Elimination of Viroids from Tobacco Pollen Involves a Decrease in Propagation Rate and an Increase of the Degradation Processes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-10515J
Grantová Agentura České Republiky
STE 465
Deutsche Forschungsgemeinschaft
17-23183S
Czech Science Foundation
PubMed
32344786
PubMed Central
PMC7216239
DOI
10.3390/ijms21083029
PII: ijms21083029
Knihovny.cz E-zdroje
- Klíčová slova
- AFCVd and CBCVd propagation and eradication, Nicotiana tabacum, TUDOR S-nuclease, male gametophyte, recombinant AGO, small RNA, strand-specific viroid RT-qPCR, viroid degradation, viroid replication,
- MeSH
- fenotyp MeSH
- interakce hostitele a patogenu MeSH
- konformace nukleové kyseliny MeSH
- nemoci rostlin virologie MeSH
- pyl virologie MeSH
- replikace viru MeSH
- RNA virová MeSH
- tabák virologie MeSH
- viroidy * MeSH
- virová nálož MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA virová MeSH
Some viroids-single-stranded, non-coding, circular RNA parasites of plants-are not transmissible through pollen to seeds and to next generation. We analyzed the cause for the elimination of apple fruit crinkle viroid (AFCVd) and citrus bark cracking viroid (CBCVd) from male gametophyte cells of Nicotiana tabacum by RNA deep sequencing and molecular methods using infected and transformed tobacco pollen tissues at different developmental stages. AFCVd was not transferable from pollen to seeds in reciprocal pollinations, due to a complete viroid eradication during the last steps of pollen development and fertilization. In pollen, the viroid replication pathway proceeds with detectable replication intermediates, but is dramatically depressed in comparison to leaves. Specific and unspecific viroid degradation with some preference for (-) chains occurred in pollen, as detected by analysis of viroid-derived small RNAs, by quantification of viroid levels and by detection of viroid degradation products forming "comets" on Northern blots. The decrease of viroid levels during pollen development correlated with mRNA accumulation of several RNA-degrading factors, such as AGO5 nuclease, DICER-like and TUDOR S-like nuclease. In addition, the functional status of pollen, as a tissue with high ribosome content, could play a role during suppression of AFCVd replication involving transcription factors IIIA and ribosomal protein L5.
Institut für Physikalische Biologie Heinrich Heine Universität Düsseldorf D 40204 Düsseldorf Germany
Zobrazit více v PubMed
Honys D., Reňák D., Twell D. Male gametophyte development and function. In: da Silva J., editor. Floriculture, Ornamental and Plant Biotechnology—Advances and Topical Issues. Volume I. Global Science Books; Isleworth, UK: 2006. pp. 76–87.
She W., Baroux C. Chromatin dynamics during plant sexual reproduction. Front. Plant Sci. 2014;5:354. doi: 10.3389/fpls.2014.00354. PubMed DOI PMC
McCormick S. Male gametophyte development. Plant Cell. 1993;5:1265–1275. doi: 10.2307/3869779. PubMed DOI PMC
Hafidh S., Potěšil D., Fíla J., Čapková V., Zdráhal Z., Honys D. Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol. 2016;17:81. doi: 10.1186/s13059-016-0928-x. PubMed DOI PMC
Slotkin R., Vaughn M., Borges F., Tanurdzić M., Becker J., Feijó J., Martienssen R. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell. 2009;136:461–472. doi: 10.1016/j.cell.2008.12.038. PubMed DOI PMC
Martínez G., Panda K., Köhler C., Slotkin R. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat. Plants. 2016;2:16030. doi: 10.1038/nplants.2016.30. PubMed DOI
McCue A., Cresti M., Feijó J., Slotkin R. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: Potential roles of the male germ unit revisited. J. Exp. Bot. 2011;62:1621–1631. doi: 10.1093/jxb/err032. PubMed DOI
Daròs J., Elena S., Flores R. Viroids: An Ariadne’s thread into the RNA labyrinth. EMBO Rep. 2006;7:593–598. doi: 10.1038/sj.embor.7400706. PubMed DOI PMC
Ding B. Viroids: Self-replicating, mobile, and fast-evolving noncoding regulatory RNAs. Wiley Interdiscip. Rev. RNA. 2010;1:362–375. doi: 10.1002/wrna.22. PubMed DOI
Hadidi A., Randles J., Flores R., Palukaitis P., editors. Viroids and Satellites. Academic Press; New York, NY, USA: Elsevier; Amsterdam, The Netherlands: 2017.
Schindler I.M., Mühlbach H.P. Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: A reevaluation. Plant Sci. 1992;84:221–229. doi: 10.1016/0168-9452(92)90138-C. DOI
Diener T. Origin and evolution of viroids and viroid-like satellite RNAs. Virus Genes. 1995;11:119–131. doi: 10.1007/BF01728653. PubMed DOI
Flores R., Hernández C., Martínez de Alba A., Daròs J., Di Serio F. Viroids and viroid-host interactions. Annu. Rev. Phytopathol. 2005;43:117–139. doi: 10.1146/annurev.phyto.43.040204.140243. PubMed DOI
Fernow K., Peterson L., Plaisted R. Spindle tuber virus in seeds and pollen of infected potato plants. Am. Potato J. 1970;47:75–80. doi: 10.1007/BF02864807. DOI
Kryczyński S., Paduch-Cichal E., Skrzeczkowski L. Transmission of three viroids through seed and pollen of tomato plants. J. Phytopathol. 1988;121:51–57. doi: 10.1111/j.1439-0434.1988.tb00952.x. DOI
Hadidi A., Hansen A., Parish C., Yang X. Scar skin and dapple apple viroids are seed-borne and persistent in infected apple trees. Res. Virol. 1991;142:289–296. doi: 10.1016/0923-2516(91)90015-U. PubMed DOI
Mink G. Pollen and seed-transmitted viruses and viroids. Annu. Rev. Phytopathol. 1993;31:375–402. doi: 10.1146/annurev.py.31.090193.002111. PubMed DOI
Pacumbaba E., Zelazny B., Orense J., Rillo E. Evidence for pollen and seed transmission of the coconut cadang-cadang viroid in Cocos nucifera. J. Phytopathol. 1994;142:37–42. doi: 10.1111/j.1439-0434.1994.tb00005.x. DOI
Wan Chow Wah Y., Symons R. A high sensitivity RT-PCR assay for the diagnosis of grapevine viroids in field and tissue culture samples. J. Virol. Methods. 1997;63:57–69. doi: 10.1016/s0166-0934(96)02115-5. PubMed DOI
Card S., Pearson M., Clover G. Plant pathogens transmitted by pollen. Australas. Plant Pathol. 2007;36:455–461. doi: 10.1071/AP07050. DOI
Matsushita Y., Tsuda S. Distribution of Potato spindle tuber viroid in reproductive organs of petunia during its developmental stages. Phytopathology. 2014;104:964–969. doi: 10.1094/PHYTO-10-13-0294-R. PubMed DOI
Van Bogaert N., De Jonghe K., Van Damme E., Maes M., Smagghe G. Quantitation and localization of pospiviroids in aphids. J. Virol. Methods. 2015;211:51–54. doi: 10.1016/j.jviromet.2014.10.003. PubMed DOI
Faggioli F., Luigi M., Sveikauskas V., Olivier T., Marn M., Plesko I., De Jonghe K., Van Bogaert N., Grausgruber-Gröger S. An assessment of the transmission rate of four pospiviroid species through tomato seeds. Eur. J. Plant Pathol. 2015;143:613–617. doi: 10.1007/s10658-015-0707-7. DOI
Matsushita Y., Yanagisawa H., Sano T. Vertical and Horizontal Transmission of Pospiviroids. Viruses. 2018;10:706. doi: 10.3390/v10120706. PubMed DOI PMC
Yanagisawa H., Sano T., Hase S., Matsushita Y. Influence of the terminal left domain on horizontal and vertical transmissions of tomato planta macho viroid and potato spindle tuber viroid through pollen. Virology. 2018;526:22–31. doi: 10.1016/j.virol.2018.09.021. PubMed DOI
Desjardins P., Drake R., Atkins E., Bergh B. Pollen transmission of Avocado Sunblotch Virus experimentally demonstrated. Calif. Agric. 1979;33:14–15.
