Transcriptome analysis of haploid male gametophyte development in Arabidopsis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
15535861
PubMed Central
PMC545776
DOI
10.1186/gb-2004-5-11-r85
PII: gb-2004-5-11-r85
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika MeSH
- CDC geny MeSH
- genetická transkripce genetika MeSH
- genom rostlinný MeSH
- haploidie * MeSH
- homeodoménové proteiny genetika MeSH
- proteiny huseníčku genetika MeSH
- pyl genetika MeSH
- rostlinné geny genetika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů metody MeSH
- spory genetika MeSH
- stanovení celkové genové exprese metody MeSH
- transkripční faktory genetika MeSH
- vývojová regulace genové exprese genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- homeodoménové proteiny MeSH
- KNAT5 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- transkripční faktory MeSH
BACKGROUND: The haploid male gametophyte generation of flowering plants consists of two- or three-celled pollen grains. This functional specialization is thought to be a key factor in the evolutionary success of flowering plants. Moreover, pollen ontogeny is also an attractive model in which to dissect cellular networks that control cell growth, asymmetric cell division and cellular differentiation. Our objective, and an essential step towards the detailed understanding of these processes, was to comprehensively define the male haploid transcriptome throughout development. RESULTS: We have developed staged spore isolation procedures for Arabidopsis and used Affymetrix ATH1 genome arrays to identify a total of 13,977 male gametophyte-expressed mRNAs, 9.7% of which were male-gametophyte-specific. The transition from bicellular to tricellular pollen was accompanied by a decline in the number of diverse mRNA species and an increase in the proportion of male gametophyte-specific transcripts. Expression profiles of regulatory proteins and distinct clusters of coexpressed genes were identified that could correspond to components of gametophytic regulatory networks. Moreover, integration of transcriptome and experimental data revealed the early synthesis of translation factors and their requirement to support pollen tube growth. CONCLUSIONS: The progression from proliferating microspores to terminally differentiated pollen is characterized by large-scale repression of early program genes and the activation of a unique late gene-expression program in maturing pollen. These data provide a quantum increase in knowledge concerning gametophytic transcription and lay the foundations for new genomic-led studies of the regulatory networks and cellular functions that operate to specify male gametophyte development.
Zobrazit více v PubMed
Burton GR, Guan Y, Nagarajan R, McGehee RE., Jr Microarray analysis of gene expression during early adipocyte differentiation. Gene. 2002;293:21–31. doi: 10.1016/S0378-1119(02)00726-6. PubMed DOI
Klebes A, Biehs B, Cifuentes F, Kornberg TB. Expression profiling of Drosophila imaginal discs. Genome Biol. 2002;3:research0038.1–0038.16. doi: 10.1186/gb-2002-3-8-research0038. PubMed DOI PMC
Stathopoulos A, Van Drenth M, Erives A, Markstein M, Levine M. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell. 2002;111:687–701. doi: 10.1016/S0092-8674(02)01087-5. PubMed DOI
Chiang MK, Melton DA. Single-cell transcript analysis of pancreas development. Dev Cell. 2003;4:383–393. doi: 10.1016/S1534-5807(03)00035-2. PubMed DOI
Breyne P, Dreesen R, Vandepoele K, De Veylder L, Van Breusegem F, Callewaert L, Rombauts S, Raes J, Cannoot B, Engler G. Transcriptome analysis during cell division in plants. Proc Natl Acad Sci USA. 2002;99:14825–14830. doi: 10.1073/pnas.222561199. PubMed DOI PMC
Menges M, Hennig L, Gruissem W, Murray JA. Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem. 2002;277:41987–42002. doi: 10.1074/jbc.M207570200. PubMed DOI
Brandt S, Kloska S, Altmann T, Kehr J. Using array hybridization to monitor gene expression at the single cell level. J Exp Bot. 2002;53:2315–2323. doi: 10.1093/jxb/erf093. PubMed DOI
Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell. 2004;16:596–615. doi: 10.1105/tpc.019000. PubMed DOI PMC
Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, et al. Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci USA. 2002;99:15794–15799. doi: 10.1073/pnas.232590499. PubMed DOI PMC
Milioni D, Sado PE, Stacey NJ, Roberts K, McCann MC. Early gene expression associated with the commitment and differentiation of a plant tracheary element is revealed by cDNA-amplified fragment length polymorphism analysis. Plant Cell. 2002;14:2813–2824. doi: 10.1105/tpc.005231. PubMed DOI PMC
Phillips J, Eberwine JH. Antisense RNA amplification: A linear amplification method for analyzing the mRNA population from single living cells. Methods. 1996;10:283–288. doi: 10.1006/meth.1996.0104. PubMed DOI
Luo L, Salunga RC, Guo H, Bittner A, Joy KC, Galindo JE, Xiao H, Rogers KE, Wan JS, Jackson MR, et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med. 1999;5:117–122. doi: 10.1038/4806. PubMed DOI
Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN. A gene expression map of the Arabidopsis root. Science. 2003;302:1956–1960. doi: 10.1126/science.1090022. PubMed DOI
McCormick S. Male gametophyte development. Plant Cell. 1993;5:1265–1275. doi: 10.1105/tpc.5.10.1265. PubMed DOI PMC
Twell D, Park SK, Lalanne E. Asymmetric division and cell-fate determination in developing pollen. Trends Plant Sci. 1998;3:305–310. doi: 10.1016/S1360-1385(98)01277-1. DOI
Twell D. Pollen developmental biology. In: O'Neil SD, Roberts JA, editor. In Plant Reproduction Annual Plant Reviews. Vol. 6. Sheffield: Sheffield Academic Press; 2002. pp. 86–153.
McCormick S. Control of male gametophyte development. Plant Cell. 2004;16(Suppl):S142–S153. doi: 10.1105/tpc.016659. PubMed DOI PMC
Grini PE, Schnittger A, Schwarz H, Zimmermann I, Schwab B, Jurgens G, Hulskamp M. Isolation of ethyl methanesulfonate-induced gametophytic mutants in Arabidopsis thaliana by a segregation distortion assay using the multimarker chromosome 1. Genetics. 1999;151:849–863. PubMed PMC
Howden R, Park SK, Moore JM, Orme J, Grossniklaus U, Twell D. Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics. 1998;149:621–631. PubMed PMC
Lalanne E, Twell D. Genetic control of male germ unit organization in Arabidopsis. Plant Physiol. 2002;129:865–875. doi: 10.1104/pp.003301. PubMed DOI PMC
Lalanne E, Honys D, Johnson A, Borner GHH, Lilley KS, Dupree P, Grossniklaus U, Twell D. SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell. 2004;16:229–240. doi: 10.1105/tpc.014407. PubMed DOI PMC
Lalanne E, Michaelidis C, Moore JM, Gagliano W, Johnson A, Patel R, Howden R, Vielle-Calzada J-P, Grossniklaus U, Twell D. Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics. 2004;167:1975–1986. doi: 10.1534/genetics.104.030270. PubMed DOI PMC
Lobstein E, Guyon A, Férault M, Twell D, Pelletier G, Bonhomme S. The putative Arabidopsis homolog of yeast Vps52p is required for pollen tube elongation, localizes to Golgi and might be involved in vesicle trafficking. Plant Physiol. 2004;135:1480–1490. doi: 10.1104/pp.103.037747. PubMed DOI PMC
Oh S-A, Park S-K, Jang I, Howden R, Moore JM, Grossniklaus U, Twell D. Halfman, an Arabidopsis male gametophytic mutant associated with a 150 kb chromosomal deletion at the site of transposon insertion. Sex Plant Reprod. 2003;16:99–102. doi: 10.1007/s00497-003-0181-9. DOI
Park SK, Howden R, Twell D. The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development. 1998;125:3789–3799. PubMed
Park S-K, Rahman D, Oh S-A, Twell D. Gemini pollen 2, a male and female gametophytic cytokinesis defective mutation. Sex Plant Reprod. 2004;17:63–70. doi: 10.1007/s00497-004-0216-x. PubMed DOI PMC
Procissi A, de Laissardiere S, Ferault M, Vezon D, Pelletier G, Bonhomme S. Five gametophytic mutations affecting pollen development and pollen tube growth in Arabidopsis thaliana. Genetics. 2001;158:1773–83. PubMed PMC
Procissi A, Guyon A, Pierson ES, Giritch A, Knuiman B, Grandjean O, Tonelli C, Derksen J, Pelletier G, Bonhomme S. KINKY POLLEN encodes a SABRE-like protein required for tip growth in Arabidopsis and conserved among eukaryotes. Plant J. 2003;36:894–904. doi: 10.1046/j.1365-313X.2003.01933.x. PubMed DOI
Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ. MOR1/GEM1 plays an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol. 2002;4:711–714. doi: 10.1038/ncb844. PubMed DOI PMC
Engel ML, Chaboud A, Dumas C, McCormick S. Sperm cells of Zea mays have a complex complement of mRNAs. Plant J. 2003;34:697–707. doi: 10.1046/j.1365-313X.2003.01761.x. PubMed DOI
Xu H, Swoboda I, Bhalla P, Singh MB. Male gametic cell-specific gene expression in flowering plants. Proc Natl Acad Sci USA. 1999;96:2554–2558. doi: 10.1073/pnas.96.5.2554. PubMed DOI PMC
Xu H, Weterings K, Vriezen W, Feron R, Xue Y, Derksen J, Mariani C. Isolation and characterization of male-germ-cell transcripts in Nicotiana tabacum. Sex Plant Reprod. 2002;14:339–346. doi: 10.1007/s00497-002-0128-6. DOI
Zhang Z, Xu H, Singh MB, Russell SD. Isolation and collection of two populations of viable sperm cells from the pollen of Plumbago zeylanica. Zygote. 1998;6:295–298. doi: 10.1017/S0967199498000240. PubMed DOI
Lee JY, Lee DH. Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol. 2003;132:517–529. doi: 10.1104/pp.103.020511. PubMed DOI PMC
Honys D, Twell D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 2003;132:640–652. doi: 10.1104/pp.103.020925. PubMed DOI PMC
Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA. Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol. 2003;133:713–725. doi: 10.1104/pp.103.028241. PubMed DOI PMC
Da Costa-Nunes JA, Grossniklaus U. Unveiling the gene-expression profile of pollen. Genome Biol. 2003;5:205. doi: 10.1186/gb-2003-5-1-205. PubMed DOI PMC
Kyo M, Harada H. Studies on conditions for cell division and embryogenesis in isolated pollen culture of Nicotiana rustica. Plant Physiol. 1985;79:90–94. PubMed PMC
Kyo M, Harada H. Control of the developmental pathway of tobacco pollen in vitro. Planta. 1986;168:427–432. PubMed
NASCArrays
NASC: The European Arabidopsis Stock Centre
Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J. Growth stage-based phenotypic analysis of Arabidopsis : a model for high throughput functional genomics in plants. Plant Cell. 2001;13:1499–1510. doi: 10.1105/tpc.13.7.1499. PubMed DOI PMC
Sze H, Padmanaban S, Cellier F, Honys D, Cheng N-H, Bock KW, Conéjéro G, Li X, Twell D, Ward JM, Hirschi KD. Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development. Plant Physiol. 2004;136:2532–2547. doi: 10.1104/pp.104.046003. PubMed DOI PMC
Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science. 2003;302:842–846. doi: 10.1126/science.1088305. PubMed DOI
Vandepoele K, Raes J, De Veylder L, Rouze P, Rombauts S, Inze D. Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell. 2002;14:903–916. doi: 10.1105/tpc.010445. PubMed DOI PMC
TAIR homepage
Arabidopsis thaliana web page
Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000;290:2105–2110. doi: 10.1126/science.290.5499.2105. PubMed DOI
Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis : new openings to the MADS world. Plant Cell. 2003;15:1538–1551. doi: 10.1105/tpc.011544. PubMed DOI PMC
Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell. 2003;15:1749–1770. doi: 10.1105/tpc.013839. PubMed DOI PMC
FIAT: factors in Arabidopsis translation
TIGR FTP site
Carpenter JL, Ploense SE, Snustad DP, Silflow CDP. Preferential expression of an alpha-tubulin gene of Arabidopsis in pollen. Plant Cell. 1992;4:557–571. doi: 10.1105/tpc.4.5.557. PubMed DOI PMC
Roberts MR, Foster GD, Blundell RP, Robinson SW, Kumar A, Draper J, Scott RP. Gametophytic and sporophytic expression of an anther-specific Arabidopsis thaliana gene. Plant J. 1993;3:111–20. doi: 10.1046/j.1365-313X.1993.t01-5-00999.x. PubMed DOI
Truernit E, Stadler R, Baier K, Sauer NP. A male gametophyte-specific monosaccharide transporter in Arabidopsis. Plant J. 1999;17:191–201. doi: 10.1046/j.1365-313X.1999.00372.x. PubMed DOI
Hennig L, Menges M, Murray JAH, Gruissem W. Arabidopsis transcript profiling on Affymetrix GeneChip arrays. Plant Mol Biol. 2003;53:457–465. doi: 10.1023/B:PLAN.0000019069.23317.97. PubMed DOI
Twell D. The diversity and regulation of gene expression in the pathway of male gametophyte development. Soc ExpBiol Semin. 1994;Ser 55:83–135.
Eady C, Lindsey K, Twell D. The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell. 1995;7:65–74. doi: 10.1105/tpc.7.1.65. PubMed DOI PMC
Belostotsky DA. Unexpected complexity of poly(A)-binding protein gene families in flowering plants: three conserved lineages that are at least 200 million years old and possible auto- and cross-regulation. Genetics. 2003;163:311–319. PubMed PMC
Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, Chapple C. The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J. 2002;30:33–45. doi: 10.1046/j.1365-313X.2002.01266.x. PubMed DOI
Hoekstra FA, Bruinsma J. Protein synthesis of binucleate and trinucleate pollen and its relationship to tube emergence and growth. Planta. 1979;146:559–566. PubMed
Schrauwen JAM, De Groot PFM, Van Herpen MMA, Van Den Lee T, Reynen WH, Weterings KAP, Wullems GJ. Stage-related expression of mRNAs during pollen development in lily and tobacco. Planta. 1990;182:298–304. doi: 10.1007/BF00197125. PubMed DOI
Honys D, Combe JP, Twell D, Čapková V. The translationally repressed pollen-specific ntp303 mRNA is stored in non-polysomal mRNPs during pollen maturation. Sex Plant Reprod. 2000;13:135–144. doi: 10.1007/s004970000047. DOI
Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S. NASCArrays: a repository for microarray data generated by NASC's transcriptomics service. Nucleic Acids Res. 2004;32 Database issue:D575–D577. doi: 10.1093/nar/gkh133. PubMed DOI PMC
DNA-Chip Analyzer (dChip)
Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA. 2001;98:31–36. doi: 10.1073/pnas.011404098. PubMed DOI PMC
Li C, Wong WH. Model-based analysis of oligonucleotide arrays: Model validation, design issues and standard error application. Genome Biol. 2001;2:research0032.1–0032.11. doi: 10.1186/gb-2001-2-8-research0032. PubMed DOI PMC
LBP IEB AS CR website
MatDB: Arabidopsis thaliana
KEGG: Kyoto Encyclopedia of Genes and Genomes
EPCLUST - clustering, visualization, and analysis
The transcription factors and pathways underpinning male reproductive development in Arabidopsis
Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis
Genomic Signatures of Sexual Selection on Pollen-Expressed Genes in Arabis alpina
Hormonome Dynamics During Microgametogenesis in Different Nicotiana Species
Heat stress response mechanisms in pollen development
Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics
Rapid separation of Arabidopsis male gametophyte developmental stages using a Percoll gradient
Male gametophyte development and function in angiosperms: a general concept
Transcriptome profiling of male gametophyte development in Nicotiana tabacum
De novo post-pollen mitosis II tobacco pollen tube transcriptome