Integrated Proteo-Transcriptomic Analyses Reveal Insights into Regulation of Pollen Development Stages and Dynamics of Cellular Response to Apple Fruit Crinkle Viroid (AFCVd)-Infection in Nicotiana tabacum
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 18-10515J
The Czech Science Foundation
DFG STE 465
German Research Foundation
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministry of Education, Youth and Sports of CR from European Regional Development Fund-Project
PubMed
33218043
PubMed Central
PMC7698868
DOI
10.3390/ijms21228700
PII: ijms21228700
Knihovny.cz E-zdroje
- Klíčová slova
- AFCVd propagation and eradication, Nicotiana tabacum, Proteome, RNA sequencing, RT qPCR, male gametophyte, viroid degradation, viroid replication,
- MeSH
- buněčná diferenciace * MeSH
- nemoci rostlin virologie MeSH
- proteomika * MeSH
- pyl * metabolismus virologie MeSH
- rostlinné viry metabolismus MeSH
- stanovení celkové genové exprese * MeSH
- tabák * metabolismus virologie MeSH
- viroidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Tobacco (Nicotiana tabacum) pollen is a well-suited model for studying many fundamental biological processes owing to its well-defined and distinct development stages. It is also one of the major agents involved in the transmission of infectious viroids, which is the primary mechanism of viroid pathogenicity in plants. However, some viroids are non-transmissible and may be possibly degraded or eliminated during the gradual process of pollen development maturation. The molecular details behind the response of developing pollen against the apple fruit crinkle viroid (AFCVd) infection and viroid eradication is largely unknown. In this study, we performed an integrative analysis of the transcriptome and proteome profiles to disentangle the molecular cascade of events governing the three pollen development stages: early bicellular pollen (stage 3, S3), late bicellular pollen (stage 5, S5), and 6 h-pollen tube (PT6). The integrated analysis delivered the molecular portraits of the developing pollen against AFCVd infection, including mechanistic insights into the viroid eradication during the last steps of pollen development. The isobaric tags for label-free relative quantification (iTRAQ) with digital gene expression (DGE) experiments led us to reliably identify subsets of 5321, 5286, and 6923 proteins and 64,033, 60,597, and 46,640 expressed genes in S3, S5, and PT6, respectively. In these subsets, 2234, 2108 proteins and 9207 and 14,065 mRNAs were differentially expressed in pairwise comparisons of three stages S5 vs. S3 and PT6 vs. S5 of control pollen in tobacco. Correlation analysis between the abundance of differentially expressed mRNAs (DEGs) and differentially expressed proteins (DEPs) in pairwise comparisons of three stages of pollen revealed numerous discordant changes in mRNA/protein pairs. Only a modest correlation was observed, indicative of divergent transcription, and its regulation and importance of post-transcriptional events in the determination of the fate of early and late pollen development in tobacco. The functional and enrichment analysis of correlated DEGs/DEPs revealed the activation in pathways involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, and cofactor as well as vitamin metabolism, which points to the importance of these metabolic pathways in pollen development. Furthermore, the detailed picture of AFCVd-infected correlated DEGs/DEPs was obtained in pairwise comparisons of three stages of infected pollen. The AFCVd infection caused the modulation of several genes involved in protein degradation, nuclear transport, phytohormone signaling, defense response, and phosphorylation. Intriguingly, we also identified several factors including, DNA-dependent RNA-polymerase, ribosomal protein, Argonaute (AGO) proteins, nucleotide binding proteins, and RNA exonucleases, which may plausibly involve in viroid stabilization and eradication during the last steps of pollen development. The present study provides essential insights into the transcriptional and translational dynamics of tobacco pollen, which further strengthens our understanding of plant-viroid interactions and support for future mechanistic studies directed at delineating the functional role of candidate factors involved in viroid elimination.
Institut für Physikalische Biologie Heinrich Heine Universität Düsseldorf D 40204 Düsseldorf Germany
Zobrazit více v PubMed
Škorić D. Viroids and Satellites. Elsevier; Amsterdam, The Netherlands: 2017. Viroid biology; pp. 53–61.
Flores R., Hernández C., De Alba A.E.M., Daròs J.-A., Serio F.D. Viroids and viroid-host interactions. Annu. Rev. Phytopathol. 2005;43:117–139. doi: 10.1146/annurev.phyto.43.040204.140243. PubMed DOI
Qi Y., Ding B. Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid. Plant Cell. 2003;15:2566–2577. doi: 10.1105/tpc.016576. PubMed DOI PMC
Tsagris E.M., de Alba Á.E.M., Gozmanova M., Kalantidis K. Viroids. Cell. Microbiol. 2008;10:2168–2179. doi: 10.1111/j.1462-5822.2008.01231.x. PubMed DOI
Rodio M.-E., Delgado S., De Stradis A., Gómez M.-D., Flores R., Di Serio F. A viroid RNA with a specific structural motif inhibits chloroplast development. Plant Cell. 2007;19:3610–3626. doi: 10.1105/tpc.106.049775. PubMed DOI PMC
Gas M.-E., Hernández C., Flores R., Daròs J.-A. Processing of nuclear viroids in vivo: An interplay between RNA conformations. PLoS Pathog. 2007;3:e182. doi: 10.1371/journal.ppat.0030182. PubMed DOI PMC
Eiras M., Nohales M.A., Kitajima E.W., Flores R., Daròs J.A. Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Arch. Virol. 2011;156:529–533. doi: 10.1007/s00705-010-0867-x. PubMed DOI
De Alba A.E.M., Sägesser R., Tabler M., Tsagris M. A bromodomain-containing protein from tomato specifically binds potato spindle tuber viroid RNA in vitro and in vivo. J. Virol. 2003;77:9685–9694. doi: 10.1128/JVI.77.17.9685-9694.2003. PubMed DOI PMC
Gómez G., Pallás V. Identification of an in vitro ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber plants. Mol. Plant Microbe Interact. 2001;14:910–913. doi: 10.1094/MPMI.2001.14.7.910. PubMed DOI
Voinnet O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci. 2008;13:317–328. doi: 10.1016/j.tplants.2008.05.004. PubMed DOI
Minoia S., Navarro B., Covelli L., Barone M., García-Becedas M., Ragozzino A., Alioto D., Flores R., Di Serio F. Viroid-like RNAs from cherry trees affected by leaf scorch disease: Further data supporting their association with mycoviral double-stranded RNAs. Arch. Virol. 2014;159:589–593. doi: 10.1007/s00705-013-1843-z. PubMed DOI
Matsushita Y., Yanagisawa H. Distribution of Tomato planta macho viroid in germinating pollen and transmitting tract. Virus Genes. 2018;54:124–129. doi: 10.1007/s11262-017-1510-7. PubMed DOI
Flores R., Grubb D., Elleuch A., Nohales M.-Á., Delgado S., Gago S. Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: Variations on a theme. RNA Biol. 2011;8:200–206. doi: 10.4161/rna.8.2.14238. PubMed DOI
Hadidi A., Giunchedi L., Osaki H., Shamloul A., Crescenzi A., Gentit P., Nemchinov L., Piazzolla P., Kyriakopoulou P. Peach latent mosaic viroid in temperate fruit hosts. Viroids. 2003;8:161–164.
Matoušek J., Orctova L., Škopek J., Pešina K., Steger G. Elimination of hop latent viroid upon developmental activation of pollen nucleases. Biol. Chem. 2008;389:905–918. doi: 10.1515/BC.2008.096. PubMed DOI
Hadidi A., Hansen A., Parish C., Yang X. Scar skin and dapple apple viroids are seed-borne and persistent in infected apple trees. Res. Virol. 1991;142:289–296. doi: 10.1016/0923-2516(91)90015-U. PubMed DOI
Matoušek J., Steinbachová L., Drábková L.Z., Kocábek T., Potěšil D., Mishra A.K., Honys D., Steger G. Elimination of Viroids from Tobacco Pollen Involves a Decrease in Propagation Rate and an Increase of the Degradation Processes. Int. J. Mol. Sci. 2020;21:3029. doi: 10.3390/ijms21083029. PubMed DOI PMC
McCormick S. Male gametophyte development. Plant Cell. 1993;5:1265. doi: 10.2307/3869779. PubMed DOI PMC
Rotsch A.H., Kopka J., Feussner I., Ischebeck T. Central metabolite and sterol profiling divides tobacco male gametophyte development and pollen tube growth into eight metabolic phases. Plant J. 2017;92:129–146. doi: 10.1111/tpj.13633. PubMed DOI
Gómez J.F., Talle B., Wilson Z.A. Anther and pollen development: A conserved developmental pathway. J. Integr. Plant Biol. 2015;57:876–891. doi: 10.1111/jipb.12425. PubMed DOI PMC
Wilson Z.A., Zhang D.-B. From Arabidopsis to rice: Pathways in pollen development. J. Exp. Bot. 2009;60:1479–1492. doi: 10.1093/jxb/erp095. PubMed DOI
Bokvaj P., Hafidh S., Honys D. Transcriptome profiling of male gametophyte development in Nicotiana tabacum. Genom. Data. 2015;3:106–111. doi: 10.1016/j.gdata.2014.12.002. PubMed DOI PMC
Conze L.L., Berlin S., Le Bail A., Kost B. Transcriptome profiling of tobacco (Nicotiana tabacum) pollen and pollen tubes. BMC Genom. 2017;18:1–11. doi: 10.1186/s12864-017-3972-3. PubMed DOI PMC
Grant-Downton R., Le Trionnaire G., Schmid R., Rodriguez-Enriquez J., Hafidh S., Mehdi S., Twell D., Dickinson H. MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana. BMC Genom. 2009;10:643. doi: 10.1186/1471-2164-10-643. PubMed DOI PMC
Mergner J., Frejno M., List M., Papacek M., Chen X., Chaudhary A., Samaras P., Richter S., Shikata H., Messerer M. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature. 2020;579:409–414. doi: 10.1038/s41586-020-2094-2. PubMed DOI
Fíla J., Drábková L.Z., Gibalová A., Honys D. Pollen Tip Growth. Springer; Berlin/Heidelberg, Germany: 2017. When simple meets complex: Pollen and the-omics; pp. 247–292.
Galland M., Huguet R., Arc E., Cueff G., Job D., Rajjou L. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Mol. Cell. Proteom. 2014;13:252–268. doi: 10.1074/mcp.M113.032227. PubMed DOI PMC
Osorio S., Alba R., Nikoloski Z., Kochevenko A., Fernie A.R., Giovannoni J.J. Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. Plant Physiol. 2012;159:1713–1729. doi: 10.1104/pp.112.199711. PubMed DOI PMC
Keller M., Simm S., Consortium S.-I. The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genom. 2018;19:447. doi: 10.1186/s12864-018-4824-5. PubMed DOI PMC
Peng X., Qin Z., Zhang G., Guo Y., Huang J. Integration of the proteome and transcriptome reveals multiple levels of gene regulation in the rice dl2 mutant. Front. Plant Sci. 2015;6:351. doi: 10.3389/fpls.2015.00351. PubMed DOI PMC
Vogel C., Marcotte E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012;13:227–232. doi: 10.1038/nrg3185. PubMed DOI PMC
Honys D., Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004;5:R85. doi: 10.1186/gb-2004-5-11-r85. PubMed DOI PMC
Hafidh S., Potěšil D., Müller K., Fíla J., Michailidis C., Herrmannová A., Feciková J., Ischebeck T., Valášek L.S., Zdráhal Z. Dynamics of the pollen sequestrome defined by subcellular coupled omics. Plant Physiol. 2018;178:258–282. doi: 10.1104/pp.18.00648. PubMed DOI PMC
Hirose T., Zhang Z., Miyao A., Hirochika H., Ohsugi R., Terao T. Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected. J. Exp. Bot. 2010;61:3639–3646. doi: 10.1093/jxb/erq175. PubMed DOI PMC
García C.C., Nepi M., Pacini E. It is a matter of timing: Asynchrony during pollen development and its consequences on pollen performance in angiosperms—A review. Protoplasma. 2017;254:57–73. doi: 10.1007/s00709-016-0950-6. PubMed DOI
Cui Y., Hu C., Zhu Y., Cheng K., Li X., Wei Z., Xue L., Lin F., Shi H., Yi J. CIK receptor kinases determine cell fate specification during early anther development in Arabidopsis. Plant Cell. 2018;30:2383–2401. doi: 10.1105/tpc.17.00586. PubMed DOI PMC
Hord C.L., Sun Y.-J., Pillitteri L.J., Torii K.U., Wang H., Zhang S., Ma H. Regulation of Arabidopsis early anther development by the mitogen-activated protein kinases, MPK3 and MPK6, and the ERECTA and related receptor-like kinases. Mol. Plant. 2008;1:645–658. doi: 10.1093/mp/ssn029. PubMed DOI
Ye J., Yang X., Hu G., Liu Q., Li W., Zhang L., Song X. Genome-Wide Investigation of Heat Shock Transcription Factor Family in Wheat (Triticum aestivum L.) and Possible Roles in Anther Development. Int. J. Mol. Sci. 2020;21:608. doi: 10.3390/ijms21020608. PubMed DOI PMC
Attallah C.V., Welchen E., Gonzalez D.H. The promoters of Arabidopsis thaliana genes AtCOX17-1 and-2, encoding a copper chaperone involved in cytochrome c oxidase biogenesis, are preferentially active in roots and anthers and induced by biotic and abiotic stress. Physiol. Plant. 2007;129:123–134. doi: 10.1111/j.1399-3054.2006.00776.x. DOI
Sancenón V., Puig S., Mateu-Andrés I., Dorcey E., Thiele D.J., Peñarrubia L. The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J. Biol. Chem. 2004;279:15348–15355. doi: 10.1074/jbc.M313321200. PubMed DOI
Sánchez-Bel P., Egea I., Sánchez-Ballesta M.T., Martinez-Madrid C., Fernandez-Garcia N., Romojaro F., Olmos E., Estrella E., Bolarín M.C., Flores F.B. Understanding the mechanisms of chilling injury in bell pepper fruits using the proteomic approach. J. Proteom. 2012;75:5463–5478. doi: 10.1016/j.jprot.2012.06.029. PubMed DOI
Tena G., Boudsocq M., Sheen J. Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 2011;14:519–529. doi: 10.1016/j.pbi.2011.05.006. PubMed DOI PMC
Denancé N., Sánchez-Vallet A., Goffner D., Molina A. Disease resistance or growth: The role of plant hormones in balancing immune responses and fitness costs. Front. Plant Sci. 2013;4:155. doi: 10.3389/fpls.2013.00155. PubMed DOI PMC
Pérez-Llorca M., Muñoz P., Müller M., Munné-Bosch S. Biosynthesis, metabolism and function of auxin, salicylic acid and melatonin in climacteric and non-climacteric fruits. Front. Plant Sci. 2019;10:136. doi: 10.3389/fpls.2019.00136. PubMed DOI PMC
He S.-L., Hsieh H.-L., Jauh G.-Y. SMALL AUXIN UP RNA62/75 are required for the translation of transcripts essential for pollen tube growth. Plant Physiol. 2018;178:626–640. doi: 10.1104/pp.18.00257. PubMed DOI PMC
Smakowska E., Kong J., Busch W., Belkhadir Y. Organ-specific regulation of growth-defense tradeoffs by plants. Curr. Opin. Plant Biol. 2016;29:129–137. doi: 10.1016/j.pbi.2015.12.005. PubMed DOI
Di Serio F., Flores R., Verhoeven J.T.J., Li S.-F., Pallás V., Randles J., Sano T., Vidalakis G., Owens R. Current status of viroid taxonomy. Arch. Virol. 2014;159:3467–3478. doi: 10.1007/s00705-014-2200-6. PubMed DOI
Frank G., Pressman E., Ophir R., Althan L., Shaked R., Freedman M., Shen S., Firon N. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot. 2009;60:3891–3908. doi: 10.1093/jxb/erp234. PubMed DOI PMC
Cottilli P., Belda-Palazón B., Adkar-Purushothama C.R., Perreault J.-P., Schleiff E., Rodrigo I., Ferrando A., Lisón P. Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Res. 2019;47:8649–8661. doi: 10.1093/nar/gkz679. PubMed DOI PMC
Chen Z.-Y., Brown R., Damann K., Cleveland T. Identification of unique or elevated levels of kernel proteins in aflatoxin-resistant maize genotypes through proteome analysis. Phytopathology. 2002;92:1084–1094. doi: 10.1094/PHYTO.2002.92.10.1084. PubMed DOI
Hundertmark M., Hincha D.K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom. 2008;9:118. doi: 10.1186/1471-2164-9-118. PubMed DOI PMC
Sun S., Yu J.-P., Chen F., Zhao T.-J., Fang X.-H., Li Y.-Q., Sui S.-F. TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE-and ethylene-responsive element-mediated signaling pathways in Arabidopsis. J. Biol. Chem. 2008;283:6261–6271. doi: 10.1074/jbc.M706800200. PubMed DOI
Fan C., Wang G., Wu L., Liu P., Huang J., Jin X., Zhang G., He Y., Peng L., Luo K. Distinct cellulose and callose accumulation for enhanced bioethanol production and biotic stress resistance in OsSUS3 transgenic rice. Carbohydr. Polym. 2020;232:115448. doi: 10.1016/j.carbpol.2019.115448. PubMed DOI
Abdullah A.S., Moffat C.S., Lopez-Ruiz F.J., Gibberd M.R., Hamblin J., Zerihun A. Host–multi-pathogen warfare: Pathogen interactions in co-infected plants. Front. Plant Sci. 2017;8:1806. doi: 10.3389/fpls.2017.01806. PubMed DOI PMC
Jiang J., Smith H.N., Ren D., Mudiyanselage S.D.D., Dawe A.L., Wang L., Wang Y. Potato spindle tuber viroid modulates its replication through a direct interaction with a splicing regulator. J. Virol. 2018;92:e01004-18. doi: 10.1128/JVI.01004-18. PubMed DOI PMC
Dissanayaka Mudiyanselage S.D., Qu J., Tian N., Jiang J., Wang Y. Potato spindle tuber viroid RNA-templated transcription: Factors and regulation. Viruses. 2018;10:503. doi: 10.3390/v10090503. PubMed DOI PMC
Minoia S., Carbonell A., Di Serio F., Gisel A., Carrington J.C., Navarro B., Flores R. Specific argonautes selectively bind small RNAs derived from potato spindle tuber viroid and attenuate viroid accumulation in vivo. J. Virol. 2014;88:11933–11945. doi: 10.1128/JVI.01404-14. PubMed DOI PMC
Dubé A., Bisaillon M., Perreault J.-P. Identification of proteins from Prunus persica that interact with peach latent mosaic viroid. J. Virol. 2009;83:12057–12067. doi: 10.1128/JVI.01151-09. PubMed DOI PMC
Liu L., Chen X. RNA quality control as a key to suppressing RNA silencing of endogenous genes in plants. Mol. Plant. 2016;9:826–836. doi: 10.1016/j.molp.2016.03.011. PubMed DOI PMC
Matoušek J., Siglová K., Jakše J., Radišek S., Brass J.R., Tsushima T., Guček T., Duraisamy G., Sano T., Steger G. Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.) J. Plant Physiol. 2017;213:166–177. PubMed
Tupý J., Süss J., Hrabětová E., Říhova L. Developmental changes in gene expression during pollen differentiation and maturation in Nicotiana tabacum L. Biol. Plant. 1983;25:231. doi: 10.1007/BF02902110. DOI
Tupý J., Hrabětová E., Balatková V. A simple rapid method of determining pollen tube growth in mass culture. Plant Sci. Lett. 1977;9:285–290. doi: 10.1016/0304-4211(77)90038-4. DOI
Matoušek J., Schröder A.R., Trněná L., Reimers M., Baumstark T., Dědič P., Vlasák J., Becker I., Kreuzaler F., Fladung M. Inhibition of viroid infection by antisense RNA expression in transgenic plants. Biol. Chem. Hoppe Seyler. 1994;375:765–778. doi: 10.1515/bchm3.1994.375.11.765. PubMed DOI
Chen S., Zhou Y., Chen Y., Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Andrews S. Babraham Bioinformatics. Babraham Institute; Cambridge, UK: 2010. FastQC: A quality control tool for high throughput sequence data.
Pertea M., Pertea G.M., Antonescu C.M., Chang T.-C., Mendell J.T., Salzberg S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015;33:290–295. doi: 10.1038/nbt.3122. PubMed DOI PMC
Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Wisniewski J.R., Ostasiewicz P., Mann M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 2011;10:3040–3049. doi: 10.1021/pr200019m. PubMed DOI
Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Yeung Y.G., Stanley E.R. Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr. Protoc. Protein Sci. 2010;59:16.12.1–16.12.5. doi: 10.1002/0471140864.ps1612s59. PubMed DOI PMC
Yu G., Wang L.-G., Han Y., He Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC
Liao Y., Wang J., Jaehnig E.J., Shi Z., Zhang B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47:W199–W205. doi: 10.1093/nar/gkz401. PubMed DOI PMC
Thimm O., Bläsing O., Gibon Y., Nagel A., Meyer S., Krüger P., Selbig J., Müller L.A., Rhee S.Y., Stitt M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37:914–939. doi: 10.1111/j.1365-313X.2004.02016.x. PubMed DOI
Reich M., Ohm K., Angelo M., Tamayo P., Mesirov J.P. GeneCluster 2.0: An advanced toolset for bioarray analysis. Bioinformatics. 2004;20:1797–1798. doi: 10.1093/bioinformatics/bth138. PubMed DOI
Marshall O.J. PerlPrimer: Cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics. 2004;20:2471–2472. doi: 10.1093/bioinformatics/bth254. PubMed DOI
Nath V.S., Shrestha A., Awasthi P., Mishra A.K., Kocábek T., Matoušek J., Sečnik A., Jakše J., Radišek S., Hallan V. Mapping the Gene Expression Spectrum of Mediator Subunits in Response to Viroid Infection in Plants. Int. J. Mol. Sci. 2020;21:2498. doi: 10.3390/ijms21072498. PubMed DOI PMC