Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
22340370
PubMed Central
PMC3305590
DOI
10.1186/1471-2229-12-24
PII: 1471-2229-12-24
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika MeSH
- buněčný cyklus genetika MeSH
- gametogeneze rostlin MeSH
- genový knockdown MeSH
- klíčení MeSH
- kořeny rostlin genetika MeSH
- pyl genetika MeSH
- pylová láčka růst a vývoj MeSH
- regulace genové exprese u rostlin MeSH
- RNA rostlin genetika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- tabák genetika MeSH
- transkriptom * MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- RNA rostlin MeSH
BACKGROUND: Many flowering plants produce bicellular pollen. The two cells of the pollen grain are destined for separate fates in the male gametophyte, which provides a unique opportunity to study genetic interactions that govern guided single-cell polar expansion of the growing pollen tube and the coordinated control of germ cell division and sperm cell fate specification. We applied the Agilent 44 K tobacco gene chip to conduct the first transcriptomic analysis of the tobacco male gametophyte. In addition, we performed a comparative study of the Arabidopsis root-hair trichoblast transcriptome to evaluate genetic factors and common pathways involved in polarized cell-tip expansion. RESULTS: Progression of pollen grains from freshly dehisced anthers to pollen tubes 4 h after germination is accompanied with > 5,161 (14.9%) gametophyte-specific expressed probes active in at least one of the developmental stages. In contrast, > 18,821 (54.4%) probes were preferentially expressed in the sporophyte. Our comparative approach identified a subset of 104 pollen tube-expressed genes that overlap with root-hair trichoblasts. Reverse genetic analysis of selected candidates demonstrated that Cu/Zn superoxide dismutase 1 (CSD1), a WD-40 containing protein (BP130384), and Replication factor C1 (NtRFC1) are among the central regulators of pollen-tube tip growth. Extension of our analysis beyond the second haploid mitosis enabled identification of an opposing-dynamic accumulation of core regulators of cell proliferation and cell fate determinants in accordance with the progression of the germ cell cycle. CONCLUSIONS: The current study provides a foundation to isolate conserved regulators of cell tip expansion and those that are unique for pollen tube growth to the female gametophyte. A transcriptomic data set is presented as a benchmark for future functional studies using developing pollen as a model. Our results demonstrated previously unknown functions of certain genes in pollen-tube tip growth. In addition, we highlighted the molecular dynamics of core cell-cycle regulators in the male gametophyte and postulated the first genetic model to account for the differential timing of spermatogenesis among angiosperms and its coordination with female gametogenesis.
Zobrazit více v PubMed
McCormick S. The Plant Cell Online. 2004. p. S142. PubMed PMC
Honys D, Twell D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 2003;132(2):640. doi: 10.1104/pp.103.020925. PubMed DOI PMC
Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD. Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol. 2008;148(2):1168. doi: 10.1104/pp.108.125229. PubMed DOI PMC
Brewbaker JR. The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the angiosperms. Am J Bot. 1967;54(9):1069–1083. doi: 10.2307/2440530. DOI
Friedman WE. Expression of the cell cycle in sperm of Arabidopsis: implications for understanding patterns of gametogenesis and fertilization in plants and other eukaryotes. Development. 1999;126(5):1065. PubMed
Tian HQ, Yuan T, Russell SD. Relationship between double fertilization and the cell cycle in male and female gametes of tobacco. Sexual Plant Reprod. 2005;17(5):243–252. doi: 10.1007/s00497-004-0233-9. DOI
Larkin JC, Marks MD, Nadeau J, Sack F. Epidermal cell fate and patterning in leaves. Plant Cell. 1997;9(7):1109. doi: 10.1105/tpc.9.7.1109. PubMed DOI PMC
Gibson DA, Ma L. Developmental regulation of axon branching in the vertebrate nervous system. Development. 2011;138(2):183. doi: 10.1242/dev.046441. PubMed DOI PMC
Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet. 2009;5(8):e1000621. doi: 10.1371/journal.pgen.1000621. PubMed DOI PMC
Lee YJ, Yang Z. Tip growth: signaling in the apical dome. Curr Opin Plant Biol. 2008;11(6):662–671. doi: 10.1016/j.pbi.2008.10.002. PubMed DOI PMC
Haerizadeh F, Wong C, Bhalla P, Gresshoff P, Singh M. Genomic expression profiling of mature soybean (Glycine max) pollen. BMC Plant Biology. 2009;9(1):25. doi: 10.1186/1471-2229-9-25. PubMed DOI PMC
