Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27139692
PubMed Central
PMC4853860
DOI
10.1186/s13059-016-0928-x
PII: 10.1186/s13059-016-0928-x
Knihovny.cz E-zdroje
- Klíčová slova
- Cell-cell signaling, Double fertilization, Pollen tube guidance, Protein secretion,
- MeSH
- Arabidopsis genetika fyziologie MeSH
- fertilizace * MeSH
- opylení MeSH
- proteom * MeSH
- pylová láčka genetika růst a vývoj metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sekreční dráha * MeSH
- tabák genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom * MeSH
- rostlinné proteiny MeSH
BACKGROUND: As in animals, cell-cell communication plays a pivotal role in male-female recognition during plant sexual reproduction. Prelaid peptides secreted from the female reproductive tissues guide pollen tubes towards ovules for fertilization. However, the elaborate mechanisms for this dialogue have remained elusive, particularly from the male perspective. RESULTS: We performed genome-wide quantitative liquid chromatography-tandem mass spectrometry analysis of a pistil-stimulated pollen tube secretome and identified 801 pollen tube-secreted proteins. Interestingly, in silico analysis reveals that the pollen tube secretome is dominated by proteins that are secreted unconventionally, representing 57 % of the total secretome. In support, we show that an unconventionally secreted protein, translationally controlled tumor protein, is secreted to the apoplast. Remarkably, we discovered that this protein could be secreted by infiltrating through the initial phases of the conventional secretory pathway and could reach the apoplast via exosomes, as demonstrated by co-localization with Oleisin1 exosome marker. We demonstrate that translationally controlled tumor protein-knockdown Arabidopsis thaliana plants produce pollen tubes that navigate poorly to the target ovule and that the mutant allele is poorly transmitted through the male. Further, we show that regulators of the endoplasmic reticulum-trans-Golgi network protein secretory pathway control secretion of Nicotiana tabacum Pollen tube-secreted cysteine-rich protein 2 and Lorelei-like GPI-anchor protein 3 and that a regulator of endoplasmic reticulum-trans-Golgi protein translocation is essential for pollen tube growth, pollen tube guidance and ovule-targeting competence. CONCLUSIONS: This work, the first study on the pollen tube secretome, identifies novel genome-wide pollen tube-secreted proteins with potential functions in pollen tube guidance towards ovules for sexual reproduction. Functional analysis highlights a potential mechanism for unconventional secretion of pollen tube proteins and reveals likely regulators of conventional pollen tube protein secretion. The association of pollen tube-secreted proteins with marker proteins shown to be secreted via exosomes in other species suggests exosome secretion is a possible mechanism for cell-cell communication between the pollen tube and female reproductive cells.
Zobrazit více v PubMed
Maheshwari P. An introduction to embryology of angiosperms. New York: McGraw-Hill; 1950.
Yadegari R, Drews GN. Female gametophyte development. Plant Cell. 2004;16:S133–41. doi: 10.1105/tpc.018192. PubMed DOI PMC
Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, et al. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature. 2009;458:357–61. doi: 10.1038/nature07882. PubMed DOI
Takeuchi H, Higashiyama T. Attraction of tip-growing pollen tubes by the female gametophyte. Curr Opin Plant Biol. 2011;14:614–21. doi: 10.1016/j.pbi.2011.07.010. PubMed DOI
Marton ML, Fastner A, Uebler S, Dresselhaus T. Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr Biol. 2012;22:1194–8. doi: 10.1016/j.cub.2012.04.061. PubMed DOI
Dresselhaus T, Franklin-Tong N. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant. 2013;6:1018–36. doi: 10.1093/mp/sst061. PubMed DOI
Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A, Nakagawa T, et al. Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr Biol. 2011;21:497–502. doi: 10.1016/j.cub.2011.02.013. PubMed DOI
Chae K, Lord EM. Pollen tube growth and guidance: roles of small, secreted proteins. Ann Bot. 2011;108:627–36. doi: 10.1093/aob/mcr015. PubMed DOI PMC
Hong-Ju L, Shan-Shan Z, Meng-Xia Z, Tong W, Liang L, Yong X, et al. Arabidopsis CBP1 is a novel regulator of transcription initiation in central cell-mediated pollen tube guidance. Plant Cell. 2015 PubMed PMC
Tang WH, Ezcurra I, Muschietti J, McCormick S. A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell. 2002;14:2277–87. doi: 10.1105/tpc.003103. PubMed DOI PMC
Zhang D, Wengier D, Shuai B, Gui C-P, Muschietti J, McCormick S, et al. The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol. 2008;148:1368–79. doi: 10.1104/pp.108.124420. PubMed DOI PMC
Leydon AR, Beale KM, Woroniecka K, Castner E, Chen J, Horgan C, et al. Three MYB transcription factors control pollen tube differentiation required for sperm release. Curr Biol. 2013;23:1209–14. doi: 10.1016/j.cub.2013.05.021. PubMed DOI PMC
Beale KM, Leydon AR, Johnson MA. Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. Curr Biol. 2012;22:1090–4. doi: 10.1016/j.cub.2012.04.041. PubMed DOI PMC
Hafidh S, Potesil D, Fila J, Fecikova J, Capkova V, Zdrahal Z, et al. In search of ligands and receptors of the pollen tube: the missing link in pollen tube perception. Biochem Soc Trans. 2014;42:388–94. doi: 10.1042/BST20130204. PubMed DOI
Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, et al. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet. 2009;5:e1000621. doi: 10.1371/journal.pgen.1000621. PubMed DOI PMC
Kanaoka MM, Kawano N, Matsubara Y, Susaki D, Okuda S, Sasaki N, et al. Identification and characterization of TcCRP1, a pollen tube attractant from Torenia concolor. Ann Bot. 2011;108:739–47. doi: 10.1093/aob/mcr111. PubMed DOI PMC
Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics. 2006;5:144–56. doi: 10.1074/mcp.M500230-MCP200. PubMed DOI
Ahrné E, Molzahn L, Glatter T, Schmidt A. Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Proteomics. 2013;13:2567–78. doi: 10.1002/pmic.201300135. PubMed DOI
Hafidh S, Breznenova K, Ruzicka P, Fecikova J, Capkova V, Honys D. Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol. 2012;12. PubMed PMC
Hafidh S, Breznenova K, Honys D. De novo post-pollen mitosis II tobacco pollen tube transcriptome. Plant Signaling Behav. 2012;7:918–21. doi: 10.4161/psb.20745. PubMed DOI PMC
Qin Y, Yang Z. Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol. 2011;22:816–24. doi: 10.1016/j.semcdb.2011.06.004. PubMed DOI PMC
Žárský V, Cvrcková F, Potocký M, Hála M. Exocytosis and cell polarity in plants--exocyst and recycling domains. New Phytol. 2009;183:255–72. doi: 10.1111/j.1469-8137.2009.02880.x. PubMed DOI
Liang Y, Tan ZM, Zhu L, Niu QK, Zhou JJ, Li M, et al. MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization. PLoS Genet. 2013;9(11):e1003933. doi: 10.1371/journal.pgen.1003933. PubMed DOI PMC
Nielsen H, Engelbrecht J, Brunak S. vonHeijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997;10:1–6. doi: 10.1093/protein/10.1.1. PubMed DOI
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6. doi: 10.1038/nmeth.1701. PubMed DOI
Bendtsen JD, Jensen LJ, Blom N, von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Design Selection. 2004;17:349–56. doi: 10.1093/protein/gzh037. PubMed DOI
Sigrist CJA, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, et al. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 2010;38:D161–6. doi: 10.1093/nar/gkp885. PubMed DOI PMC
Ding Y, Wang J, Stierhof YD, Robinson DG, Jiang L. Unconventional protein secretion. Trends Plant Sci. 2012;17:606–15. doi: 10.1016/j.tplants.2012.06.004. PubMed DOI
Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4:1633–49. doi: 10.1002/pmic.200300771. PubMed DOI
Hamby SE, Hirst JD. Prediction of glycosylation sites using random forests. BMC Bioinformatics. 2008;9:500. doi: 10.1186/1471-2105-9-500. PubMed DOI PMC
Liu J, Zhong S, Guo X, Hao L, Wei X, Huang Q, et al. Membrane-bound RLCKs LIP1 and LIP2 are essential male factors controlling male-female attraction in Arabidopsis. Curr Biol. 2013;23:993–8. doi: 10.1016/j.cub.2013.04.043. PubMed DOI
Goldberg T, Hamp T, Rost B. LocTree2 predicts localization for all domains of life. Bioinformatics. 2012;28:I458–65. doi: 10.1093/bioinformatics/bts390. PubMed DOI PMC
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protocols. 2007;2:953–71. doi: 10.1038/nprot.2007.131. PubMed DOI
Kyo M, Miyatake H, Mamezuka K, Amagata K. Cloning of cDNA encoding NtEPc, a marker protein for the embryogenic dedifferentiation of immature tobacco pollen grains cultured in vitro. Plant Cell Physiol. 2000;41:129–37. doi: 10.1093/pcp/41.2.129. PubMed DOI
Higashiyama T. Peptide signaling in pollen-pistil interactions. Plant Cell Physiol. 2010;51:177–89. doi: 10.1093/pcp/pcq008. PubMed DOI
Luu DT, Qin X, Morse D, Cappadocia M. S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility. Nature. 2000;407:649–6510. doi: 10.1038/35036623. PubMed DOI
McClure B, Cruz-García F, Romero C. Compatibility and incompatibility in S-RNase-based systems. Ann Bot. 2011;179:1–12. PubMed PMC
Cheung AY, Wu HM, Di Stilio V, Glaven R, Chen C, Wong E, et al. Pollen-pistil interactions in Nicotiana tabacum. Ann Bot. 2000;85:29–37. doi: 10.1006/anbo.1999.1016. DOI
de Graaf BHJ, Knuiman BA, Derksen J, Mariani C. Characterization and localization of the transmitting tissue-specific PELPIII proteins of Nicotiana tabacum. J Exp Bot. 2003;54:55–63. doi: 10.1093/jxb/erg002. PubMed DOI
Bosch M, Knudsen JS, Derksen J, Mariani C. Class III pistil-specific extensin-like proteins from tobacco have characteristics of arabinogalactan proteins. Plant Physiol. 2001;125:2180–8. doi: 10.1104/pp.125.4.2180. PubMed DOI PMC
Eberle CA, Anderson NO, Clasen BM, Hegeman AD, Smith AG. PELPIII: the class III pistil-specific extensin-like Nicotiana tabacum proteins are essential for interspecific incompatibility. Plant J. 2013;74:805–14. doi: 10.1111/tpj.12163. PubMed DOI
Stratford S, Barnes W, Hohorst DL, Sagert JG, Cotter R, Golubiewski A, et al. A leucine-rich repeat region is conserved in pollen extensin-like (Pex) proteins in monocots and dicots. Plant Mol Biol. 2001;46:43–56. doi: 10.1023/A:1010659425399. PubMed DOI
Amy R, Jesús M, Maria S-C, Patricia B. Extensin-like glycoproteins in the maize pollen tube wali. Plant Cell. 1995a;7:2211–25. PubMed PMC
Chae K, Kieslich CA, Morikis D, Kim S-C, Lord EM. A gain-of-function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization. Plant Cell. 2009;21:3902–14. doi: 10.1105/tpc.109.070854. PubMed DOI PMC
Nelson BK, Cai X, Nebenfuehr A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 2007;51:1126–36. doi: 10.1111/j.1365-313X.2007.03212.x. PubMed DOI
Cheng F-y, Zamski E, Guo W-W, Pharr DM, Williamson JD. Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens. Planta. 2009;230:1093–103. doi: 10.1007/s00425-009-1006-3. PubMed DOI
Cheng F-y, Williamson JD. Is there leaderless protein secretion in plants? Plant Signaling Behav. 2010;5:129–31. doi: 10.4161/psb.5.2.10304. PubMed DOI PMC
Alexandersson E, Ali A, Resjö S, Andreasson E. Plant secretome proteomics. Front Plant Sci. 2013;4:9. doi: 10.3389/fpls.2013.00009. PubMed DOI PMC
Amson R, Pece S, Lespagnol A, Vyas R, Mazzarol G, Tosoni D, et al. Reciprocal repression between P53 and TCTP. Nat Med. 2012;18:91–9. doi: 10.1038/nm.2546. PubMed DOI
Amzallag N, Passer BJ, Allanic D, Segura E, Thery C, Goud B, et al. TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem. 2004;279:46104–12. doi: 10.1074/jbc.M404850200. PubMed DOI
Prado N, de Dios AJ, Casado-Vela J, Mas S, Villalba M, Rodriguez R, et al. Nanovesicles are secreted during pollen germination and pollen tube growth: a possible role in fertilization. Mol Plant. 2014;7:573–7. doi: 10.1093/mp/sst153. PubMed DOI
Gendre D, McFarlane HE, Johnson E, Mouille G, Sjodin A, Oh J, et al. Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. Plant Cell. 2013;25:2633–46. doi: 10.1105/tpc.113.112482. PubMed DOI PMC
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. Genevestigator: an Arabidopsis thaliana microarray database and analysis toolbox. Plant Biol. 2004;2004:186–6. PubMed PMC
Gendre D, Oh J, Boutte Y, Best JG, Samuels L, Nilsson R, et al. Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation. Proc Natl Acad Sci U S A. 2011;108:8048–53. doi: 10.1073/pnas.1018371108. PubMed DOI PMC
Fan X, Yang C, Klisch D, Ferguson A, Bhaellero RP, Niu X, et al. ECHIDNA protein impacts on male fertility in Arabidopsis by mediating trans-Golgi network secretory trafficking during anther and pollen development. Plant Physiol. 2014;164:1338–49. doi: 10.1104/pp.113.227769. PubMed DOI PMC