Singh R., Boucher A. High incidence of transmission and occurrence of a viroid in commercial seeds of Coleus in Canada. Plant Dis. 1991;75:184–187. doi: 10.1094/PD-75-0184. DOI
Singh R., Boucher A., Somerville T. Detection of potato spindle tuber viroid in the pollen and various parts of potato plant pollinated with viroid-infected pollen. Plant Dis. 1992;76:951–953. doi: 10.1094/PD-76-0951. DOI
Matoušek J., Orctová L., Ptáček J., Patzak J., Dědič P., Steger G., Riesner D. Experimental transmission of pospiviroid populations to weed species characteristic of potato and hop fields. J. Virol. 2007;81:11891–11899. doi: 10.1128/JVI.01165-07. PubMed DOI PMC
Semancik J. Citrus Exocortis Viroid. CMI/AAB Description of Plant Viruses. [(accessed on 23 April 2020)];1980 Volume 226:4. Available online: http://www.dpvweb.net/dpv/showdpv.php?dpvno=226.
Matoušek J., Orctová L., Škopek J., Pešina K., Steger G. Elimination of hop latent viroid upon developmental activation of pollen nucleases. Biol. Chem. 2008;389:905–918. doi: 10.1515/BC.2008.096. PubMed DOI
Sano T., Yoshida H., Goshono M., Monma T., Kawasaki H., Ishizaki K. Characterization of a new viroid strain from hops: Evidence for viroid speciation by isolation in different host species. J. Gen. Plant Pathol. 2004;70:181–187. doi: 10.1007/s10327-004-0105-z. DOI
Matoušek J., Siglová K., Jakše J., Radišek S., Brass J., Tsushima T., Guček T., Duraisamy G., Sano T., Steger G. Propagation and some physiological effects of Citrus Bark Crack. Viroid Apple Fruit Crinkle Viroid Mult. Infected Hop (Humulus Lupulus L.) J. Plant Physiol. 2017;213 doi: 10.1016/j.jplph.2017.02.014. PubMed DOI
Tupý J., Süss J., Hrabětová E., Říhova L. Developmental changes in gene expression during pollen differentiation and maturation in Nicotiana tabacum L. Biol. Plant. 1983;25:231. doi: 10.1007/BF02902110. DOI
Katoh K., Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinform. 2008;9:212. doi: 10.1186/1471-2105-9-212. PubMed DOI PMC
Wilm A., Linnenbrink K., Steger G. ConStruct: Improved construction of RNA consensus structures. BMC Bioinform. 2008;9:219. doi: 10.1186/1471-2105-9-219. PubMed DOI PMC
Weinberg Z., Breaker R. R2R—Software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinform. 2011;12:3. doi: 10.1186/1471-2105-12-3. PubMed DOI PMC
Mishra A., Duraisamy G., Matoušek J., Radisek S., Javornik B., Jakse J. Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genomics. 2016;17:919. doi: 10.1186/s12864-016-3271-4. PubMed DOI PMC
Langmead B., Trapnell C., Pop M., Salzberg S. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC
Katsarou K., Mavrothalassiti E., Dermauw W., Van Leeuwen T., Kalantidis K. Combined activity of DCL2 and DCL3 is crucial in the defense against potato spindle tuber viroid. PLoS Pathog. 2016;12:e1005936. doi: 10.1371/journal.ppat.1005936. PubMed DOI PMC
Mi S., Cai T., Hu Y., Chen Y., Hodges E., Ni F., Wu L., Li S., Zhou H., Long C., et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5’ terminal nucleotide. Cell. 2008;133:116–127. doi: 10.1016/j.cell.2008.02.034. PubMed DOI PMC
Minoia S., Carbonell A., Di Serio F., Gisel A., Carrington J., Navarro B., Flores R. Specific argonautes selectively bind small RNAs derived from potato spindle tuber viroid and attenuate viroid accumulation in vivo. J. Virol. 2014;88:11933–11945. doi: 10.1128/JVI.01404-14. PubMed DOI PMC
Honys D., Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004;5:R85. doi: 10.1186/gb-2004-5-11-r85. PubMed DOI PMC
Eiras M., Nohales M., Kitajima E., Flores R., Daròs J. Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Arch. Virol. 2010;156:529–533. doi: 10.1007/s00705-010-0867-x. PubMed DOI
Wang Y., Qu J., Ji S., Wallace A., Wu J., Li Y., Gopalan V., Ding B. A land plant-specific transcription factor directly enhances transcription of a pathogenic noncoding RNA template by DNA-dependent RNA polymerase II. Plant Cell. 2016;28:1094–1107. doi: 10.1105/tpc.16.00100. PubMed DOI PMC
Jiang J., Smith H., Ren D., Dissanayaka Mudiyanselage S., Dawe A., Wang L., Wang Y. Potato spindle tuber viroid modulates its replication through a direct interaction with a splicing regulator. J. Virol. 2018;92:e01004-18. doi: 10.1128/JVI.01004-18. PubMed DOI PMC
Matoušek J., Kocábek T., Patzak J., Füssy Z., Procházková J., Heyerick A. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus lupulus L.) BMC Plant Biol. 2012;12:27. doi: 10.1186/1471-2229-12-27. PubMed DOI PMC
Matoušek J., Kocábek T., Patzak J., Bříza J., Siglová K., Mishra A., Duraisamy G., Týcová A., Ono E., Krofta K. The “putative” role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.) Plant Mol. Biol. 2016;92:263–277. doi: 10.1007/s11103-016-0510-7. PubMed DOI
Matoušek J., Patzak J. A low transmissibility of hop latent viroid through a generative phase of Humulus lupulus L. Biol. Plant. 2000;43:145–148. doi: 10.1023/A:1026531819806. DOI
Ganapathi T., Suprasanna P., Rao P., Bapat V. Tobacco (Nicotiana tabacum L.)—A model system for tissue culture interventions and genetic engineering. [(accessed on 23 April 2020)];Indian J. Biotech. 2004 3:171–184. Available online: http://nopr.niscair.res.in/handle/123456789/7722.
Hafidh S., Fíla J., Honys D. Male gametophyte development and function in angiosperms: A general concept. Plant Reprod. 2016;29:31–51. doi: 10.1007/s00497-015-0272-4. PubMed DOI
Yanagisawa H., Matsushita Y. Differences in dynamics of horizontal transmission of Tomato planta macho viroid and Potato spindle tuber viroid after pollination with viroid-infected pollen. Virology. 2018;516:258–264. doi: 10.1016/j.virol.2018.01.023. PubMed DOI
Gas M., Molina-Serrano D., Hernández C., Flores R., Daròs J. Monomeric linear RNA of citrus exocortis viroid resulting from processing in vivo has 5’-phosphomonoester and 3’-hydroxyl termini: Implications for the RNase and RNA ligase involved in replication. J. Virol. 2008;82:10321–10325. doi: 10.1128/JVI.01229-08. PubMed DOI PMC
Nohales M.Á., Flores R., Darós J. Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proc. Natl. Acad. Sci. USA. 2012;109:13805–13810. doi: 10.1073/pnas.1206187109. PubMed DOI PMC
Honys D., Čapková V. Temporal changes in the RNA distribution between polysomes and postpolysomal ribonucleoprotein particles in tobacco male gametophyte. Biol. Plant. 2000;43:517–522. doi: 10.1023/A:1002846105299. DOI
