Hormonome Dynamics During Microgametogenesis in Different Nicotiana Species

. 2021 ; 12 () : 735451. [epub] 20211015

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34721464

Plant microgametogenesis involves stages leading to the progressive development of unicellular microspores into mature pollen. Despite the active and continuing interest in the study of male reproductive development, little is still known about the hormonomics at each ontogenetic stage. In this work, we characterized the profiles and dynamics of phytohormones during the process of microgametogenesis in four Nicotiana species (Nicotiana tabacum, Nicotiana alata, Nicotiana langsdorffii, and Nicotiana mutabilis). Taking advantage of advanced HPLC-ESI-MS/MS, twenty to thirty endogenous hormone derivatives were identified throughout pollen ontogenesis, including cytokinins, auxins, ABA and its derivatives, jasmonates, and phenolic compounds. The spectra of endogenous phytohormones changed dynamically during tobacco pollen ontogeny, indicating their important role in pollen growth and development. The different dynamics in the accumulation of endogenous phytohormones during pollen ontogenesis between N. tabacum (section Nicotiana) and the other three species (section Alatae) reflects their different phylogenetic positions and origin within the genus Nicotiana. We demonstrated the involvement of certain phytohormone forms, such as cis-zeatin- and methylthiol-type CKs, some derivatives of abscisic acid, phenylacetic and benzoic acids, in pollen development for the first time here. Our results suggest that unequal levels of endogenous hormones and the presence of specific derivatives may be characteristic for pollen development in different phylogenetic plant groups. These results represent the currently most comprehensive study of plant hormones during the process of pollen development.

Zobrazit více v PubMed

Bedinger P. (1992). The remarkable biology of pollen. PubMed DOI PMC

Benková E., Witters E., Van Dongen W., Kolář J., Motyka V., Brzobohatý B., et al. (1999). Cytokinins in tobacco and wheat chloroplasts, occurrence and changes due to light/dark treatment. PubMed DOI PMC

Berger F., Twell D. (2011). Germline specification and function in plants. PubMed DOI

Bokvaj P., Hafidh S., Honys D. (2015). Transcriptome profiling of male gametophyte development in PubMed DOI PMC

Borg M., Twell D. (2010). Life after meiosis: patterning the angiosperm male gametophyte. PubMed DOI

Cecchetti V., Altamura M. M., Falasca G., Costantino P., Cardarelli M. (2008). Auxin regulates PubMed DOI PMC

Cecchetti V., Brunetti P., Napoli N., Fattorini L., Altamura M. M., Costantino P., et al. (2015). ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late PubMed DOI

Cecchetti V., Celebrin D., Napoli N., Ghelli R., Brunetti P., Costantino P., et al. (2017). An auxin maximum in the middle layer controls stamen development and pollen maturation in PubMed DOI

Chambers C., Shuai B. (2009). Profiling microRNA expression in PubMed DOI PMC

Chen D., Zhao J. (2008). Free IAA in stigmas and styles during pollen germination and pollen tube growth of PubMed DOI

Chhun T., Aya K., Asano K., Yamamoto E., Morinaka Y., Watanabe M., et al. (2007). Gibberellin regulates pollen viability and pollen tube growth in rice. PubMed DOI PMC

Chibi F., Angosto T., Matilla A. (1995). Variations of the patterns of abscisic acid and proline during maturation of DOI

Clarkson J. J., Knapp S., Garcia V. F., Olmstead R. G., Leitch A. R., Chase M. W. (2004). Phylogenetic relationships in PubMed DOI

Daudu D., Allion E., Liesecke F., Papon N., Courdavault V., de Bernonville T. D., et al. (2017). CHASE-containing histidine kinase receptors in apple tree: from a common receptor structure to divergent cytokinin binding properties and specific functions. PubMed DOI PMC

Ding Z. J., Wang B. J., Moreno I., Dupl’áková N., Simon S., Carraro N., et al. (2012). ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in PubMed DOI

Djilianov D. L., Dobrev P. I., Moyankova D. P., Vaňková R., Georgieva D. T., Gajdošová S., et al. (2013). Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species DOI

Dobrev P. I., Kamínek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. PubMed DOI

Dobrev P. I., Vaňková R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. PubMed DOI

Dupl’áková N., Dobrev P. I., Reňák D., Honys D. (2016). Rapid separation of PubMed DOI

Gelová Z., ten Hoopen P., Novák O., Motyka V., Pernisová M., Dabravolski S., et al. (2018). Antibody-mediated modulation of cytokinins in tobacco: organ-specific changes in cytokinin homeostasis. PubMed DOI

Gibb M., Kisiala A. B., Morrison E. N., Emery R. J. N. (2020). The Origins and Roles of Methylthiolated Cytokinins: evidence From Among Life Kingdoms. PubMed DOI PMC

Grant-Downton R., Hafidh S., Twell D., Dickinson H. G. (2009). Small RNA pathways are present and functional in the angiosperm male gametophyte. PubMed DOI

Hackenberg D., Twell D. (2019). The evolution and patterning of male gametophyte development. PubMed DOI

Hafidh S., Fíla J., Honys D. (2016). Male gametophyte development and function in angiosperms: a general concept. PubMed DOI

Hafidh S., Honys D. (2021). Reproduction multitasking: the male gametophyte. PubMed DOI

Hirano K., Aya K., Hobo T., Sakakibara H., Kojima M., Shim R. A., et al. (2008). Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. PubMed DOI PMC

Honys D., Oh S. A., Reňák D., Donders M., Šolcová B., Johnson J. A., et al. (2006). Identification of microspore-active promoters that allow targeted manipulation of gene expression at early stages of microgametogenesis in PubMed DOI PMC

Honys D., Twell D. (2004). Transcriptome analysis of haploid male gametophyte development in PubMed DOI PMC

Hošek P., Hoyerová K., Kiran N. S., Dobrev P. I., Zahajská L., Filepová R., et al. (2020). Distinct metabolism of PubMed DOI

Huang S. R., Černý E., Qi Y., Bhat D., Aydt C. M., Hanson D. D., et al. (2003). Transgenic studies on the involvement of cytokinin and gibberellin in male development. PubMed DOI PMC

Kambhampati S., Kurepin L. V., Kisiala A. B., Bruce K. E., Cober E. R., Morrison M. J., et al. (2017). Yield associated traits correlate with cytokinin profiles in developing pods and seeds of field-grown soybean cultivars. DOI

Kelliher T., Walbot V. (2011). Emergence and patterning of the five cell types of the PubMed DOI PMC

Kieber J. J., Schaller G. E. (2018). Cytokinin signaling in plant development. PubMed DOI

Kinoshita-Tsujimura K., Kakimoto T. (2011). Cytokinin receptors in sporophytes are essential for male and female functions in PubMed DOI PMC

Knöfel H. D., Sembdner G. (1995). Jasmonates from pine pollen. DOI

Kovaleva L. V., Voronkov A. S., Zakharova E. V. (2015). Role of auxin and cytokinin in the regulation of the actin cytoskeleton in the DOI

Mandaokar A., Thines B., Shin B., Lange B. M., Choi G., Koo Y. J., et al. (2006). Transcriptional regulators of stamen development in PubMed DOI

Matoušek J., Steinbachová L., Záveská Drábková L., Kocábek T., Potěšil D., Mishra A. K., et al. (2020). Elimination of viroids from tobacco pollen involves a decrease in propagation rate and an increase of the degradation processes. PubMed DOI PMC

McCormick S. (1993). Male gametophyte development. PubMed PMC

Miersch O., Knöfel H. D., Schmidt J., Kramell R., Parthier B. (1998). A jasmonic acid conjugate, N- (-)-jasmonoyl -tyramine, from DOI

Nagpal P., Ellis C. M., Weber H., Ploense S. E., Barkawi L. S., Guilfoyle T. J., et al. (2005). Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. PubMed DOI

Novák O., Napier R., Ljung K. (2017). Zooming in on plant hormone analysis: tissue- and cell-specific approaches. PubMed DOI

Pacini E., Dolferus R. (2019). Pollen developmental arrest: maintaining pollen fertility in a world with a changing climate. PubMed DOI PMC

Pokorná E., Hluska T., Galuszka P., Hallmark H. T., Dobrev P. I., Záveská Drábková L., et al. (2021). Cytokinin PubMed DOI PMC

Reňák D., Gibalová A., Šolcová K., Honys D. (2014). A new link between stress response and nucleolar function during pollen development in PubMed

Rong D., Luo N., Mollet J. C., Liu X., Yang Z. (2016). Salicylic acid regulates pollen tip growth through an npr3/npr4-independent pathway. PubMed DOI PMC

Salinas-Grenet H., Herrera-Vasquez A., Parra S., Cortez A., Gutierrez L., Pollmann S., et al. (2018). Modulation of auxin levels in pollen grains affects stamen development and anther dehiscence in PubMed DOI PMC

Scott R. J., Spielman M., Dickinson H. G. (2004). Stamen structure and function. PubMed DOI PMC

Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., et al. (2018). Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. PubMed DOI PMC

Song S. S., Qi T. C., Huang H., Xie D. X. (2013). Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in PubMed DOI

Stirk W. A., Novák O., Strnad M., van Staden J. (2003). Cytokinins in macroalgae. DOI

Taiz L., Zeiger E. (2002).

Tarkowski P., Václavíková K., Novák O., Pertry I., Hanuš J., Whenham R., et al. (2010). Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry. PubMed DOI

Tupý J. (1982). Alterations in polyadenylated RNA during pollen maturation and germination. DOI

Tupý J., Süss J., Hrabětová E., Říhová L. (1983). Developmental changes in gene expression during pollen differentiation and maturation in DOI

Uzelac B., Janošević D., Simonović A., Motyka V., Dobrev P. I., Budimir S. (2016). Characterization of natural leaf senescence in tobacco ( PubMed DOI

Vondráková Z., Dobrev P. I., Pešek B., Fischerová L., Vágner M., Motyka V. (2018). Profiles of endogenous phytohormones over the course of Norway spruce somatic embryogenesis. PubMed DOI PMC

Wasternack C., Hause B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals Botany. PubMed PMC

Wilson Z. A., Zhang D. B. (2009). From PubMed DOI

Wybouw B., de Rybel B. (2019). Cytokinin - A developing story. PubMed DOI

Yamane H., Abe H., Takahashi N. (1982). Jasmonic acid and methyl jasmonate in pollens and anthers of three camellia species.

Yan S., Dong X. (2014). Perception of the plant immune signal salicylic acid. PubMed DOI PMC

Yang C., Xu Z., Song J., Conner K., Vizcay Barrena G., Wilson Z. A. (2007). PubMed DOI PMC

Yao X., Tian L., Yang J., Zhao Y. N., Zhu Y. X., Dai X., et al. (2018). Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PubMed DOI PMC

Záveská Drábková L., Dobrev P. I., Motyka V. (2015). Phytohormone Profiling across the Bryophytes. PubMed DOI PMC

Žižková E., Kubeš M., Dobrev P. I., Přibyl P., Šimura J., Zahajská L., et al. (2017). Control of cytokinin and auxin homeostasis in cyanobacteria and algae. PubMed DOI PMC

Zuñiga-Mayo V. M., Baños-Bayardo C. R., Díaz-Ramírez D., Marsch-Martinez N., de Folter S. (2018). Conserved and novel responses to cytokinin treatments during flower and fruit development in PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...