Berkowitz O, Jost R, Pollmann S, Masle J. Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell. 2008;20:3430–47. doi: 10.1105/tpc.108.061010. PubMed DOI PMC
Brioudes F, Thierry A-M, Chambrier P, Mollereau B, Bendahmane M. Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc Natl Acad Sci U S A. 2010;107:16384–9. doi: 10.1073/pnas.1007926107. PubMed DOI PMC
Higashiyama T. The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol; 2015;66:393-413. PubMed
Márton ML, Cordts S, Broadhvest J, Dresselhaus T. Micropylar pollen tube guidance by egg apparatus 1 of maize. Science. 2005;307:573–6. doi: 10.1126/science.1104954. PubMed DOI
Li S, Ge FR, Xu M, Zhao XY, Huang GQ, Zhou LZ, et al. Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. Plant J. 2013;74:486–97. doi: 10.1111/tpj.12139. PubMed DOI
Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T. Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell. 1998;10:2019–31. doi: 10.1105/tpc.10.12.2019. PubMed DOI PMC
Palanivelu R, Preuss D. Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol. 2006;6:7. doi: 10.1186/1471-2229-6-7. PubMed DOI PMC
Kasahara RD, Maruyama D, Hamamura Y, Sakakibara T, Twell D, Higashiyama T. Fertilization recovery after defective sperm cell release in Arabidopsis. Curr Biol. 2012;22:1084–9. doi: 10.1016/j.cub.2012.03.069. PubMed DOI
Blanco MA, LeRoy G, Khan Z, Aleckovic M, Zee BM, Garcia BA, et al. Global secretome analysis identifies novel mediators of bone metastasis. Cell Res. 2012;22:1339–55. doi: 10.1038/cr.2012.89. PubMed DOI PMC
Li H-J, Xue Y, Jia D-J, Wang T, Shi D-Q, Liu J, et al. POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell. 2011;23:3288–302. doi: 10.1105/tpc.111.088914. PubMed DOI PMC
Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N, Cheung A, et al. Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. Plant Cell. 2011;23:81–93. doi: 10.1105/tpc.110.080499. PubMed DOI PMC
Drakakaki G, Dandekar A. Protein secretion: how many secretory routes does a plant cell have? Plant Sci. 2013;203–204:74–8. doi: 10.1016/j.plantsci.2012.12.017. PubMed DOI
Thery C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 2011;3:15–5. doi: 10.3410/B3-15. PubMed DOI PMC
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83. doi: 10.1083/jcb.201211138. PubMed DOI PMC
Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, Oon CE, et al. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood. 2010;116:2385–94. doi: 10.1182/blood-2009-08-239228. PubMed DOI
Miki B, McHugh S. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol. 2004;107:193–232. doi: 10.1016/j.jbiotec.2003.10.011. PubMed DOI
Zhang H, Zhang L, Gao B, Fan H, Jin J, Botella MA, et al. Golgi apparatus-localized synaptotagmin 2 is required for unconventional secretion in Arabidopsis. PLoS One. 2011;6(11):e26477. doi: 10.1371/journal.pone.0026477. PubMed DOI PMC
Nickel W. Rabouille. Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol. 2019;10:148–55. doi: 10.1038/nrm2617. PubMed DOI
Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Wan SL, et al. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell. 2010;22(12):4009–30. doi: 10.1105/tpc.110.080697. PubMed DOI PMC
Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–9. doi: 10.1038/35036052. PubMed DOI
Levental I, Lingwood D, Grzybek M, Coskun U, Simons K. Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci U S A. 2010;107:22050–4. doi: 10.1073/pnas.1016184107. PubMed DOI PMC
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62. doi: 10.1038/nmeth.1322. PubMed DOI
Wiśniewski JR, Ostasiewicz P, Mann M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J Proteome Res. 2011;10:3040–9. doi: 10.1021/pr200019m. PubMed DOI
Vitale A, Denecke J. The endoplasmic reticulum--gateway of the secretory pathway. Plant Cell. 1999;11:615–28. PubMed PMC
Jouhet J, Marechal E, Block MA. Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res. 2007;46:37–55. doi: 10.1016/j.plipres.2006.06.002. PubMed DOI
Rojo E, Denecke J. What is moving in the secretory pathway of plants? Plant Physiol. 2008;147:1493–503. doi: 10.1104/pp.108.124552. PubMed DOI PMC
Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis
Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics