed DOI PMC
Robert S., Raikhel N.V., Hicks G.R. Powerful partners: Arabidopsis and chemical genomics. Arabidopsis Book. 2009;7:e0109. doi: 10.1199/tab.0109. PubMed DOI PMC
Zhang C., Brown M.Q., van de Ven W., Zhang Z.M., Wu B., Young M.C., Synek L., Borchardt D., Harrison R., Pan S., et al. Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proc. Natl. Acad. Sci. USA. 2016;113:E41–E50. doi: 10.1073/pnas.1521248112. PubMed DOI PMC
Di Sansebastiano G.P. Defining new SNARE functions: The i-SNARE. Front. Plant Sci. 2013;16:99. doi: 10.3389/fpls.2013.00099. PubMed DOI PMC
Morelli E., Ginefra P., Mastrodonato V., Beznoussenko G.V., Rusten T.E., Bilder D., Stenmark H., Mironov A.A., Vaccari T. Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy. 2014;10:2251–2268. doi: 10.4161/15548627.2014.981913. PubMed DOI PMC
Morelli E., Mastrodonato V., Beznoussenko G.V., Mironov A.A., Tognon E., Vaccari T. An essential step of kinetochore formation controlled by the SNARE protein Snap29. EMBO J. 2016;35:2223–2237. doi: 10.15252/embj.201693991. PubMed DOI PMC
Faraco M., Latino A., de Benedictis M., Piro G., Di Sansebastiano G.P. Atsyp51 and Atsyp52 differently affect sorting of Gfpchi and Aleugfp vacuolar markers. J. Plant Biochem. Physiol. 2013;1:e105.
Borg M., Bakke O., Progida C. A novel interaction between Rab7b and actomyosin reveals a dual role in intracellular transport and cell migration. J. Cell Sci. 2014;127:4927–4939. doi: 10.1242/jcs.155861. PubMed DOI PMC
Margiotta A., Progida C., Bakke O., Bucci C. Rab7a regulates cell migration through Rac1 and vimentin. Biochim. Biophys. Acta. 2016;1864:367–381. doi: 10.1016/j.bbamcr.2016.11.020. PubMed DOI
Heard W., Sklenar J., Tome D.F., Robatzek S., Jones A.M. Identification of regulatory and cargo proteins of endosomal and secretory pathways in Arabidopsis thaliana by proteomic dissection. Mol. Cell. Prot. 2015;14:1796–1813. doi: 10.1074/mcp.M115.050286. PubMed DOI PMC
Sechet J., Frey A., Effroy-Cuzzi D., Berger A., Perreau F., Cueff G., Charif D., Rajjou L., Mouille G., North H.M., et al. Xyloglucan metabolism differentially impacts the cell wall characteristics of the endosperm and embryo during Arabidopsis seed germination. Plant Phys. 2016;170:1367–1380. doi: 10.1104/pp.15.01312. PubMed DOI PMC
Poulsen C.P., Dilokpimol A., Mouille G., Burow M., Geshi N. Arabinogalactan glycosyltransferases target to a unique subcellular compartment that may function in unconventional secretion in plants. Traffic. 2014;15:1219–1234. doi: 10.1111/tra.12203. PubMed DOI PMC
Landsverk O.J., Barois N., Gregers T.F., Bakke O. Invariant chain increases the half-life of MHC II by delaying endosomal maturation. Immunol. Cell Biol. 2011;89:619–629. doi: 10.1038/icb.2010.143. PubMed DOI
Safavian D., Zayed Y., Indriolo E., Chapman L., Ahmed A., Goring D.R. RNA Silencing of Exocyst Genes in the Stigma Impairs the Acceptance of Compatible Pollen in Arabidopsis. Plant. Phys. 2015;169:2526–2538. doi: 10.1104/pp.15.00635. PubMed DOI PMC
Doucet J., Lee H.K., Goring D.R. Pollen acceptance or rejection: A tale of two pathways. Trends Plant Sci. 2016;21:1058–1067. doi: 10.1016/j.tplants.2016.09.004. PubMed DOI
Hafidh S., Potěšil D., Fíla J., Čapková V., Zdráhal Z., Honys D. Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol. 2016;17:81. doi: 10.1186/s13059-016-0928-x. PubMed DOI PMC
Chung K.P., Zeng Y., Jiang L. COPII paralogs in plants—Functional redundancy or diversity? Trends Plant Sci. 2016;21:758–769. doi: 10.1016/j.tplants.2016.05.010. PubMed DOI
Cui Y., Shen J., Gao C., Zhuang X., Wang J., Jiang L. Biogenesis of Plant Prevacuolar Multivesicular Bodies. Mol. Plant. 2016;9:774–786. doi: 10.1016/j.molp.2016.01.011. PubMed DOI
Bolter B., Soll J. Once upon a time—Chloroplast protein import research from infancy to future challenges. Mol. Plant. 2016;9:798–812. doi: 10.1016/j.molp.2016.04.014. PubMed DOI
Vothknecht U.C., Soll J. Chloroplast membrane transport: Interplay of prokaryotic and eukaryotic traits. Gene. 2005;354:99–109. doi: 10.1016/j.gene.2005.04.021. PubMed DOI
Wan J., Cabanillas D.G., Zheng H., Laliberté J.F. Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes. Plant Physiol. 2015;167:1374–1388. doi: 10.1104/pp.15.00097. PubMed DOI PMC
Saplaoura E., Kragler F. Mobile Transcripts and Intercellular Communication in Plants. Enzymes. 2016;40:1–29. PubMed
Crippa V., D’Agostino V.G., Cristofani R., Rusmini P., Cicardi M.E., Messi E., Loffredo R., Pancher M., Piccolella M., Galbiati M., et al. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases. Sci. Rep. 2016;10:22827. doi: 10.1038/srep22827. PubMed DOI PMC
Ogawa M., Shinohara H., Sakagami Y., Matsubayashi Y. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science. 2008;319:294. doi: 10.1126/science.1150083. PubMed DOI
Fletcher J.C., Brand U., Running M.P., Simon R., Meyerowitz E.M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science. 1999;283:1911–1914. doi: 10.1126/science.283.5409.1911. PubMed DOI
Cornish K., Xie W. Natural rubber biosynthesis in plants: Rubber transferase. Methods Enzymol. 2012;515:63–82. PubMed