Xin HP, Peng XB, Ning J, Yan TT, Ma LG, Sun MX. Expressed sequence-tag analysis of tobacco sperm cells reveals a unique transcriptional profile and selective persistence of paternal transcripts after fertilization. Sexual Plant Reprod. 2011;24(1):37–46. doi: 10.1007/s00497-010-0151-y. PubMed DOI
Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol. 2008;148(3):1201. doi: 10.1104/pp.108.126375. PubMed DOI PMC
Honys D, Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004;5(11):R85. doi: 10.1186/gb-2004-5-11-r85. PubMed DOI PMC
Won SK, Lee YJ, Lee HY, Heo YK, Cho M, Cho HT. Cis-element-and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis. Plant Physiol. 2009;150(3):1459. doi: 10.1104/pp.109.140905. PubMed DOI PMC
Cvrčková F, Bezvoda R, Žárský V. Computational identification of root hair-specific genes in Arabidopsis. Plant Signaling & Behavior. 2010;5(11):1407. doi: 10.4161/psb.5.11.13358. PubMed DOI PMC
Kanaoka MM, Torii KU. FERONIA as an upstream receptor kinase for polar cell growth in plants. Proc National Acad Sci. 2010;107(41):17461. doi: 10.1073/pnas.1013090107. PubMed DOI PMC
Tupý J, Süss J, Hrabětová E, Říhová L. Developmental changes in gene expression during pollen differentiation and maturation in Nicotiana tabacum L. Biol Plant. 1983;25(3):231–237. doi: 10.1007/BF02902110. DOI
Edwards K, Bombarely A, Story G, Allen F, Mueller L, Coates S, Jones L. TobEA: an atlas of tobacco gene expression from seed to senescence. BMC Genomics. 2010;11(1):142. doi: 10.1186/1471-2164-11-142. PubMed DOI PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B (Methodological) 1995;57(1):289–300.
Snedden WA, Fromm H. Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci. 1998;3(8):299–304. doi: 10.1016/S1360-1385(98)01284-9. DOI
Zhang L, Lu YT. Calmodulin-binding protein kinases in plants. Trends Plant Sci. 2003;8(3):123–127. doi: 10.1016/S1360-1385(03)00013-X. PubMed DOI
Baluška F. Recent surprising similarities between plant cells and neurons. Plant Signaling & Behavior. 2010;5(2):87. doi: 10.4161/psb.5.2.11237. PubMed DOI PMC
Weterings K, Reijnen W, Aarssen R, Kortstee A, Spijkers J, Herpen M, Schrauwen J, Wullems G. Characterization of a pollen-specific cDNA clone from Nicotiana tabacum expressed during microgametogenesis and germination. Plant Mol Biol. 1992;18(6):1101–1111. doi: 10.1007/BF00047713. PubMed DOI
Wittink FRA, Knuiman B, Derksen J, Čapková V, Twell D, Schrauwen JAM, Wullems GJ. The pollen-specific gene Ntp303 encodes a 69-kDa glycoprotein associated with the vegetative membranes and the cell wall. Sexual Plant Reprod. 2000;12(5):276–284. doi: 10.1007/s004970050195. DOI
Čapková V, Hrabětová E, Tupý J. Protein changes in tobacco pollen culture; a newly synthesized protein related to pollen tube growth. J Plant Physiol. 1987;130(4-5):307–314. doi: 10.1016/S0176-1617(87)80197-9. DOI
Moutinho A, Camacho L, Haley A, Pais MS, Trewavas A, Malhó R. Antisense perturbation of protein function in living pollen tubes. Sexual Plant Reprod. 2001;14(1):101–104. doi: 10.1007/s004970100086. DOI
Sun C, Ghebramedhin H, Höglund AS, Jansson C. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology. Plant Signaling & Behavior. 2008;3(5):328. doi: 10.4161/psb.3.5.5341. PubMed DOI PMC
Gönczy P, Echeverri C, Oegema K, Coulson A, Jones SJM, Copley RR, Duperon J, Oegema J, Brehm M, Cassin E. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature. 2000;408(6810):331–336. doi: 10.1038/35042526. PubMed DOI
Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32(3):936. doi: 10.1093/nar/gkh247. PubMed DOI PMC
Potocký M, Jones MA, Bezvoda R, Smirnoff N, Žárský V. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol. 2007;174(4):742–751. doi: 10.1111/j.1469-8137.2007.02042.x. PubMed DOI
Wang H, Tse YC, Law AHY, Sun SSM, Sun YB, Xu ZF, Hillmer S, Robinson DG, Jiang L. Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. The Plant J. 2010;61(5):826–838. doi: 10.1111/j.1365-313X.2009.04111.x. PubMed DOI
Feng H, Chen Q, Feng J, Zhang J, Yang X, Zuo J. Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death. Plant Physiol. 2007;144(3):1531. doi: 10.1104/pp.107.098079. PubMed DOI PMC
Lan P, Schmidt W. The enigma of eIF5A in the iron deficiency response of Arabidopsis. Plant Signal Behav. 2011;6(4):528–530. doi: 10.4161/psb.6.4.14747. PubMed DOI PMC
Čapková V, Hrabětová E, Tupý J. Effects of Cycloheximide on Pollen of Nicotiana tabacu in Culture. Biochem Physiol Pflanzen. 1980;175:412–420.
Cheung AY, Duan QH, Costa SS, de Graaf B, Di Stilio VS, Feijo J, Wu HM. The dynamic pollen tube cytoskeleton: Live cell studies using actin-binding and microtubule-binding reporter proteins. Molecular Plant. 2008;1(4):686–702. doi: 10.1093/mp/ssn026. PubMed DOI
Čapková V, Zbrožek J, Tupý J. Protein synthesis in tobacco pollen tubes: preferential synthesis of cell-wall 69-kDa and 66-kDa glycoproteins. Sexual Plant Reprod. 1994;7(1):57–66. doi: 10.1007/BF00241888. DOI
Ramsay NA, Glover BJ. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci. 2005;10(2):63–70. doi: 10.1016/j.tplants.2004.12.011. PubMed DOI
Lee JH, Terzaghi W, Gusmaroli G, Charron JBF, Yoon HJ, Chen H, He YJ, Xiong Y, Deng XW. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. The Plant Cell Online. 2008;20(1):152. doi: 10.1105/tpc.107.055418. PubMed DOI PMC
Berger F, Linstead P, Dolan L, Haseloff J. Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning. Dev Biol. 1998;194(2):226–234. doi: 10.1006/dbio.1997.8836. PubMed DOI
Schiefelbein JW. Constructing a plant cell. The genetic control of root hair development. Plant Physiol. 2000;124(4):1525. doi: 10.1104/pp.124.4.1525. PubMed DOI PMC
Schiefelbein J, Kwak SH, Wieckowski Y, Barron C, Bruex A. The gene regulatory network for root epidermal cell-type pattern formation in Arabidopsis. J Exp Bot. 2009;60(5):1515. doi: 10.1093/jxb/ern339. PubMed DOI PMC
Kliebenstein DJ, Monde RA, Last RL. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol. 1998;118(2):637. doi: 10.1104/pp.118.2.637. PubMed DOI PMC
Beauclair L, Yu A, Bouché N. microRNA- directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. The Plant J. 2010;62(3):454–462. doi: 10.1111/j.1365-313X.2010.04162.x. PubMed DOI
Liu Q, Wang J, Miki D, Xia Ran, Yu W, He J, Zheng Z, Zhu JK, Gong Z. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis. The Plant Cell. 2010;22:2336–2352. doi: 10.1105/tpc.110.076349. PubMed DOI PMC
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M. mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant J. 2004;37(6):914–939. doi: 10.1111/j.1365-313X.2004.02016.x. PubMed DOI
Brownfield L, Hafidh S, Borg M, Sidorova A, Mori T, Twell D. A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet. 2009;5(3):e1000430. doi: 10.1371/journal.pgen.1000430. PubMed DOI PMC
Hassan H, Scheres B, Blilou I. JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism. Development. 2010;137(9):1523. doi: 10.1242/dev.048777. PubMed DOI
Chen Z, Hafidh S, Poh SH, Twell D, Berger F. Proliferation and cell fate establishment during Arabidopsis male gametogenesis depends on the Retinoblastoma protein. Proc National Acad Sci. 2009;106(17):7257. doi: 10.1073/pnas.0810992106. PubMed DOI PMC
Kim HJ, Oh SA, Brownfield L, Hong SH, Ryu H, Hwang I, Twell D, Nam HG. Control of plant germline proliferation by SCFFBL17 degradation of cell cycle inhibitors. Nature. 2008;455(7216):1134–1137. doi: 10.1038/nature07289. PubMed DOI
Zheng B, Chen X, McCormick S. The anaphase-promoting complex is a dual integrator that regulates both MicroRNA-mediated transcriptional regulation of Cyclin B1 and degradation of Cyclin B1 during Arabidopsis male gametophyte development. The Plant Cell Online. 2011;23(3):1033. doi: 10.1105/tpc.111.083980. PubMed DOI PMC
Durbarry A, Vizir I, Twell D. Male germ line development in Arabidopsis. duo pollen mutants reveal gametophytic regulators of generative cell cycle progression. Plant Physiol. 2005;137(1):297. doi: 10.1104/pp.104.053165. PubMed DOI PMC
Ito M, Araki S, Matsunaga S, Itoh T, Nishihama R, Machida Y, Doonan JH, Watanabe A. G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell. 2001;13(8):1891. PubMed PMC
Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T, Suzuki K, Müller I, Voß U, Jürgens G. R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development. 2007;134(6):1101. doi: 10.1242/dev.02801. PubMed DOI
Li C, Potuschak T, Colón-Carmona A, Gutiérrez RA, Doerner P. Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA. 2005;102(36):12978. doi: 10.1073/pnas.0504039102. PubMed DOI PMC
Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D. The R2R3 MYB transcription Factor DUO1 activates a male germline-specific regulon Essential for sperm cell differentiation in Arabidopsis. The Plant Cell Online. 2011;23(2):534. doi: 10.1105/tpc.110.081059. PubMed DOI PMC
Verkest A, Weinl C, Inzé D, De Veylder L, Schnittger A. Switching the cell cycle. Kip-related proteins in plant cell cycle control. Plant Physiol. 2005;139(3):1099. doi: 10.1104/pp.105.069906. PubMed DOI PMC
Gou X, Yuan T, Wei X, Russell SD. Gene expression in the dimorphic sperm cells of Plumbago zeylanica: transcript profiling, diversity, and relationship to cell type. The Plant J. 2009;60(1):33–47. doi: 10.1111/j.1365-313X.2009.03934.x. PubMed DOI
Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat Cell Biol. 2005;8(1):64–71. PubMed
Zhang Y, Cheng YT, Qu N, Zhao Q, Bi D, Li X. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. The Plant J. 2006;48(5):647–656. doi: 10.1111/j.1365-313X.2006.02903.x. PubMed DOI
Papdi C, Ábrahám E, Joseph MP, Popescu C, Koncz C, Szabados L. Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system. Plant Physiol. 2008;147(2):528. doi: 10.1104/pp.108.116897. PubMed DOI PMC
Honys D, Reňák D, Feciková J, Jedelský PL, Nebesářová J, Dobrev P, Čapková V. Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J Proteome Res. 2009;8(4):2015–2031. doi: 10.1021/pr8009897. PubMed DOI
Hafidh S, Honys D, Čapková V. In: RNA Infrastructure and Networks, Advances in medicine and Biology, Intelligence Unit. 722. Lesley JC, editor. New Zealand: Landes Bioscience/Springer Science, Madame Curie Bioscience Database; 2010. Safe keeping of the messages; RNP complexes tweaking after transcription; pp. 118–133.
Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijó JA, Martienssen RA. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell. 2009;136(3):461–472. doi: 10.1016/j.cell.2008.12.038. PubMed DOI PMC
McCue AD, Cresti M, Feijó JA, Slotkin RK. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited. J Exp Bot. 2011;62(5):1621. doi: 10.1093/jxb/err032. PubMed DOI
Chang LC, Guo CL, Lin YS, Fu H, Wang CS, Jauh GY. Pollen-specific SKP1-like proteins are components of functional SCF complexes and essential for lily pollen tube elongation. Plant and Cell Physiologys. 2009;50(8):1558. doi: 10.1093/pcp/pcp100. PubMed DOI
Wang L, Liao FL, Zhu L, Peng XB, Sun MX. NtGNL1 is involved in embryonic cell division patterning, root elongation, and pollen tube growth in tobacco. New Phytol. 2008;179(1):81–93. doi: 10.1111/j.1469-8137.2008.02444.x. PubMed DOI
Wang H, Lockwood SK, Hoeltzel MF, Schiefelbein JW. The ROOT HAIR DEFECTIVE3 gene encodes an evolutionarily conserved protein with GTP-binding motifs and is required for regulated cell enlargement in Arabidopsis. Genes Dev. 1997;11(6):799. doi: 10.1101/gad.11.6.799. PubMed DOI
de Groot P, Weterings K, de Been M, Wittink F, Hulzink R, Custers J, van Herpen M, Wullems G. Silencing of the pollen-specific gene NTP303 and its family members in tobacco affects in vivo pollen tube growth and results in male sterile plants. Plant Mol Biol. 2004;55(5):715–726. doi: 10.1007/s11103-004-1964-6. PubMed DOI
Guitton A, Berger F. Control of reproduction by Polycomb Group complexes in animals and plants. Int J Dev Biol. 2005;49(5/6):707. PubMed
Ryan E, Grierson CS, Cavell A, Steer M, Dolan L. TIP1 is required for both tip growth and non-tip growth in Arabidopsis. New Phytol. 1998;138(1):49–58. doi: 10.1046/j.1469-8137.1998.00896.x. DOI
Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR. The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. The Plant Cell Online. 2002;14(7):1635. doi: 10.1105/tpc.002360. PubMed DOI PMC
Hulzink RJM, de Groot PFM, Croes AF, Quaedvlieg W, Twell D, Wullems GJ, van Herpen M. The 5'-untranslated region of the ntp303 gene strongly enhances translation during pollen tube growth, but not during pollen maturation. Plant Physiol. 2002;129(1):342. doi: 10.1104/pp.001701. PubMed DOI PMC
Aw SJ, Hamamura Y, Chen Z, Schnittger A, Berger F. Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsi. Development. 2010;137(16):2683–2690. doi: 10.1242/dev.052928. PubMed DOI
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science. 2008;320(5880):1185. doi: 10.1126/science.1159151. PubMed DOI
Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, Schnittger A. A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet. 2006;38(1):63–67. doi: 10.1038/ng1694. PubMed DOI
Iwakawa H, Shinmyo A, Sekine M. Arabidopsis CDKA; 1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. The Plant J. 2006;45(5):819–831. doi: 10.1111/j.1365-313X.2005.02643.x. PubMed DOI
Dissmeyer N, Nowack MK, Pusch S, Stals H, Inze D, Grini PE, Schnittger A. T-loop phosphorylation of Arabidopsis CDKA; 1 is required for its function and can be partially substituted by an aspartate residue. Plant Cell. 2007;19(3):972. doi: 10.1105/tpc.107.050401. PubMed DOI PMC
Marrocco K, Thomann A, Parmentier Y, Genschik P, Criqui MC. The APC/C E3 ligase remains active in most post-mitotic Arabidopsis cells and is required for proper vasculature development and organization. Development. 2009;136(9):1475. doi: 10.1242/dev.035535. PubMed DOI
Twell D. Male gametogenesis and germline specification in flowering plants. Sexual Plant Reprod. 2011;24(2):149–160. doi: 10.1007/s00497-010-0157-5. PubMed DOI
Petrů E, Hrabětová E, Tupý J. The technique of obtaining germinating pollen without microbial contamination. Biol Plant. 1964;6(1):68–69. doi: 10.1007/BF02930799. DOI
Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc National Acad Sci. 2001;98(1):31. doi: 10.1073/pnas.011404098. PubMed DOI PMC
Reimand J, Arak T, Vilo J. g:Profiler--a web server for functional interpretation of gene lists (2011 update) Nucleic Acids Res. 2011;39(suppl 2):W307. PubMed PMC
Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B. GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol. 2004;5(12):R101. doi: 10.1186/gb-2004-5-12-r101. PubMed DOI PMC
Aartsma-Rus A, Van Vliet L, Hirschi M, Janson AAM, Heemskerk H, De Winter CL, De Kimpe S, Van Deutekom JCT, AC't Hoen P, van Ommen GJB. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Therapy. 2008;17(3):548–553. PubMed PMC
Park SK, Howden R, Twell D. The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development. 1998;125(19):3789. PubMed
A Decade of Pollen Phosphoproteomics
Heat stress response mechanisms in pollen development
Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics
Male gametophyte development and function in angiosperms: a general concept
Phosphoproteomics Profiling of Tobacco Mature Pollen and Pollen Activated in vitro
Transcriptome profiling of male gametophyte development in Nicotiana tabacum
De novo post-pollen mitosis II tobacco pollen tube transcriptome