Fu Y., Bannach O., Chen H., Teune J.H., Schmitz A., Steger G., Xiong L., Barbazuk W. Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA. Genome Res. 2009;19:913–921. doi: 10.1101/gr.086876.108. PubMed DOI PMC
Hammond M., Wachter A., Breaker R. A plant 5S ribosomal RNA mimic regulates alternative splicing of transcription factor IIIA pre-mRNAs. Nat. Struct. Mol. Biol. 2009;16:541–549. doi: 10.1038/nsmb.1588. PubMed DOI PMC
Dissanayaka Mudiyanselage S., Qu J., Tian N., Jiang J., Wang Y. Potato spindle tuber viroid RNA-templated transcription: Factors and regulation. Viruses. 2018;10:503. doi: 10.3390/v10090503. PubMed DOI PMC
Matoušek J., Trněná L., Svoboda P., Oriniaková P., Lichtenstein C. The gradual reduction of viroid levels in hop mericlones following heat therapy: A possible role for a nuclease degrading dsRNA. Biol. Chem. 1995;376:715–721. doi: 10.1515/bchm3.1995.376.12.715. PubMed DOI
Owens R. Potato spindle tuber viroid: The simplicity paradox resolved? Mol. Plant Pathol. 2007;8:549–560. doi: 10.1111/j.1364-3703.2007.00418.x. PubMed DOI
Minoia S., Navarro B., Delgado S., Di Serio F., Flores R. Viroid RNA turnover: Characterization of the subgenomic RNAs of potato spindle tuber viroid accumulating in infected tissues provides insights into decay pathways operating in vivo. Nucleic Acids Res. 2015;43:2313–2325. doi: 10.1093/nar/gkv034. PubMed DOI PMC
Cotton F., Hazen E., Legg M. Staphylococcal nuclease: Proposed mechanism of action based on structure of enzyme-thymidine 3’,5’-bisphosphate-calcium ion complex at 1.5-Å resolution. Proc. Natl. Acad. Sci. USA. 1979;76:2551–2555. doi: 10.1073/pnas.76.6.2551. PubMed DOI PMC
Gutierrez-Beltran E., Moschou P., Smertenko A., Bozhkov P. Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis. Plant Cell. 2015;27:926–943. doi: 10.1105/tpc.114.134494. PubMed DOI PMC
Wilson C. Plant nucleases: Biochemistry and development of multiple molecular forms. Isozymes Curr. Top. Biol. Med. Res. 1982;6:33–54. PubMed
Tupý J., Hrabětová E., Balatková V. A simple rapid method of determining pollen tube growth in mass culture. Plant Sci. Lett. 1977;9:285–290. doi: 10.1016/0304-4211(77)90038-4. DOI
Matoušek J., Orctová L., Steger G., Škopek J., Moors M., Dědič P., Riesner D. Analysis of thermal stress-mediated PSTVd variation and biolistic inoculation of progeny of viroid “thermomutants” to tomato and Brassica species. Virology. 2004;323:67–78. doi: 10.1016/j.virol.2004.02.010. PubMed DOI
Matoušek J., Schröder A., Trěná L., Reimers M., Baumstark T., Dědič P., Vlasak J., Becker I., Kreuzaler F., Fladung M., et al. Inhibition of viroid infection by antisense RNA expression in transgenic plants. Biol. Chem. Hoppe-Seyler. 1994;375:765–777. doi: 10.1515/bchm3.1994.375.11.765. PubMed DOI
eurofins Genomics. [(accessed on 23 April 2020)]; Available online: https://www.eurofinsgenomics.eu/
Pfaffl M. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Matoušek J., Junker V., Vrba L., Schubert J., Patzak J., Steger G. Molecular characterization and genome organization of 7 SL RNA genes from hop (Humulus lupulus L.) Gene. 1999;239:173–183. doi: 10.1016/S0378-1119(99)00352-2. PubMed DOI
Sol Genomics Network, Nicotiana tabacum Genome Data. [(accessed on 23 April 2020)]; Available online: https://solgenomics.net/organism/Nicotiana_tabacum/genome.
Edwards K., Fernandez-Pozo N., Drake-Stowe K., Humphry M., Evans A., Bombarely A., Allen F., Hurst R., White B., Kernodle S., et al. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics. 2017;18:448. doi: 10.1186/s12864-017-3791-6. PubMed DOI PMC
Rivera-Bustamante R., Gin R., Semancik J. Enhanced resolution of circular and linear molecular forms of viroid and viroid-like RNA by electrophoresis in a discontinuous-pH system. Anal. Biochem. 1986;156:91–95. doi: 10.1016/0003-2697(86)90159-4. PubMed DOI
Haseloff J., Siemering K., Prasher D., Hodge S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA. 1997;94:2122–2127. doi: 10.1073/pnas.94.6.2122. PubMed DOI PMC
Töpfer R., Matzeit V., Gronenborn B., Schell J., Steinbiss H. A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res. 1987;15:5890. doi: 10.1093/nar/15.14.5890. PubMed DOI PMC
Matoušek J., Kocábek T., Patzak J., Stehlík J., Füssy Z., Krofta K., Heyerick A., Roldán-Ruiz I., Maloukh L., De Keukeleire D. Cloning and molecular analysis of HlbZip1 and HlbZip2 transcription factors putatively involved in the regulation of the lupulin metabolome in hop (Humulus lupulus L.) J. Agric. Food Chem. 2010;58:902–912. doi: 10.1021/jf9043106. PubMed DOI
Gibalová A., Steinbachová L., Hafidh S., Bláhová V., Gadiou Z., Michailidis C., Müller K., Pleskot R., Dupl’áková N., Honys D. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte. Plant Reprod. 2016;30:1–17. doi: 10.1007/s00497-016-0295-5. PubMed DOI
Horsch R., Fry J., Hoffman N., Eichholtz D., Rogers S., Fraley R. A simple and general method for transferring genes into plants. Science. 1985;227:1229–1231. doi: 10.1126/science.227.4691.1229. PubMed DOI
AFCVd-infected Nicotiana tabacum. [(accessed on 23 April 2020)]; Available online: http://www.ncbi.nlm.nih.gov/bioproject/610504.
Bolger A., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Graphics Layout Engine. [(accessed on 23 April 2020)]; Available online: http://glx.sourceforge.net/
Dupl’áková N., Dobrev P., Reňák D., Honys D. Rapid separation of Arabidopsis male gametophyte developmental stages using a Percoll gradient. Nat. Protoc. 2016;11:1817–1832. doi: 10.1038/nprot.2016.107. PubMed DOI
Wiśniewski J., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Wišniewski J., Ostasiewicz P., Mann M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteom. Res. 2011;10:3040–3049. doi: 10.1021/pr200019m. PubMed DOI
Yeung Y., Stanley E. Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr. Protoc. Protein Sci. 2010;16 doi: 10.1002/0471140864.ps1612s59. PubMed DOI PMC
The Global Proteome Machine, cRAP Protein Sequences. [(accessed on 23 April 2020)]; Available online: https://www.thegpm.org/crap/
Sol Genomics Network. [(accessed on 23 April 2020)]; Available online: ftp://ftp.solgenomics.net/genomes/Nicotiana_tabacum/edwards_et_al_2017/annotation/Nitab-v4.5_proteins_Edwards2017.fasta.
GitHub, OmicsWorkflows, KNIME_docker_vnc. [(accessed on 23 April 2020)]; Available online: https://github.com/OmicsWorkflows/KNIME_docker_vnc.
Hormonome Dynamics During Microgametogenesis in Different Nicotiana Species