Integrated Proteo-Transcriptomic Analyses Reveal Insights into Regulation of Pollen Development Stages and Dynamics of Cellular Response to Apple Fruit Crinkle Viroid (AFCVd)-Infection in Nicotiana tabacum

. 2020 Nov 18 ; 21 (22) : . [epub] 20201118

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33218043

Grantová podpora
GACR 18-10515J The Czech Science Foundation
DFG STE 465 German Research Foundation
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministry of Education, Youth and Sports of CR from European Regional Development Fund-Project

Tobacco (Nicotiana tabacum) pollen is a well-suited model for studying many fundamental biological processes owing to its well-defined and distinct development stages. It is also one of the major agents involved in the transmission of infectious viroids, which is the primary mechanism of viroid pathogenicity in plants. However, some viroids are non-transmissible and may be possibly degraded or eliminated during the gradual process of pollen development maturation. The molecular details behind the response of developing pollen against the apple fruit crinkle viroid (AFCVd) infection and viroid eradication is largely unknown. In this study, we performed an integrative analysis of the transcriptome and proteome profiles to disentangle the molecular cascade of events governing the three pollen development stages: early bicellular pollen (stage 3, S3), late bicellular pollen (stage 5, S5), and 6 h-pollen tube (PT6). The integrated analysis delivered the molecular portraits of the developing pollen against AFCVd infection, including mechanistic insights into the viroid eradication during the last steps of pollen development. The isobaric tags for label-free relative quantification (iTRAQ) with digital gene expression (DGE) experiments led us to reliably identify subsets of 5321, 5286, and 6923 proteins and 64,033, 60,597, and 46,640 expressed genes in S3, S5, and PT6, respectively. In these subsets, 2234, 2108 proteins and 9207 and 14,065 mRNAs were differentially expressed in pairwise comparisons of three stages S5 vs. S3 and PT6 vs. S5 of control pollen in tobacco. Correlation analysis between the abundance of differentially expressed mRNAs (DEGs) and differentially expressed proteins (DEPs) in pairwise comparisons of three stages of pollen revealed numerous discordant changes in mRNA/protein pairs. Only a modest correlation was observed, indicative of divergent transcription, and its regulation and importance of post-transcriptional events in the determination of the fate of early and late pollen development in tobacco. The functional and enrichment analysis of correlated DEGs/DEPs revealed the activation in pathways involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, and cofactor as well as vitamin metabolism, which points to the importance of these metabolic pathways in pollen development. Furthermore, the detailed picture of AFCVd-infected correlated DEGs/DEPs was obtained in pairwise comparisons of three stages of infected pollen. The AFCVd infection caused the modulation of several genes involved in protein degradation, nuclear transport, phytohormone signaling, defense response, and phosphorylation. Intriguingly, we also identified several factors including, DNA-dependent RNA-polymerase, ribosomal protein, Argonaute (AGO) proteins, nucleotide binding proteins, and RNA exonucleases, which may plausibly involve in viroid stabilization and eradication during the last steps of pollen development. The present study provides essential insights into the transcriptional and translational dynamics of tobacco pollen, which further strengthens our understanding of plant-viroid interactions and support for future mechanistic studies directed at delineating the functional role of candidate factors involved in viroid elimination.

Zobrazit více v PubMed

Škorić D. Viroids and Satellites. Elsevier; Amsterdam, The Netherlands: 2017. Viroid biology; pp. 53–61.

Flores R., Hernández C., De Alba A.E.M., Daròs J.-A., Serio F.D. Viroids and viroid-host interactions. Annu. Rev. Phytopathol. 2005;43:117–139. doi: 10.1146/annurev.phyto.43.040204.140243. PubMed DOI

Qi Y., Ding B. Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid. Plant Cell. 2003;15:2566–2577. doi: 10.1105/tpc.016576. PubMed DOI PMC

Tsagris E.M., de Alba Á.E.M., Gozmanova M., Kalantidis K. Viroids. Cell. Microbiol. 2008;10:2168–2179. doi: 10.1111/j.1462-5822.2008.01231.x. PubMed DOI

Rodio M.-E., Delgado S., De Stradis A., Gómez M.-D., Flores R., Di Serio F. A viroid RNA with a specific structural motif inhibits chloroplast development. Plant Cell. 2007;19:3610–3626. doi: 10.1105/tpc.106.049775. PubMed DOI PMC

Gas M.-E., Hernández C., Flores R., Daròs J.-A. Processing of nuclear viroids in vivo: An interplay between RNA conformations. PLoS Pathog. 2007;3:e182. doi: 10.1371/journal.ppat.0030182. PubMed DOI PMC

Eiras M., Nohales M.A., Kitajima E.W., Flores R., Daròs J.A. Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Arch. Virol. 2011;156:529–533. doi: 10.1007/s00705-010-0867-x. PubMed DOI

De Alba A.E.M., Sägesser R., Tabler M., Tsagris M. A bromodomain-containing protein from tomato specifically binds potato spindle tuber viroid RNA in vitro and in vivo. J. Virol. 2003;77:9685–9694. doi: 10.1128/JVI.77.17.9685-9694.2003. PubMed DOI PMC

Gómez G., Pallás V. Identification of an in vitro ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber plants. Mol. Plant Microbe Interact. 2001;14:910–913. doi: 10.1094/MPMI.2001.14.7.910. PubMed DOI

Voinnet O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci. 2008;13:317–328. doi: 10.1016/j.tplants.2008.05.004. PubMed DOI

Minoia S., Navarro B., Covelli L., Barone M., García-Becedas M., Ragozzino A., Alioto D., Flores R., Di Serio F. Viroid-like RNAs from cherry trees affected by leaf scorch disease: Further data supporting their association with mycoviral double-stranded RNAs. Arch. Virol. 2014;159:589–593. doi: 10.1007/s00705-013-1843-z. PubMed DOI

Matsushita Y., Yanagisawa H. Distribution of Tomato planta macho viroid in germinating pollen and transmitting tract. Virus Genes. 2018;54:124–129. doi: 10.1007/s11262-017-1510-7. PubMed DOI

Flores R., Grubb D., Elleuch A., Nohales M.-Á., Delgado S., Gago S. Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: Variations on a theme. RNA Biol. 2011;8:200–206. doi: 10.4161/rna.8.2.14238. PubMed DOI

Hadidi A., Giunchedi L., Osaki H., Shamloul A., Crescenzi A., Gentit P., Nemchinov L., Piazzolla P., Kyriakopoulou P. Peach latent mosaic viroid in temperate fruit hosts. Viroids. 2003;8:161–164.

Matoušek J., Orctova L., Škopek J., Pešina K., Steger G. Elimination of hop latent viroid upon developmental activation of pollen nucleases. Biol. Chem. 2008;389:905–918. doi: 10.1515/BC.2008.096. PubMed DOI

Hadidi A., Hansen A., Parish C., Yang X. Scar skin and dapple apple viroids are seed-borne and persistent in infected apple trees. Res. Virol. 1991;142:289–296. doi: 10.1016/0923-2516(91)90015-U. PubMed DOI

Matoušek J., Steinbachová L., Drábková L.Z., Kocábek T., Potěšil D., Mishra A.K., Honys D., Steger G. Elimination of Viroids from Tobacco Pollen Involves a Decrease in Propagation Rate and an Increase of the Degradation Processes. Int. J. Mol. Sci. 2020;21:3029. doi: 10.3390/ijms21083029. PubMed DOI PMC

McCormick S. Male gametophyte development. Plant Cell. 1993;5:1265. doi: 10.2307/3869779. PubMed DOI PMC

Rotsch A.H., Kopka J., Feussner I., Ischebeck T. Central metabolite and sterol profiling divides tobacco male gametophyte development and pollen tube growth into eight metabolic phases. Plant J. 2017;92:129–146. doi: 10.1111/tpj.13633. PubMed DOI

Gómez J.F., Talle B., Wilson Z.A. Anther and pollen development: A conserved developmental pathway. J. Integr. Plant Biol. 2015;57:876–891. doi: 10.1111/jipb.12425. PubMed DOI PMC

Wilson Z.A., Zhang D.-B. From Arabidopsis to rice: Pathways in pollen development. J. Exp. Bot. 2009;60:1479–1492. doi: 10.1093/jxb/erp095. PubMed DOI

Bokvaj P., Hafidh S., Honys D. Transcriptome profiling of male gametophyte development in Nicotiana tabacum. Genom. Data. 2015;3:106–111. doi: 10.1016/j.gdata.2014.12.002. PubMed DOI PMC

Conze L.L., Berlin S., Le Bail A., Kost B. Transcriptome profiling of tobacco (Nicotiana tabacum) pollen and pollen tubes. BMC Genom. 2017;18:1–11. doi: 10.1186/s12864-017-3972-3. PubMed DOI PMC

Grant-Downton R., Le Trionnaire G., Schmid R., Rodriguez-Enriquez J., Hafidh S., Mehdi S., Twell D., Dickinson H. MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana. BMC Genom. 2009;10:643. doi: 10.1186/1471-2164-10-643. PubMed DOI PMC

Mergner J., Frejno M., List M., Papacek M., Chen X., Chaudhary A., Samaras P., Richter S., Shikata H., Messerer M. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature. 2020;579:409–414. doi: 10.1038/s41586-020-2094-2. PubMed DOI

Fíla J., Drábková L.Z., Gibalová A., Honys D. Pollen Tip Growth. Springer; Berlin/Heidelberg, Germany: 2017. When simple meets complex: Pollen and the-omics; pp. 247–292.

Galland M., Huguet R., Arc E., Cueff G., Job D., Rajjou L. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Mol. Cell. Proteom. 2014;13:252–268. doi: 10.1074/mcp.M113.032227. PubMed DOI PMC

Osorio S., Alba R., Nikoloski Z., Kochevenko A., Fernie A.R., Giovannoni J.J. Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. Plant Physiol. 2012;159:1713–1729. doi: 10.1104/pp.112.199711. PubMed DOI PMC

Keller M., Simm S., Consortium S.-I. The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genom. 2018;19:447. doi: 10.1186/s12864-018-4824-5. PubMed DOI PMC

Peng X., Qin Z., Zhang G., Guo Y., Huang J. Integration of the proteome and transcriptome reveals multiple levels of gene regulation in the rice dl2 mutant. Front. Plant Sci. 2015;6:351. doi: 10.3389/fpls.2015.00351. PubMed DOI PMC

Vogel C., Marcotte E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012;13:227–232. doi: 10.1038/nrg3185. PubMed DOI PMC

Honys D., Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004;5:R85. doi: 10.1186/gb-2004-5-11-r85. PubMed DOI PMC

Hafidh S., Potěšil D., Müller K., Fíla J., Michailidis C., Herrmannová A., Feciková J., Ischebeck T., Valášek L.S., Zdráhal Z. Dynamics of the pollen sequestrome defined by subcellular coupled omics. Plant Physiol. 2018;178:258–282. doi: 10.1104/pp.18.00648. PubMed DOI PMC

Hirose T., Zhang Z., Miyao A., Hirochika H., Ohsugi R., Terao T. Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected. J. Exp. Bot. 2010;61:3639–3646. doi: 10.1093/jxb/erq175. PubMed DOI PMC

García C.C., Nepi M., Pacini E. It is a matter of timing: Asynchrony during pollen development and its consequences on pollen performance in angiosperms—A review. Protoplasma. 2017;254:57–73. doi: 10.1007/s00709-016-0950-6. PubMed DOI

Cui Y., Hu C., Zhu Y., Cheng K., Li X., Wei Z., Xue L., Lin F., Shi H., Yi J. CIK receptor kinases determine cell fate specification during early anther development in Arabidopsis. Plant Cell. 2018;30:2383–2401. doi: 10.1105/tpc.17.00586. PubMed DOI PMC

Hord C.L., Sun Y.-J., Pillitteri L.J., Torii K.U., Wang H., Zhang S., Ma H. Regulation of Arabidopsis early anther development by the mitogen-activated protein kinases, MPK3 and MPK6, and the ERECTA and related receptor-like kinases. Mol. Plant. 2008;1:645–658. doi: 10.1093/mp/ssn029. PubMed DOI

Ye J., Yang X., Hu G., Liu Q., Li W., Zhang L., Song X. Genome-Wide Investigation of Heat Shock Transcription Factor Family in Wheat (Triticum aestivum L.) and Possible Roles in Anther Development. Int. J. Mol. Sci. 2020;21:608. doi: 10.3390/ijms21020608. PubMed DOI PMC

Attallah C.V., Welchen E., Gonzalez D.H. The promoters of Arabidopsis thaliana genes AtCOX17-1 and-2, encoding a copper chaperone involved in cytochrome c oxidase biogenesis, are preferentially active in roots and anthers and induced by biotic and abiotic stress. Physiol. Plant. 2007;129:123–134. doi: 10.1111/j.1399-3054.2006.00776.x. DOI

Sancenón V., Puig S., Mateu-Andrés I., Dorcey E., Thiele D.J., Peñarrubia L. The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J. Biol. Chem. 2004;279:15348–15355. doi: 10.1074/jbc.M313321200. PubMed DOI

Sánchez-Bel P., Egea I., Sánchez-Ballesta M.T., Martinez-Madrid C., Fernandez-Garcia N., Romojaro F., Olmos E., Estrella E., Bolarín M.C., Flores F.B. Understanding the mechanisms of chilling injury in bell pepper fruits using the proteomic approach. J. Proteom. 2012;75:5463–5478. doi: 10.1016/j.jprot.2012.06.029. PubMed DOI

Tena G., Boudsocq M., Sheen J. Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 2011;14:519–529. doi: 10.1016/j.pbi.2011.05.006. PubMed DOI PMC

Denancé N., Sánchez-Vallet A., Goffner D., Molina A. Disease resistance or growth: The role of plant hormones in balancing immune responses and fitness costs. Front. Plant Sci. 2013;4:155. doi: 10.3389/fpls.2013.00155. PubMed DOI PMC

Pérez-Llorca M., Muñoz P., Müller M., Munné-Bosch S. Biosynthesis, metabolism and function of auxin, salicylic acid and melatonin in climacteric and non-climacteric fruits. Front. Plant Sci. 2019;10:136. doi: 10.3389/fpls.2019.00136. PubMed DOI PMC

He S.-L., Hsieh H.-L., Jauh G.-Y. SMALL AUXIN UP RNA62/75 are required for the translation of transcripts essential for pollen tube growth. Plant Physiol. 2018;178:626–640. doi: 10.1104/pp.18.00257. PubMed DOI PMC

Smakowska E., Kong J., Busch W., Belkhadir Y. Organ-specific regulation of growth-defense tradeoffs by plants. Curr. Opin. Plant Biol. 2016;29:129–137. doi: 10.1016/j.pbi.2015.12.005. PubMed DOI

Di Serio F., Flores R., Verhoeven J.T.J., Li S.-F., Pallás V., Randles J., Sano T., Vidalakis G., Owens R. Current status of viroid taxonomy. Arch. Virol. 2014;159:3467–3478. doi: 10.1007/s00705-014-2200-6. PubMed DOI

Frank G., Pressman E., Ophir R., Althan L., Shaked R., Freedman M., Shen S., Firon N. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot. 2009;60:3891–3908. doi: 10.1093/jxb/erp234. PubMed DOI PMC

Cottilli P., Belda-Palazón B., Adkar-Purushothama C.R., Perreault J.-P., Schleiff E., Rodrigo I., Ferrando A., Lisón P. Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Res. 2019;47:8649–8661. doi: 10.1093/nar/gkz679. PubMed DOI PMC

Chen Z.-Y., Brown R., Damann K., Cleveland T. Identification of unique or elevated levels of kernel proteins in aflatoxin-resistant maize genotypes through proteome analysis. Phytopathology. 2002;92:1084–1094. doi: 10.1094/PHYTO.2002.92.10.1084. PubMed DOI

Hundertmark M., Hincha D.K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom. 2008;9:118. doi: 10.1186/1471-2164-9-118. PubMed DOI PMC

Sun S., Yu J.-P., Chen F., Zhao T.-J., Fang X.-H., Li Y.-Q., Sui S.-F. TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE-and ethylene-responsive element-mediated signaling pathways in Arabidopsis. J. Biol. Chem. 2008;283:6261–6271. doi: 10.1074/jbc.M706800200. PubMed DOI

Fan C., Wang G., Wu L., Liu P., Huang J., Jin X., Zhang G., He Y., Peng L., Luo K. Distinct cellulose and callose accumulation for enhanced bioethanol production and biotic stress resistance in OsSUS3 transgenic rice. Carbohydr. Polym. 2020;232:115448. doi: 10.1016/j.carbpol.2019.115448. PubMed DOI

Abdullah A.S., Moffat C.S., Lopez-Ruiz F.J., Gibberd M.R., Hamblin J., Zerihun A. Host–multi-pathogen warfare: Pathogen interactions in co-infected plants. Front. Plant Sci. 2017;8:1806. doi: 10.3389/fpls.2017.01806. PubMed DOI PMC

Jiang J., Smith H.N., Ren D., Mudiyanselage S.D.D., Dawe A.L., Wang L., Wang Y. Potato spindle tuber viroid modulates its replication through a direct interaction with a splicing regulator. J. Virol. 2018;92:e01004-18. doi: 10.1128/JVI.01004-18. PubMed DOI PMC

Dissanayaka Mudiyanselage S.D., Qu J., Tian N., Jiang J., Wang Y. Potato spindle tuber viroid RNA-templated transcription: Factors and regulation. Viruses. 2018;10:503. doi: 10.3390/v10090503. PubMed DOI PMC

Minoia S., Carbonell A., Di Serio F., Gisel A., Carrington J.C., Navarro B., Flores R. Specific argonautes selectively bind small RNAs derived from potato spindle tuber viroid and attenuate viroid accumulation in vivo. J. Virol. 2014;88:11933–11945. doi: 10.1128/JVI.01404-14. PubMed DOI PMC

Dubé A., Bisaillon M., Perreault J.-P. Identification of proteins from Prunus persica that interact with peach latent mosaic viroid. J. Virol. 2009;83:12057–12067. doi: 10.1128/JVI.01151-09. PubMed DOI PMC

Liu L., Chen X. RNA quality control as a key to suppressing RNA silencing of endogenous genes in plants. Mol. Plant. 2016;9:826–836. doi: 10.1016/j.molp.2016.03.011. PubMed DOI PMC

Matoušek J., Siglová K., Jakše J., Radišek S., Brass J.R., Tsushima T., Guček T., Duraisamy G., Sano T., Steger G. Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.) J. Plant Physiol. 2017;213:166–177. PubMed

Tupý J., Süss J., Hrabětová E., Říhova L. Developmental changes in gene expression during pollen differentiation and maturation in Nicotiana tabacum L. Biol. Plant. 1983;25:231. doi: 10.1007/BF02902110. DOI

Tupý J., Hrabětová E., Balatková V. A simple rapid method of determining pollen tube growth in mass culture. Plant Sci. Lett. 1977;9:285–290. doi: 10.1016/0304-4211(77)90038-4. DOI

Matoušek J., Schröder A.R., Trněná L., Reimers M., Baumstark T., Dědič P., Vlasák J., Becker I., Kreuzaler F., Fladung M. Inhibition of viroid infection by antisense RNA expression in transgenic plants. Biol. Chem. Hoppe Seyler. 1994;375:765–778. doi: 10.1515/bchm3.1994.375.11.765. PubMed DOI

Chen S., Zhou Y., Chen Y., Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC

Andrews S. Babraham Bioinformatics. Babraham Institute; Cambridge, UK: 2010. FastQC: A quality control tool for high throughput sequence data.

Pertea M., Pertea G.M., Antonescu C.M., Chang T.-C., Mendell J.T., Salzberg S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015;33:290–295. doi: 10.1038/nbt.3122. PubMed DOI PMC

Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Wisniewski J.R., Ostasiewicz P., Mann M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 2011;10:3040–3049. doi: 10.1021/pr200019m. PubMed DOI

Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI

Yeung Y.G., Stanley E.R. Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr. Protoc. Protein Sci. 2010;59:16.12.1–16.12.5. doi: 10.1002/0471140864.ps1612s59. PubMed DOI PMC

Yu G., Wang L.-G., Han Y., He Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC

Liao Y., Wang J., Jaehnig E.J., Shi Z., Zhang B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47:W199–W205. doi: 10.1093/nar/gkz401. PubMed DOI PMC

Thimm O., Bläsing O., Gibon Y., Nagel A., Meyer S., Krüger P., Selbig J., Müller L.A., Rhee S.Y., Stitt M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37:914–939. doi: 10.1111/j.1365-313X.2004.02016.x. PubMed DOI

Reich M., Ohm K., Angelo M., Tamayo P., Mesirov J.P. GeneCluster 2.0: An advanced toolset for bioarray analysis. Bioinformatics. 2004;20:1797–1798. doi: 10.1093/bioinformatics/bth138. PubMed DOI

Marshall O.J. PerlPrimer: Cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics. 2004;20:2471–2472. doi: 10.1093/bioinformatics/bth254. PubMed DOI

Nath V.S., Shrestha A., Awasthi P., Mishra A.K., Kocábek T., Matoušek J., Sečnik A., Jakše J., Radišek S., Hallan V. Mapping the Gene Expression Spectrum of Mediator Subunits in Response to Viroid Infection in Plants. Int. J. Mol. Sci. 2020;21:2498. doi: 10.3390/ijms21072498. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...