Hormonome Dynamics During Microgametogenesis in Different Nicotiana Species

. 2021 ; 12 () : 735451. [epub] 20211015

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34721464

Plant microgametogenesis involves stages leading to the progressive development of unicellular microspores into mature pollen. Despite the active and continuing interest in the study of male reproductive development, little is still known about the hormonomics at each ontogenetic stage. In this work, we characterized the profiles and dynamics of phytohormones during the process of microgametogenesis in four Nicotiana species (Nicotiana tabacum, Nicotiana alata, Nicotiana langsdorffii, and Nicotiana mutabilis). Taking advantage of advanced HPLC-ESI-MS/MS, twenty to thirty endogenous hormone derivatives were identified throughout pollen ontogenesis, including cytokinins, auxins, ABA and its derivatives, jasmonates, and phenolic compounds. The spectra of endogenous phytohormones changed dynamically during tobacco pollen ontogeny, indicating their important role in pollen growth and development. The different dynamics in the accumulation of endogenous phytohormones during pollen ontogenesis between N. tabacum (section Nicotiana) and the other three species (section Alatae) reflects their different phylogenetic positions and origin within the genus Nicotiana. We demonstrated the involvement of certain phytohormone forms, such as cis-zeatin- and methylthiol-type CKs, some derivatives of abscisic acid, phenylacetic and benzoic acids, in pollen development for the first time here. Our results suggest that unequal levels of endogenous hormones and the presence of specific derivatives may be characteristic for pollen development in different phylogenetic plant groups. These results represent the currently most comprehensive study of plant hormones during the process of pollen development.

Zobrazit více v PubMed

Bedinger P. (1992). The remarkable biology of pollen. Plant Cell 4 879–887. 10.1105/tpc.4.8.879 PubMed DOI PMC

Benková E., Witters E., Van Dongen W., Kolář J., Motyka V., Brzobohatý B., et al. (1999). Cytokinins in tobacco and wheat chloroplasts, occurrence and changes due to light/dark treatment. Plant Physiol. 121 245–251. 10.1104/pp.121.1.245 PubMed DOI PMC

Berger F., Twell D. (2011). Germline specification and function in plants. Ann. Rev. Plant Biol. 62 461–484. 10.1146/annurev-arplant-042110-103824 PubMed DOI

Bokvaj P., Hafidh S., Honys D. (2015). Transcriptome profiling of male gametophyte development in Nicotiana tabacum. Genom. Data 3 106–111. 10.1016/j.gdata.2014.12.002 PubMed DOI PMC

Borg M., Twell D. (2010). Life after meiosis: patterning the angiosperm male gametophyte. Biochem. Soc. Trans. 38 577–582. 10.1042/BST0380577 PubMed DOI

Cecchetti V., Altamura M. M., Falasca G., Costantino P., Cardarelli M. (2008). Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20 1760–1774. 10.1105/tpc.107.057570 PubMed DOI PMC

Cecchetti V., Brunetti P., Napoli N., Fattorini L., Altamura M. M., Costantino P., et al. (2015). ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development. J. Integr. Plant Biol. 57 1089–1098. 10.1111/jipb.12332 PubMed DOI

Cecchetti V., Celebrin D., Napoli N., Ghelli R., Brunetti P., Costantino P., et al. (2017). An auxin maximum in the middle layer controls stamen development and pollen maturation in Arabidopsis. New Phytol. 213 1194–1207. 10.1111/nph.14207 PubMed DOI

Chambers C., Shuai B. (2009). Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC Plant Biol. 9:87. 10.1186/1471-2229-9-87 PubMed DOI PMC

Chen D., Zhao J. (2008). Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol. Plant. 134 202–215. 10.1111/j.1399-3054.2008.01125.x PubMed DOI

Chhun T., Aya K., Asano K., Yamamoto E., Morinaka Y., Watanabe M., et al. (2007). Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19 3876–3888. 10.1105/tpc.107.054759 PubMed DOI PMC

Chibi F., Angosto T., Matilla A. (1995). Variations of the patterns of abscisic acid and proline during maturation of Nicotiana tabacum pollen grains. J. Plant Physiol. 147 355–358. 10.1016/S0176-1617(11)82167-X DOI

Clarkson J. J., Knapp S., Garcia V. F., Olmstead R. G., Leitch A. R., Chase M. W. (2004). Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol. Phylogenet. Evol. 33 75–90. 10.1016/j.ympev.2004.05.002 PubMed DOI

Daudu D., Allion E., Liesecke F., Papon N., Courdavault V., de Bernonville T. D., et al. (2017). CHASE-containing histidine kinase receptors in apple tree: from a common receptor structure to divergent cytokinin binding properties and specific functions. Front. Plant Sci. 8:1614. 10.3389/fpls.2017.01614 PubMed DOI PMC

Ding Z. J., Wang B. J., Moreno I., Dupl’áková N., Simon S., Carraro N., et al. (2012). ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat. Commun. 3:941. 10.1038/ncomms1941 PubMed DOI

Djilianov D. L., Dobrev P. I., Moyankova D. P., Vaňková R., Georgieva D. T., Gajdošová S., et al. (2013). Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 32 564–574. 10.1007/s00344-013-9323-y DOI

Dobrev P. I., Kamínek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A 950 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI

Dobrev P. I., Vaňková R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 913 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI

Dupl’áková N., Dobrev P. I., Reňák D., Honys D. (2016). Rapid separation of Arabidopsis male gametophyte developmental stages using a Percoll gradient. Nat. Protoc. 11 1817–1832. 10.1038/nprot.2016.107 PubMed DOI

Gelová Z., ten Hoopen P., Novák O., Motyka V., Pernisová M., Dabravolski S., et al. (2018). Antibody-mediated modulation of cytokinins in tobacco: organ-specific changes in cytokinin homeostasis. J. Exp. Bot 69 441–454. 10.1093/jxb/erx426 PubMed DOI

Gibb M., Kisiala A. B., Morrison E. N., Emery R. J. N. (2020). The Origins and Roles of Methylthiolated Cytokinins: evidence From Among Life Kingdoms. Front. Cell Dev. Biol. 8:605672. 10.3389/fcell.2020.605672 PubMed DOI PMC

Grant-Downton R., Hafidh S., Twell D., Dickinson H. G. (2009). Small RNA pathways are present and functional in the angiosperm male gametophyte. Mol. Plant 2 500–512. 10.1093/mp/ssp003 PubMed DOI

Hackenberg D., Twell D. (2019). The evolution and patterning of male gametophyte development. Plant Dev. Evol. 131 257–298. 10.1016/bs.ctdb.2018.10.008 PubMed DOI

Hafidh S., Fíla J., Honys D. (2016). Male gametophyte development and function in angiosperms: a general concept. Plant Reprod. 29 31–51. 10.1007/s00497-015-0272-4 PubMed DOI

Hafidh S., Honys D. (2021). Reproduction multitasking: the male gametophyte. Ann. Rev. Plant Biol. 72 581–614. 10.1146/annurev-arplant-080620-021907 PubMed DOI

Hirano K., Aya K., Hobo T., Sakakibara H., Kojima M., Shim R. A., et al. (2008). Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol. 49 1429–1450. 10.1093/pcp/pcn123 PubMed DOI PMC

Honys D., Oh S. A., Reňák D., Donders M., Šolcová B., Johnson J. A., et al. (2006). Identification of microspore-active promoters that allow targeted manipulation of gene expression at early stages of microgametogenesis in Arabidopsis. BMC Plant Biol. 6:31. 10.1186/1471-2229-6-31 PubMed DOI PMC

Honys D., Twell D. (2004). Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 5:R85. 10.1186/gb-2004-5-11-r85 PubMed DOI PMC

Hošek P., Hoyerová K., Kiran N. S., Dobrev P. I., Zahajská L., Filepová R., et al. (2020). Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol. 225 2423–2438. 10.1111/nph.16310 PubMed DOI

Huang S. R., Černý E., Qi Y., Bhat D., Aydt C. M., Hanson D. D., et al. (2003). Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol. 131 1270–1282. 10.1104/pp.102.018598 PubMed DOI PMC

