Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25837009
DOI
10.1007/s00709-015-0802-9
PII: 10.1007/s00709-015-0802-9
Knihovny.cz E-zdroje
- Klíčová slova
- Leaf senescence, Mesophyll ultrastructure, Phytohormones, Tobacco, qRT-PCR,
- MeSH
- buněčná smrt MeSH
- chlorofyl metabolismus MeSH
- cytokininy metabolismus MeSH
- exprese genu MeSH
- listy rostlin cytologie růst a vývoj metabolismus MeSH
- metabolické sítě a dráhy MeSH
- mezofylové buňky fyziologie ultrastruktura MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- stárnutí buněk MeSH
- stárnutí MeSH
- tabák cytologie růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- cytokininy MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
Leaf senescence is a highly regulated final phase of leaf development preceding massive cell death. It results in the coordinated degradation of macromolecules and the subsequent nutrient relocation to other plant parts. Very little is still known about early stages of leaf senescence during normal leaf ontogeny that is not triggered by stress factors. This paper comprises an integrated study of natural leaf senescence in tobacco plants grown in vitro, using molecular, structural, and physiological information. We determined the time sequence of ultrastructural changes in mesophyll cells during leaf senescence, showing that the degradation of chloroplast ultrastructure fully correlated with changes in chlorophyll content. The earliest degenerative changes in chloroplast ultrastructure coinciding with early chromatin condensation were observed already in mature green leaves. A continuum of degradative changes in chloroplast ultrastructure, chromatin condensation and aggregation, along with progressive decrease in cytoplasm organization and electron density were observed in the course of mesophyll cells ageing. Although the total amounts of endogenous cytokinins gradually increased during leaf ontogenesis, the proportion of bioactive cytokinin forms, as well as their phosphate precursors, in total cytokinin content rapidly declined with ageing. Endogenous indole-3-acetic acid (IAA) levels were strongly reduced in senescent leaves, and a decreasing tendency was also observed for abscisic acid (ABA) levels. Senescence-associated tobacco cysteine proteases (CP, E.C. 3.4.22) CP1 and CP23 genes were induced in the initial phase of senescence. Genes encoding glutamate dehydrogenase (GDH, E.C. 1.4.1.2) and one isoform of cytosolic glutamine synthetase (GS1, E.C. 6.3.1.2) were induced in the late stage of senescence, while chloroplastic GS (GS2) gene showed a continuous decrease with leaf ageing.
Zobrazit více v PubMed
Plant Physiol. 1997 Feb;113(2):313-319 PubMed
J Microsc. 2008 Apr;230(Pt 1):1-3 PubMed
J Exp Bot. 2011 May;62(8):2827-40 PubMed
Plant Physiol. 1978 Aug;62(2):224-8 PubMed
J Exp Bot. 2005 Nov;56(421):2897-905 PubMed
Plant Physiol. 2002 Mar;128(3):876-84 PubMed
Science. 1995 Dec 22;270(5244):1986-8 PubMed
Annu Rev Plant Biol. 2007;58:115-36 PubMed
J Exp Bot. 2002 Apr;53(370):927-37 PubMed
Trends Plant Sci. 2000 Jul;5(7):278-82 PubMed
Plant Physiol. 2005 Dec;139(4):1635-48 PubMed
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14463-8 PubMed
Plant Biol (Stuttg). 2008 Sep;10 Suppl 1:136-47 PubMed
Plant Cell. 1993 May;5(5):553-64 PubMed
Plant Mol Biol. 1999 May;40(2):267-78 PubMed
Plant Mol Biol. 2000 Nov;44(5):649-57 PubMed
Plant Mol Biol. 1996 Jul;31(4):803-17 PubMed
Plant Physiol. 2006 Jun;141(2):776-92 PubMed
Plant Cell. 2001 Aug;13(8):1779-90 PubMed
Braz J Med Biol Res. 2001 May;34(5):567-75 PubMed
Planta. 2000 Sep;211(4):510-8 PubMed
J Biol Chem. 2005 Apr 15;280(15):14691-9 PubMed
Plant J. 2000 Sep;23(5):677-85 PubMed
Plant Physiol. 1999 Sep;121(1):301-10 PubMed
Planta. 2002 Aug;215(4):645-52 PubMed
J Biophys Biochem Cytol. 1958 Mar 25;4(2):191-4 PubMed
J Chromatogr A. 2002 Mar 15;950(1-2):21-9 PubMed
Plant Cell. 1999 Mar;11(3):431-44 PubMed
Plant Physiol. 2003 Feb;131(2):430-42 PubMed
Plant Biotechnol J. 2003 Jan;1(1):3-22 PubMed
Plant J. 2001 Oct;28(1):13-26 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Plant Biol (Stuttg). 2008 Sep;10 Suppl 1:148-55 PubMed
Planta. 2000 Sep;211(4):519-27 PubMed
Plant Mol Biol. 1999 Jan;39(2):325-33 PubMed
Plant Mol Biol. 1993 Feb;21(4):685-94 PubMed
Physiol Plant. 2004 Feb;120(2):220-228 PubMed
J Exp Bot. 2006;57(6):1431-43 PubMed
Int Rev Cytol. 2004;233:135-79 PubMed
Phospholipase Dα1 Acts as a Negative Regulator of High Mg2+-Induced Leaf Senescence in Arabidopsis
Hormonome Dynamics During Microgametogenesis in Different Nicotiana Species
Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance