Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance

. 2016 ; 7 () : 1264. [epub] 20160823

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27602043

Plant hormones cytokinins (CKs) are one of the major mediators of physiological responses throughout plant life span. Therefore, a proper homeostasis is maintained by regulation of their active levels. Besides degradation, CKs are deactivated by uridine diphosphate glycosyltransferases (UGTs). Physiologically, CKs active levels decline in senescing organs, providing a signal to nutrients that a shift to reproductive tissues has begun. In this work, we show CK glucosides distribution in Arabidopsis leaves during major developmental transition phases. Besides continuous accumulation of N-glucosides we detected sharp maximum of the glucosides in senescence. This is caused prevalently by N7-glucosides followed by N9-glucosides and specifically also by trans-zeatin-O-glucoside (tZOG). Interestingly, we observed a similar trend in response to exogenously applied CK. In Arabidopsis, only three UGTs deactivate CKs in vivo: UGT76C1, UGT76C2 and UGT85A1. We thereby show that UGT85A1 is specifically expressed in senescent leaves whereas UGT76C2 is activated rapidly in response to exogenously applied CK. To shed more light on the UGTs physiological roles, we performed a comparative study on UGTs loss-of-function mutants, characterizing a true ugt85a1-1 loss-of-function mutant for the first time. Although no altered phenotype was detected under standard condition we observed reduced chlorophyll degradation with increased anthocyanin accumulation in our experiment on detached leaves accompanied by senescence and stress related genes modulated expression. Among the mutants, ugt76c2 possessed extremely diminished CK N-glucosides levels whereas ugt76c1 showed some specificity toward cis-zeatin (cZ). Besides tZOG, a broader range of CK glucosides was decreased in ugt85a1-1. Performing CK metabolism gene expression profiling, we revealed that activation of CK degradation pathway serves as a general regulatory mechanism of disturbed CK homeostasis followed by decreased CK signaling in all UGT mutants. In contrast, a specific regulation of CKX7, CKX1 and CKX2 was observed for each individual UGT mutant isoform after exogenous CK uptake. Employing an in silico prediction we proposed cytosolic localization of UGT76C1 and UGT76C2, that we further confirmed by GFP tagging of UGT76C2. Integrating all the results, we therefore hypothesize that UGTs possess different physiological roles in Arabidopsis and serve as a fine-tuning mechanism of active CK levels in cytosol.

Zobrazit více v PubMed

Bairu M. W., Novák O., Doležal K., van Staden J. (2011). Changes in endogenous cytokinin profiles in micropropagated Harpagophytum procumbens in relation to shoot-tip necrosis and cytokinin treatments. Plant Growth Regul. 63 105–114. 10.1007/s10725-010-9558-6 DOI

Bajguz A., Piotrowska A. (2009). Conjugates of auxin and cytokinin. Phytochemistry 70 957–969. 10.1016/j.phytochem.2009.05.006 PubMed DOI

Balazadeh S., Riaño-Pachón D. M., Mueller-Roeber B. (2008). Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol. 10 63–75. 10.1111/j.1438-8677.2008.00088.x PubMed DOI

Bannai H., Tamada Y., Maruyama O., Nakai K., Miyano S. (2002). Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18 298–305. 10.1093/bioinformatics/18.2.298 PubMed DOI

Benková E., Witters E., Van Dongen W., Kolár J., Motyka V., Brzobohatý B., et al. (1999). Cytokinins in tobacco and wheat chloroplasts. Occurrence and changes due to light/dark treatment. Plant Physiol. 121 245–252. 10.1104/pp.121.1.245 PubMed DOI PMC

Bhargava A., Clabaugh I., To J. P., Maxwell B. B., Chiang Y.-H., Schaller G. E., et al. (2013). Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiol. 162 272–294. 10.1104/pp.113.217026 PubMed DOI PMC

Bilyeu K. D., Cole J. L., Laskey J. G., Riekhof W. R., Esparza T. J., Kramer M. D., et al. (2001). Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiol. 125 378–386. 10.1104/pp.125.1.378 PubMed DOI PMC

Blagoeva E., Dobrev P. I., Malbeck J., Motyka V., Strnad M., Hanuš J., et al. (2004). Cytokinin N-glucosylation inhibitors suppress deactivation of exogenous cytokinins in radish, but their effect on active endogenous cytokinins is counteracted by other regulatory mechanisms. Physiol. Plant. 121 215–222. 10.1111/j.1399-3054.2004.00320.x PubMed DOI

Bowles D., Isayenkova J., Lim E.-K., Poppenberger B. (2005). Glycosyltransferases: managers of small molecules. Curr. Opin. Plant Biol. 8 254–263. 10.1016/j.pbi.2005.03.007 PubMed DOI

Brenner W. G., Ramireddy E., Heyl A., Schmülling T. (2012). Gene regulation by cytokinin in Arabidopsis. Front. Plant Sci. 3:8 10.3389/fpls.2012.00008 PubMed DOI PMC

Brzobohatý B., Moore I., Kristoffersen P., Bako L., Campos N., Schell J., et al. (1993). Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science 262 1051–1054. 10.1126/science.8235622 PubMed DOI

Bürkle L., Cedzich A., Döpke C., Stransky H., Okumoto S., Gillissen B., et al. (2003). Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J. 34 13–26. 10.1046/j.1365-313X.2003.01700.x PubMed DOI

Carviel J. L., Al-Daoud F., Neumann M., Mohammad A., Provart N. J., Moeder W., et al. (2009). Forward and reverse genetics to identify genes involved in the age-related resistance response in Arabidopsis thaliana. Mol. Plant Pathol. 10 621–634. 10.1111/j.1364-3703.2009.00557.x PubMed DOI PMC

Catala R., Medina J., Salinas J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 108 16475–16480. 10.1073/pnas.1107161108 PubMed DOI PMC

Cedzich A., Stransky H., Schulz B., Frommer W. B. (2008). Characterization of cytokinin and adenine transport in Arabidopsis cell cultures. Plant Physiol. 148 1857–1867. 10.1104/pp.108.128454 PubMed DOI PMC

Chen C.-M., Kristopeit S. M. (1981a). Metabolism of cytokinin: dephosphorylation of cytokinin ribonucleotide by 5′-nucleotidases from wheat germ cytosol. Plant Physiol. 67 494–498. 10.1104/pp.67.3.494 PubMed DOI PMC

Chen C.-M., Kristopeit S. M. (1981b). Metabolism of cytokinin: deribosylation of cytokinin ribonucleoside by adenosine nucleosidase from wheat germ cells. Plant Physiol. 68 1020–1023. 10.1104/pp.68.5.1020 PubMed DOI PMC

Chory J. (1991). Light signals in leaf and chloroplast development – photoreceptors and downstream responses in search of a transduction pathway. New Biol. 3 538–548. PubMed

Chou K.-C., Shen H.-B. (2010). Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5:e11335 10.1371/journal.pone.0011335 PubMed DOI PMC

Collier R., Fuchs B., Walter N., Lutke W. K., Taylor C. G. (2005). Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J. 43 449–457. 10.1111/j.1365-313X.2005.02454.x PubMed DOI

Cowley D. E., Duke C. C., Liepa A. J., Macleod J. K., Letham D. S. (1978). Structure and synthesis of cytokinin metabolites. 1. The 7- and 9- β-D-glucofuranosides and pyranosides of zeatin and 6-benzylaminopurine. Aust. J. Chem. 31 1095–1111. 10.1071/CH9781095 DOI

Dobrev P. I., Kamínek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A 950 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI

Dortay H., Gruhn N., Pfeifer A., Schwerdtner M., Schmülling T., Heyl A. (2008). Toward an interaction map of the two-component signaling pathway of Arabidopsis thaliana. J. Proteome Res. 7 3649–3660. 10.1021/pr0703831 PubMed DOI

Emanuelsson O., Nielsen H., Brunak S., von Heijne G. (2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300 1005–1016. 10.1006/jmbi.2000.3903 PubMed DOI

Emanuelsson O., Nielsen H., Von Heijne G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8 978–984. 10.1110/ps.8.5.978 PubMed DOI PMC

Entsch B., Letham D. S. (1979). Enzymic glucosylation of the cytokinin, 6-benzylaminopurine. Plant Sci. Lett. 14 205–212. 10.1016/0304-4211(79)90061-0 DOI

Entsch B., Parker C. W., Letham D. S., Summons R. E. (1979). Preparation and characterization, using high-performance liquid chromatography, of an enzyme forming glucosides of cytokinins. Biochim. Biophys. Acta 570 124–139. 10.1016/0005-2744(79)90207-9 PubMed DOI

Falk A., Rask L. (1995). Expression of a zeatin-O-glucoside-degrading β-glucosidase in Brassica napus. Plant Physiol. 108 1369–1377. 10.1104/pp.108.4.1369 PubMed DOI PMC

Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. (2011). Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 62 2431–2452. 10.1093/jxb/err004 PubMed DOI

Fusseder A., Ziegler P. (1988). Metabolism and compartmentation of dihydrozeatin exogenously supplied to photoautotrophic suspension cultures of Chenopodium rubrum. Planta 173 104–109. 10.1007/bf00394494 PubMed DOI

Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P. I., et al. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 62 2827–2840. 10.1093/jxb/erq457 PubMed DOI

Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., et al. (2007). Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J. Plant Growth Regul. 26 255–267. 10.1007/s00344-007-9008-5 DOI

Gandia-Herrero F., Lorenz A., Larson T., Graham I. A., Bowles D. J., Rylott E. L., et al. (2008). Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases. Plant J. 56 963–974. 10.1111/j.1365-313X.2008.03653.x PubMed DOI

Gepstein S., Sabehi G., Carp M. J., Hajouj T., Nesher M. F. O., Yariv I., et al. (2003). Large-scale identification of leaf senescence-associated genes. Plant J. 36 629–642. 10.1046/j.1365-313X.2003.01908.x PubMed DOI

Gillissen B., Burkle L., Andre B., Kuhn C., Rentsch D., Brandl B., et al. (2000). A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12 291–300. 10.1105/tpc.12.2.291 PubMed DOI PMC

Grebenok R. J., Lambert G. M., Galbraith D. W. (1997a). Characterization of targeted nuclear accumulation of gfp in cells of transgenic plants. Plant J. 12 685–696. 10.1046/j.1365-313X.1997.00685.x DOI

Grebenok R. J., Pierson E., Lambert G. M., Gong F.-C., Afonso C. L., Haldeman-Cahill R., et al. (1997b). Green-fluorescent protein fusions for efficient characterization of nuclear targeting. Plant J. 11 573–586. 10.1046/j.1365-313X.1997.11030573.x PubMed DOI

Guo Y., Gan S. (2011). AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiol. 156 1612–1619. 10.1104/pp.111.177022 PubMed DOI PMC

Ha S., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.-S. P. (2012). Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 17 172–179. 10.1016/j.tplants.2011.12.005 PubMed DOI

Havlová M., Dobrev P. I., Motyka V., Štorchová H., Libus J., Dobrá J., et al. (2008). The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ. 31 341–353. 10.1111/j.1365-3040.2007.01766.x PubMed DOI

Hensel L. L., Grbiæ V., Baumgarten D. A., Bleecker A. B. (1993). Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5 553–564. 10.1105/tpc.5.5.553 PubMed DOI PMC

Hinderhofer K., Zentgraf U. (2001). Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213 469–473. 10.1007/s004250000512 PubMed DOI

Hirose N., Makita N., Yamaya T., Sakakibara H. (2005). Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport. Plant Physiol. 138 196–206. 10.1104/pp.105.060137.syltransferase PubMed DOI PMC

Hirose N., Takei K., Kuroha T., Kamada-Nobusada T., Hayashi H., Sakakibara H. (2007). Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 59 75–83. 10.1093/jxb/erm157 PubMed DOI

Hong Z. L., Zhang Z. M., Olson J. M., Verma D. P. S. (2001). A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell 13 769–779. 10.1105/tpc.13.4.769 PubMed DOI PMC

Hou B., Lim E.-K., Higgins G. S., Bowles D. J. (2004). N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J. Biol. Chem. 279 47822–47832. 10.1074/jbc.M409569200 PubMed DOI

Husar S., Berthiller F., Fujioka S., Rozhon W., Khan M., Kalaivanan F., et al. (2011). Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol. 11:51 10.1186/1471-2229-11-51 PubMed DOI PMC

Jin S. H., Ma X. M., Kojima M., Sakakibara H., Wang Y. W., Hou B. K. (2013). Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta 237 991–999. 10.1007/s00425-012-1818-4 PubMed DOI

Jiskrová E., Novák O., Pospíšilová H., Holubová K., Karády M., Galuszka P., et al. (2016). Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots. N. Biotechnol. 33(5 Pt B), 735–742. 10.1016/j.nbt.2015.12.010 PubMed DOI

Kakimoto T. (2003). Perception and signal transduction of cytokinins. Annu. Rev. Plant Biol. 54 605–627. 10.1146/annurev.arplant.54.031902.134802 PubMed DOI

Kasahara H., Takei K., Ueda N., Hishiyama S., Yamaya T., Kamiya Y., et al. (2004). Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J. Biol. Chem. 279 14049–14054. 10.1074/jbc.M314195200 PubMed DOI

Kato C., Kato H., Asami T., Yoshida S., Noda H., Kamada H., et al. (2002). Involvement of xylem sap zeatin-O-glucoside in cucumber shoot greening. Plant Physiol. Biochem. 40 949–954. 10.1016/S0981-9428(02)01458-4 DOI

Kim H. J., Ryu H., Hong S. H., Woo H. R., Lim P. O., Lee I. C., et al. (2006). Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 103 814–819. 10.1073/pnas.0505150103 PubMed DOI PMC

Köhler R. H., Zipfel W. R., Webb W. W., Hanson M. R. (1997). The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J. 11 613–621. 10.1046/j.1365-313X.1997.11030613.x PubMed DOI

Köllmer I., Novák O., Strnad M., Schmülling T., Werner T. (2014). Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation. Plant J. 78 359–371. 10.1111/tpj.12477 PubMed DOI

Kristoffersen P., Brzobohatý B., Höhfeld I., Bako L., Melkonian M., Palme K. (2000). Developmental regulation of the maize Zm-p60.1 gene encoding a β-glucosidase located to plastids. Planta 210 407–415. 10.1007/PL00008149 PubMed DOI

Kudo T., Kiba T., Sakakibara H. (2010). Metabolism and long-distance translocation of cytokinins. J. Integr. Plant Biol. 52 53–60. 10.1111/j.1744-7909.2010.00898.x PubMed DOI

Kuroha T., Tokunaga H., Kojima M., Ueda N., Ishida T., Nagawa S., et al. (2009). Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21 3152–3169. 10.1105/tpc.109.068676 PubMed DOI PMC

Letham D. S., Summons R. E., Entsch B., Gollnow B. I., Parker C. W., MacLeod J. K. (1978). Glucosylation of cytokinin analogues. Phytochemistry 17 2053–2057. 10.1016/S0031-9422(00)89279-1 DOI

Li Y., Baldauf S., Lim E.-K., Bowles D. J. (2001). Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J. Biol. Chem. 276 4338–4343. 10.1074/jbc.M007447200 PubMed DOI

Li Y., Wang B., Dong R., Hou B. (2015). AtUGT76C2, an Arabidopsis cytokinin glycosyltransferase is involved in drought stress adaptation. Plant Sci. 236 157–167. 10.1016/j.plantsci.2015.04.002 PubMed DOI

Lim E.-K., Bowles D. J. (2004). A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J. 23 2915–2922. 10.1038/sj.emboj.7600295 PubMed DOI PMC

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25 402–408. 10.1006/meth.2001.1262 PubMed DOI

Lomin S. N., Yonekura-Sakakibara K., Romanov G. A., Sakakibara H. (2011). Ligand-binding properties and subcellular localization of maize cytokinin receptors. J. Exp. Bot. 62 5149–5159. 10.1093/jxb/err220 PubMed DOI PMC

Mackenzie P. I., Owens I. S., Burchell B., Bock K. W., Bairoch A., Belanger A., et al. (1997). The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7 255–269. 10.1097/00008571-199708000-00001 PubMed DOI

Martin R. C., Mok M. C., Habben J. E., Mok D. W. S. (2001). A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc. Natl. Acad. Sci. U.S.A. 98 5922–5926. 10.1073/pnas.101128798 PubMed DOI PMC

Martin R. C., Mok M. C., Mok D. W. S. (1999). A gene encoding the cytokinin enzyme zeatin O-xylosyltransferase of Phaseolus vulgaris. Plant Physiol. 120 553–558. 10.1104/pp.120.2.553 PubMed DOI PMC

McGaw B. A., Heald J. K., Horgan R. (1984). Dihydrozeatin metabolism in radish seedlings. Phytochemistry 23 1373–1377. 10.1016/S0031-9422(00)80468-9 DOI

McGaw B. A., Horgan R. (1985). Cytokinin metabolism and the control of cytokinin activity. Phytochemistry 27 180–187. 10.1007/BF02902158 DOI

Meek L., Martin R. C., Shan X., Karplus P. A., Mok D. W. S., Mok M. C. (2008). Isolation of legume glycosyltransferases and active site mapping of the Phaseolus lunatus zeatin O-glucosyltransferase ZOG1. J. Plant Growth Regul. 27 192–201. 10.1007/s00344-008-9045-8 DOI

Mik V., Szüčová L., Šmehilová M., Zatloukal M., Doležal K., Nisler J., et al. (2011). N9-substituted derivatives of kinetin: effective anti-senescence agents. Phytochemistry 72 821–831. 10.1016/j.phytochem.2011.02.002 PubMed DOI

Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowska D., et al. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 103 16598–16603. 10.1073/pnas.0603522103 PubMed DOI PMC

Mok D. W. S., Martin R. C., Shan X., Mok M. C. (2000a). Genes encoding zeatin O-glycosyltransferases. Plant Growth Regul. 32 285–287. 10.1023/A:1010712102890 DOI

Mok D. W. S., Mok M. C. (2001). Cytokinin Metabolism and Action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 89–118. 10.1146/annurev.arplant.52.1.89 PubMed DOI

Mok M. C., Martin R. C., Mok D. W. S. (2000b). Cytokinins: biosynthesis metabolism and perception. Vitro. Cell. Dev. Biol. Plant 36 102–107. 10.1007/s11627-000-0021-7 DOI

Mok M. C., Martin R. C., Mok D. W. S., Shaw G. (1992). “Cytokinin activity metabolism and function in Phaseolus,” in Physiology and Biochemistry of Cytokinins in Plants, eds Kamínek M., Mok D. W. S., Zažímalová E. (The Hague: SPB Academic Publishing; ), 41–46.

Motte H., Galuszka P., Spíchal L., Tarkowski P., Plíhal O., Šmehilová M., et al. (2013). Phenyl-adenine, identified in a LIGHT-DEPENDENT SHORT HYPOCOTYLS4-assisted chemical screen, is a potent compound for shoot regeneration through the inhibition of CYTOKININ OXIDASE/DEHYDROGENASE activity. Plant Physiol. 161 1229–1241. 10.1104/pp.112.210716 PubMed DOI PMC

Mrízová K., Jiskrová E., Vyroubalová Š., Novák O., Ohnoutková L., Pospíšilová H., et al. (2013). Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden promise) fundamentally affects morphology and fertility. PLoS ONE 8:79029 10.1371/journal.pone.0079029 PubMed DOI PMC

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assay with tobacco tissue cultures. Physiol. Plant. 15 473–497. 10.1111/j.1399-3054.1962.tb08052.x DOI

Mýtinová Z., Motyka V., Haisel D., Lubovská Z., Trávníèková A., Dobrev P., et al. (2011). Antioxidant enzymatic protection during tobacco leaf ageing is affected by cytokinin depletion. Plant Growth Regul. 65 23–34. 10.1007/s10725-011-9571-4 DOI

Neff M. M., Chory J. (1998). Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol. 118 27–36. 10.1104/pp.118.1.27 PubMed DOI PMC

Novák O., Hauserová E., Amakorová P., Doležal K., Strnad M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69 2214–2224. 10.1016/j.phytochem.2008.04.022 PubMed DOI

Petersen T. N., Brunak S., von Heijne G., Nielsen H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8 785–786. 10.1038/nmeth.1701 PubMed DOI

Pineda Rodó A., Brugière N., Vankova R., Malbeck J., Olson J. M., Haines S. C., et al. (2008). Over-expression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation. J. Exp. Bot. 59 2673–2686. 10.1093/jxb/ern137 PubMed DOI PMC

Poppenberger B., Fujioka S., Soeno K., George G. L., Vaistij F. E., Hiranuma S., et al. (2005). The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc. Natl. Acad. Sci. U.S.A. 102 15253–15258. 10.1073/pnas.0504279102 PubMed DOI PMC

Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Èudejková M. M., et al. (2016). Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. Natt. Biotechnol. 33 692–705. 10.1016/j.nbt.2015.12.005 PubMed DOI

Quilliam R. S., Swarbrick P. J., Scholes J. D., Rolfe S. A. (2006). Imaging photosynthesis in wounded leaves of Arabidopsis thaliana. J. Exp. Bot. 57 55–69. 10.1093/jxb/erj039 PubMed DOI

Romanov G. A., Lomin S. N., Schmülling T. (2006). Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. J. Exp. Bot. 57 4051–4058. 10.1093/jxb/erl179 PubMed DOI

Romanov G. A., Spíchal L., Lomin S. N., Strnad M., Schmülling T. (2005). A live cell hormone-binding assay on transgenic bacteria expressing a eukaryotic receptor protein. Anal. Biochem. 347 129–134. 10.1016/j.ab.2005.09.012 PubMed DOI

Sakakibara H. (2006). Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57 431–449. 10.1146/annurev.arplant.57.032905.105231 PubMed DOI

Schäfer M., Meza-Canales I. D., Brütting C., Baldwin I. T., Meldau S. (2015). Cytokinin concentrations and CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2)- and NaCHK3-mediated perception modulate herbivory-induced defense signaling and defenses in Nicotiana attenuata. New Phytol. 207 645–658. 10.1111/nph.13404 PubMed DOI

Singh S., Letham D. S., Palni L. M. S. (1992). Cytokinin biochemistry in relation to leaf senescence. VIII. Translocation, metabolism and biosynthesis of cytokinins in relation to sequential leaf senescence of tobacco. Physiol. Plant. 86 398–406. 10.1034/j.1399-3054.1992.860308.x DOI

Šmehilová M., Galuszka P., Bilyeu K. D., Jaworek P., Kowalska M., Šebela M., et al. (2009). Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize. J. Exp. Bot. 60 2701–2712. 10.1093/jxb/erp126 PubMed DOI

Spíchal L. (2012). Cytokinins - Recent news and views of evolutionally old molecules. Funct. Plant Biol. 39 267–284. 10.1071/FP11276 PubMed DOI

Spíchal L., Rakova N. Y., Riefler M., Mizuno T., Romanov G. A., Strnad M., et al. (2004). Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 45 1299–1305. 10.1093/pcp/pch132 PubMed DOI

Stolz A., Riefler M., Lomin S. N., Achazi K., Romanov G. A., Schmülling T. (2011). The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J. 67 157–168. 10.1111/j.1365-313X.2011.04584.x PubMed DOI

Sun J., Hirose N., Wang X., Wen P., Xue L., Sakakibara H., et al. (2005). Arabidopsis SOI33/AtENT8 gene encodes a putative equilibrative nucleoside transporter that is involved in cytokinin transport in planta. J. Integr. Plant Biol. 47 588–603. 10.1111/j.1744-7909.2005.00104.x DOI

Sun Y.-G., Wang B., Jin S.-H., Qu X.-X., Li Y.-J., Hou B.-K. (2013). Ectopic expression of Arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. PLoS ONE 8:e59924 10.1371/journal.pone.0059924 PubMed DOI PMC

Svačinová J., Novák O., Plačková L., Lenobel R., Holík J., Strnad M., et al. (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8 17 10.1186/1746-4811-8-17 PubMed DOI PMC

Tan B. C., Joseph L. M., Deng W. T., Liu L. J., Li Q. B., Cline K., et al. (2003). Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J. 35 44–56. 10.1046/j.1365-313X.2003.01786.x PubMed DOI

Tian Q.-Y., Sun P., Zhang W.-H. (2009). Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana. New Phytol. 184 918–931. 10.1111/j.1469-8137.2009.03004.x PubMed DOI

Uzelac B., Janoševiæ D., Simonović A., Motyka V., Dobrev P. I., Budimir S. (2015). Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro. Protoplasma 253 259–275. 10.1007/s00709-015-0802-9 PubMed DOI

Veach Y. K., Martin R. C., Mok D. W. S., Malbeck J., Vankova R., Mok M. C. (2003). O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol. 131 1374–1380. 10.1104/pp.017210 PubMed DOI PMC

Vylíčilová H., Husičková A., Spíchal L., Srovnal J., Doležal K., Plíhal O., et al. (2016). C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. Phytochemistry 122 22–33. 10.1016/j.phytochem.2015.12.001 PubMed DOI

Vyroubalová Š., Václavíková K., Turečková V., Novák O., Šmehilová M., Hluska T., et al. (2009). Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol 151 433–447. 10.1104/pp.109.142489 PubMed DOI PMC

Wagstaff C., Yang T. J. W., Stead A. D., Buchanan-Wollaston V., Roberts J. A. (2009). A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Plant J. 57 690–705. 10.1111/j.1365-313X.2008.03722.x PubMed DOI

Wang J., Ma X.-M., Kojima M., Sakakibara H., Hou B.-K. (2013). Glucosyltransferase UGT76C1 finely modulates cytokinin responses via cytokinin N-glucosylation in Arabidopsis thaliana. Plant Physiol. Biochem. 65 9–16. 10.1016/j.plaphy.2013.01.012 PubMed DOI

Wang J., Ma X.-M. X.-M., Kojima M., Sakakibara H., Hou B.-K. (2011). N-Glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol. 52 2200–2213. 10.1093/pcp/pcr152 PubMed DOI

Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H., Schmülling T. (2003). Cytokinin-deficient transgenic Arabidopsis plants show functions of cytokinins in the regulation of shoot and root meristem Activity. Plant Cell 15 2532–2550. 10.1105/tpc.014928 PubMed DOI PMC

Winkel-Shirley B. (1999). Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol. Plant. 107 142–149. 10.1034/j.1399-3054.1999.100119.x DOI

Woo H.-H. H., Jeong B. R., Hirsch A. M., Hawes M. C. (2007). Characterization of Arabidopsis AtUGT85A and AtGUS gene families and their expression in rapidly dividing tissues. Genomics 90 143–153. 10.1016/j.ygeno.2007.03.014 PubMed DOI PMC

Zalabák D., Galuszka P., Mrízová K., Podlešáková K., Gu R., Frébortová J. (2014). Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes. Plant Physiol. Biochem. 74 283–293. 10.1016/j.plaphy.2013.11.020 PubMed DOI

Zalabák D., Pospíšilová H., Šmehilová M., Mrízová K., Frébort I., Galuszka P. (2013). Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol. Adv. 31 97–117. 10.1016/j.biotechadv.2011.12.003 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Epigenetics and plant hormone dynamics: a functional and methodological perspective

. 2024 Sep 11 ; 75 (17) : 5267-5294.

Evolutionary diversification of cytokinin-specific glucosyltransferases in angiosperms and enigma of missing cis-zeatin O-glucosyltransferase gene in Brassicaceae

. 2021 Apr 12 ; 11 (1) : 7885. [epub] 20210412

Differential Subcellular Distribution of Cytokinins: How Does Membrane Transport Fit into the Big Picture?

. 2021 Mar 26 ; 22 (7) : . [epub] 20210326

Cytokinin N-glucosides: Occurrence, Metabolism and Biological Activities in Plants

. 2020 Dec 28 ; 11 (1) : . [epub] 20201228

Applications of Cytokinins in Horticultural Fruit Crops: Trends and Future Prospects

. 2020 Aug 22 ; 10 (9) : . [epub] 20200822

New Insights Into the Metabolism and Role of Cytokinin N-Glucosides in Plants

. 2020 ; 11 () : 741. [epub] 20200605

Naturally Occurring and Artificial N9-Cytokinin Conjugates: From Synthesis to Biological Activity and Back

. 2020 May 29 ; 10 (6) : . [epub] 20200529

Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress

. 2020 ; 15 (5) : e0233055. [epub] 20200515

CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis

. 2018 Oct 12 ; 69 (21) : 5169-5176.

Auxins and Cytokinins-The Role of Subcellular Organization on Homeostasis

. 2018 Oct 11 ; 19 (10) : . [epub] 20181011

Profiles of Endogenous Phytohormones Over the Course of Norway Spruce Somatic Embryogenesis

. 2018 ; 9 () : 1283. [epub] 20180906

Expression of a Plastid-Targeted Flavodoxin Decreases Chloroplast Reactive Oxygen Species Accumulation and Delays Senescence in Aging Tobacco Leaves

. 2018 ; 9 () : 1039. [epub] 20180717

Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve trans-Zeatin in Shoots

. 2018 Jun ; 30 (6) : 1243-1257. [epub] 20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...