Kambhampati S., Kurepin L. V., Kisiala A. B., Bruce K. E., Cober E. R., Morrison M. J., et al. (2017). Yield associated traits correlate with cytokinin profiles in developing pods and seeds of field-grown soybean cultivars. Field Crops Res. 214 175–184. 10.1016/j.fcr.2017.09.009 DOI

Kelliher T., Walbot V. (2011). Emergence and patterning of the five cell types of the Zea mays anther locule. Dev. Biol. 350 32–49. 10.1016/j.ydbio.2010.11.005 PubMed DOI PMC

Kieber J. J., Schaller G. E. (2018). Cytokinin signaling in plant development. Development 145:dev149344. 10.1242/dev.149344 PubMed DOI

Kinoshita-Tsujimura K., Kakimoto T. (2011). Cytokinin receptors in sporophytes are essential for male and female functions in Arabidopsis thaliana. Plant Signal. Behav. 6 66–71. 10.4161/psb.6.1.13999 PubMed DOI PMC

Knöfel H. D., Sembdner G. (1995). Jasmonates from pine pollen. Phytochemistry 38 569–571. 10.1016/0031-9422(94)00748-I DOI

Kovaleva L. V., Voronkov A. S., Zakharova E. V. (2015). Role of auxin and cytokinin in the regulation of the actin cytoskeleton in the in vitro germinating male gametophyte of Petunia. Russ. J. Plant Physiol. 62 179–186. 10.1134/S1021443715020107 DOI

Mandaokar A., Thines B., Shin B., Lange B. M., Choi G., Koo Y. J., et al. (2006). Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J. 46 984–1008. 10.1111/j.1365-313X.2006.02756.x PubMed DOI

Matoušek J., Steinbachová L., Záveská Drábková L., Kocábek T., Potěšil D., Mishra A. K., et al. (2020). Elimination of viroids from tobacco pollen involves a decrease in propagation rate and an increase of the degradation processes. Int. J. Mol. Sci. 21:3029. 10.3390/ijms21083029 PubMed DOI PMC

McCormick S. (1993). Male gametophyte development. Plant Cell 5 1265–1275. PubMed PMC

Miersch O., Knöfel H. D., Schmidt J., Kramell R., Parthier B. (1998). A jasmonic acid conjugate, N- (-)-jasmonoyl -tyramine, from Petunia pollen. Phytochemistry 47 327–329. 10.1016/S0031-9422(97)00617-1 DOI

Nagpal P., Ellis C. M., Weber H., Ploense S. E., Barkawi L. S., Guilfoyle T. J., et al. (2005). Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132 4107–4118. 10.1242/dev.01955 PubMed DOI

Novák O., Napier R., Ljung K. (2017). Zooming in on plant hormone analysis: tissue- and cell-specific approaches. Annu. Rev. Plant Biol. 68 323–348. 10.1146/annurev-arplant-042916-040812 PubMed DOI

Pacini E., Dolferus R. (2019). Pollen developmental arrest: maintaining pollen fertility in a world with a changing climate. Front. Plant Sci. 10:679. 10.3389/fpls.2019.00679 PubMed DOI PMC

Pokorná E., Hluska T., Galuszka P., Hallmark H. T., Dobrev P. I., Záveská Drábková L., et al. (2021). Cytokinin N-glucosides: occurrence, metabolism and biological activities in plants. Biomolecules 11:24. 10.3390/biom11010024 PubMed DOI PMC

Reňák D., Gibalová A., Šolcová K., Honys D. (2014). A new link between stress response and nucleolar function during pollen development in Arabidopsis mediated by AtREN1 protein. Plant Cell Environ. 37 670–683. PubMed

Rong D., Luo N., Mollet J. C., Liu X., Yang Z. (2016). Salicylic acid regulates pollen tip growth through an npr3/npr4-independent pathway. Mol. Plant 9 1478–1491. 10.1016/j.molp.2016.07.010 PubMed DOI PMC

Salinas-Grenet H., Herrera-Vasquez A., Parra S., Cortez A., Gutierrez L., Pollmann S., et al. (2018). Modulation of auxin levels in pollen grains affects stamen development and anther dehiscence in Arabidopsis. Int. J. Mol. Sci. 19:2480. 10.3390/ijms19092480 PubMed DOI PMC

Scott R. J., Spielman M., Dickinson H. G. (2004). Stamen structure and function. Plant Cell 16 S46–S60. 10.1105/tpc.017012 PubMed DOI PMC

Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., et al. (2018). Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 177 476–489. 10.1104/pp.18.00293 PubMed DOI PMC

Song S. S., Qi T. C., Huang H., Xie D. X. (2013). Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. Mol. Plant 6 1065–1073. 10.1093/mp/sst054 PubMed DOI

Stirk W. A., Novák O., Strnad M., van Staden J. (2003). Cytokinins in macroalgae. Plant Growth Regul. 41 13–24. 10.1023/A:1027376507197 DOI

Taiz L., Zeiger E. (2002). Plant Physiology. 3rd Edition. Sunderland: Sinauer Associates, Inc. Publishers.

Tarkowski P., Václavíková K., Novák O., Pertry I., Hanuš J., Whenham R., et al. (2010). Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 680 86–91. 10.1016/j.aca.2010.09.020 PubMed DOI

Tupý J. (1982). Alterations in polyadenylated RNA during pollen maturation and germination. Biol. Plant. 24 331–340. 10.1007/BF02909098 DOI

Tupý J., Süss J., Hrabětová E., Říhová L. (1983). Developmental changes in gene expression during pollen differentiation and maturation in Nicotiana tabacum L. Biol. Plant. 25 231–237. 10.1007/BF02902110 DOI

Uzelac B., Janošević D., Simonović A., Motyka V., Dobrev P. I., Budimir S. (2016). Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro. Protoplasma 253 259–275. 10.1007/s00709-015-0802-9 PubMed DOI

Vondráková Z., Dobrev P. I., Pešek B., Fischerová L., Vágner M., Motyka V. (2018). Profiles of endogenous phytohormones over the course of Norway spruce somatic embryogenesis. Front. Plant Sci. 9:1283. 10.3389/fpls.2018.01283 PubMed DOI PMC

Wasternack C., Hause B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals Botany. Ann. Bot. 111 1021–1058. PubMed PMC

Wilson Z. A., Zhang D. B. (2009). From Arabidopsis to rice: pathways in pollen development. J. Exp. Bot. 60 1479–1492. 10.1093/jxb/erp095 PubMed DOI

Wybouw B., de Rybel B. (2019). Cytokinin - A developing story. Trends Plant Sci. 24 177–185. 10.1016/j.tplants.2018.10.012 PubMed DOI

Yamane H., Abe H., Takahashi N. (1982). Jasmonic acid and methyl jasmonate in pollens and anthers of three camellia species. Plant Cell Physiol. 23 1125–1127.

Yan S., Dong X. (2014). Perception of the plant immune signal salicylic acid. Curr. Opin. Plant Biol. 20 64–68. 10.1016/j.pbi.2014.04.006 PubMed DOI PMC

Yang C., Xu Z., Song J., Conner K., Vizcay Barrena G., Wilson Z. A. (2007). Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19 534–548. 10.1105/tpc.106.046391 PubMed DOI PMC

Yao X., Tian L., Yang J., Zhao Y. N., Zhu Y. X., Dai X., et al. (2018). Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genet. 14:e1007397. 10.1371/journal.pgen.1007397 PubMed DOI PMC

Záveská Drábková L., Dobrev P. I., Motyka V. (2015). Phytohormone Profiling across the Bryophytes. PLoS One 10:e0125411. 10.1371/journal.pone.0125411 PubMed DOI PMC

Žižková E., Kubeš M., Dobrev P. I., Přibyl P., Šimura J., Zahajská L., et al. (2017). Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Ann. Bot. 119 151–166. 10.1093/aob/mcw194 PubMed DOI PMC

Zuñiga-Mayo V. M., Baños-Bayardo C. R., Díaz-Ramírez D., Marsch-Martinez N., de Folter S. (2018). Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana. Sci. Rep. 8:6836. 10.1038/s41598-018-25017-3 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...