Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27602043
PubMed Central
PMC4993776
DOI
10.3389/fpls.2016.01264
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, GFP subcellular localization, cytokinin, glycosyltransferase, senescence,
- Publikační typ
- časopisecké články MeSH
Plant hormones cytokinins (CKs) are one of the major mediators of physiological responses throughout plant life span. Therefore, a proper homeostasis is maintained by regulation of their active levels. Besides degradation, CKs are deactivated by uridine diphosphate glycosyltransferases (UGTs). Physiologically, CKs active levels decline in senescing organs, providing a signal to nutrients that a shift to reproductive tissues has begun. In this work, we show CK glucosides distribution in Arabidopsis leaves during major developmental transition phases. Besides continuous accumulation of N-glucosides we detected sharp maximum of the glucosides in senescence. This is caused prevalently by N7-glucosides followed by N9-glucosides and specifically also by trans-zeatin-O-glucoside (tZOG). Interestingly, we observed a similar trend in response to exogenously applied CK. In Arabidopsis, only three UGTs deactivate CKs in vivo: UGT76C1, UGT76C2 and UGT85A1. We thereby show that UGT85A1 is specifically expressed in senescent leaves whereas UGT76C2 is activated rapidly in response to exogenously applied CK. To shed more light on the UGTs physiological roles, we performed a comparative study on UGTs loss-of-function mutants, characterizing a true ugt85a1-1 loss-of-function mutant for the first time. Although no altered phenotype was detected under standard condition we observed reduced chlorophyll degradation with increased anthocyanin accumulation in our experiment on detached leaves accompanied by senescence and stress related genes modulated expression. Among the mutants, ugt76c2 possessed extremely diminished CK N-glucosides levels whereas ugt76c1 showed some specificity toward cis-zeatin (cZ). Besides tZOG, a broader range of CK glucosides was decreased in ugt85a1-1. Performing CK metabolism gene expression profiling, we revealed that activation of CK degradation pathway serves as a general regulatory mechanism of disturbed CK homeostasis followed by decreased CK signaling in all UGT mutants. In contrast, a specific regulation of CKX7, CKX1 and CKX2 was observed for each individual UGT mutant isoform after exogenous CK uptake. Employing an in silico prediction we proposed cytosolic localization of UGT76C1 and UGT76C2, that we further confirmed by GFP tagging of UGT76C2. Integrating all the results, we therefore hypothesize that UGTs possess different physiological roles in Arabidopsis and serve as a fine-tuning mechanism of active CK levels in cytosol.
Zobrazit více v PubMed
Bairu M. W., Novák O., Doležal K., van Staden J. (2011). Changes in endogenous cytokinin profiles in micropropagated DOI
Bajguz A., Piotrowska A. (2009). Conjugates of auxin and cytokinin. PubMed DOI
Balazadeh S., Riaño-Pachón D. M., Mueller-Roeber B. (2008). Transcription factors regulating leaf senescence in PubMed DOI
Bannai H., Tamada Y., Maruyama O., Nakai K., Miyano S. (2002). Extensive feature detection of N-terminal protein sorting signals. PubMed DOI
Benková E., Witters E., Van Dongen W., Kolár J., Motyka V., Brzobohatý B., et al. (1999). Cytokinins in tobacco and wheat chloroplasts. Occurrence and changes due to light/dark treatment. PubMed DOI PMC
Bhargava A., Clabaugh I., To J. P., Maxwell B. B., Chiang Y.-H., Schaller G. E., et al. (2013). Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in PubMed DOI PMC
Bilyeu K. D., Cole J. L., Laskey J. G., Riekhof W. R., Esparza T. J., Kramer M. D., et al. (2001). Molecular and biochemical characterization of a cytokinin oxidase from maize. PubMed DOI PMC
Blagoeva E., Dobrev P. I., Malbeck J., Motyka V., Strnad M., Hanuš J., et al. (2004). Cytokinin N-glucosylation inhibitors suppress deactivation of exogenous cytokinins in radish, but their effect on active endogenous cytokinins is counteracted by other regulatory mechanisms. PubMed DOI
Bowles D., Isayenkova J., Lim E.-K., Poppenberger B. (2005). Glycosyltransferases: managers of small molecules. PubMed DOI
Brenner W. G., Ramireddy E., Heyl A., Schmülling T. (2012). Gene regulation by cytokinin in PubMed DOI PMC
Brzobohatý B., Moore I., Kristoffersen P., Bako L., Campos N., Schell J., et al. (1993). Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. PubMed DOI
Bürkle L., Cedzich A., Döpke C., Stransky H., Okumoto S., Gillissen B., et al. (2003). Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of PubMed DOI
Carviel J. L., Al-Daoud F., Neumann M., Mohammad A., Provart N. J., Moeder W., et al. (2009). Forward and reverse genetics to identify genes involved in the age-related resistance response in PubMed DOI PMC
Catala R., Medina J., Salinas J. (2011). Integration of low temperature and light signaling during cold acclimation response in PubMed DOI PMC
Cedzich A., Stransky H., Schulz B., Frommer W. B. (2008). Characterization of cytokinin and adenine transport in PubMed DOI PMC
Chen C.-M., Kristopeit S. M. (1981a). Metabolism of cytokinin: dephosphorylation of cytokinin ribonucleotide by 5′-nucleotidases from wheat germ cytosol. PubMed DOI PMC
Chen C.-M., Kristopeit S. M. (1981b). Metabolism of cytokinin: deribosylation of cytokinin ribonucleoside by adenosine nucleosidase from wheat germ cells. PubMed DOI PMC
Chory J. (1991). Light signals in leaf and chloroplast development – photoreceptors and downstream responses in search of a transduction pathway. PubMed
Chou K.-C., Shen H.-B. (2010). Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PubMed DOI PMC
Collier R., Fuchs B., Walter N., Lutke W. K., Taylor C. G. (2005). Ex vitro composite plants: an inexpensive, rapid method for root biology. PubMed DOI
Cowley D. E., Duke C. C., Liepa A. J., Macleod J. K., Letham D. S. (1978). Structure and synthesis of cytokinin metabolites. 1. The 7- and 9- β-D-glucofuranosides and pyranosides of zeatin and 6-benzylaminopurine. DOI
Dobrev P. I., Kamínek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. PubMed DOI
Dortay H., Gruhn N., Pfeifer A., Schwerdtner M., Schmülling T., Heyl A. (2008). Toward an interaction map of the two-component signaling pathway of PubMed DOI
Emanuelsson O., Nielsen H., Brunak S., von Heijne G. (2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. PubMed DOI
Emanuelsson O., Nielsen H., Von Heijne G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. PubMed DOI PMC
Entsch B., Letham D. S. (1979). Enzymic glucosylation of the cytokinin, 6-benzylaminopurine. DOI
Entsch B., Parker C. W., Letham D. S., Summons R. E. (1979). Preparation and characterization, using high-performance liquid chromatography, of an enzyme forming glucosides of cytokinins. PubMed DOI
Falk A., Rask L. (1995). Expression of a zeatin-O-glucoside-degrading β-glucosidase in PubMed DOI PMC
Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. (2011). Evolution of cytokinin biosynthesis and degradation. PubMed DOI
Fusseder A., Ziegler P. (1988). Metabolism and compartmentation of dihydrozeatin exogenously supplied to photoautotrophic suspension cultures of PubMed DOI
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P. I., et al. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. PubMed DOI
Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., et al. (2007). Biochemical characterization of cytokinin oxidases/dehydrogenases from DOI
Gandia-Herrero F., Lorenz A., Larson T., Graham I. A., Bowles D. J., Rylott E. L., et al. (2008). Detoxification of the explosive 2,4,6-trinitrotoluene in PubMed DOI
Gepstein S., Sabehi G., Carp M. J., Hajouj T., Nesher M. F. O., Yariv I., et al. (2003). Large-scale identification of leaf senescence-associated genes. PubMed DOI
Gillissen B., Burkle L., Andre B., Kuhn C., Rentsch D., Brandl B., et al. (2000). A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in PubMed DOI PMC
Grebenok R. J., Lambert G. M., Galbraith D. W. (1997a). Characterization of targeted nuclear accumulation of gfp in cells of transgenic plants. DOI
Grebenok R. J., Pierson E., Lambert G. M., Gong F.-C., Afonso C. L., Haldeman-Cahill R., et al. (1997b). Green-fluorescent protein fusions for efficient characterization of nuclear targeting. PubMed DOI
Guo Y., Gan S. (2011). AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in PubMed DOI PMC
Ha S., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.-S. P. (2012). Cytokinins: metabolism and function in plant adaptation to environmental stresses. PubMed DOI
Havlová M., Dobrev P. I., Motyka V., Štorchová H., Libus J., Dobrá J., et al. (2008). The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. PubMed DOI
Hensel L. L., Grbiæ V., Baumgarten D. A., Bleecker A. B. (1993). Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in PubMed DOI PMC
Hinderhofer K., Zentgraf U. (2001). Identification of a transcription factor specifically expressed at the onset of leaf senescence. PubMed DOI
Hirose N., Makita N., Yamaya T., Sakakibara H. (2005). Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport. PubMed DOI PMC
Hirose N., Takei K., Kuroha T., Kamada-Nobusada T., Hayashi H., Sakakibara H. (2007). Regulation of cytokinin biosynthesis, compartmentalization and translocation. PubMed DOI
Hong Z. L., Zhang Z. M., Olson J. M., Verma D. P. S. (2001). A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. PubMed DOI PMC
Hou B., Lim E.-K., Higgins G. S., Bowles D. J. (2004). N-glucosylation of cytokinins by glycosyltransferases of PubMed DOI
Husar S., Berthiller F., Fujioka S., Rozhon W., Khan M., Kalaivanan F., et al. (2011). Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in PubMed DOI PMC
Jin S. H., Ma X. M., Kojima M., Sakakibara H., Wang Y. W., Hou B. K. (2013). Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. PubMed DOI
Jiskrová E., Novák O., Pospíšilová H., Holubová K., Karády M., Galuszka P., et al. (2016). Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots. PubMed DOI
Kakimoto T. (2003). Perception and signal transduction of cytokinins. PubMed DOI
Kasahara H., Takei K., Ueda N., Hishiyama S., Yamaya T., Kamiya Y., et al. (2004). Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in PubMed DOI
Kato C., Kato H., Asami T., Yoshida S., Noda H., Kamada H., et al. (2002). Involvement of xylem sap zeatin-O-glucoside in cucumber shoot greening. DOI
Kim H. J., Ryu H., Hong S. H., Woo H. R., Lim P. O., Lee I. C., et al. (2006). Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in PubMed DOI PMC
Köhler R. H., Zipfel W. R., Webb W. W., Hanson M. R. (1997). The green fluorescent protein as a marker to visualize plant mitochondria in vivo. PubMed DOI
Köllmer I., Novák O., Strnad M., Schmülling T., Werner T. (2014). Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from PubMed DOI
Kristoffersen P., Brzobohatý B., Höhfeld I., Bako L., Melkonian M., Palme K. (2000). Developmental regulation of the maize Zm-p60.1 gene encoding a β-glucosidase located to plastids. PubMed DOI
Kudo T., Kiba T., Sakakibara H. (2010). Metabolism and long-distance translocation of cytokinins. PubMed DOI
Kuroha T., Tokunaga H., Kojima M., Ueda N., Ishida T., Nagawa S., et al. (2009). Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in PubMed DOI PMC
Letham D. S., Summons R. E., Entsch B., Gollnow B. I., Parker C. W., MacLeod J. K. (1978). Glucosylation of cytokinin analogues. DOI
Li Y., Baldauf S., Lim E.-K., Bowles D. J. (2001). Phylogenetic analysis of the UDP-glycosyltransferase multigene family of PubMed DOI
Li Y., Wang B., Dong R., Hou B. (2015). AtUGT76C2, an PubMed DOI
Lim E.-K., Bowles D. J. (2004). A class of plant glycosyltransferases involved in cellular homeostasis. PubMed DOI PMC
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 PubMed DOI
Lomin S. N., Yonekura-Sakakibara K., Romanov G. A., Sakakibara H. (2011). Ligand-binding properties and subcellular localization of maize cytokinin receptors. PubMed DOI PMC
Mackenzie P. I., Owens I. S., Burchell B., Bock K. W., Bairoch A., Belanger A., et al. (1997). The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. PubMed DOI
Martin R. C., Mok M. C., Habben J. E., Mok D. W. S. (2001). A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. PubMed DOI PMC
Martin R. C., Mok M. C., Mok D. W. S. (1999). A gene encoding the cytokinin enzyme zeatin O-xylosyltransferase of PubMed DOI PMC
McGaw B. A., Heald J. K., Horgan R. (1984). Dihydrozeatin metabolism in radish seedlings. DOI
McGaw B. A., Horgan R. (1985). Cytokinin metabolism and the control of cytokinin activity. DOI
Meek L., Martin R. C., Shan X., Karplus P. A., Mok D. W. S., Mok M. C. (2008). Isolation of legume glycosyltransferases and active site mapping of the DOI
Mik V., Szüčová L., Šmehilová M., Zatloukal M., Doležal K., Nisler J., et al. (2011). N9-substituted derivatives of kinetin: effective anti-senescence agents. PubMed DOI
Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowska D., et al. (2006). Roles of PubMed DOI PMC
Mok D. W. S., Martin R. C., Shan X., Mok M. C. (2000a). Genes encoding zeatin O-glycosyltransferases. DOI
Mok D. W. S., Mok M. C. (2001). Cytokinin Metabolism and Action. PubMed DOI
Mok M. C., Martin R. C., Mok D. W. S. (2000b). Cytokinins: biosynthesis metabolism and perception. DOI
Mok M. C., Martin R. C., Mok D. W. S., Shaw G. (1992). “Cytokinin activity metabolism and function in
Motte H., Galuszka P., Spíchal L., Tarkowski P., Plíhal O., Šmehilová M., et al. (2013). Phenyl-adenine, identified in a LIGHT-DEPENDENT SHORT HYPOCOTYLS4-assisted chemical screen, is a potent compound for shoot regeneration through the inhibition of CYTOKININ OXIDASE/DEHYDROGENASE activity. PubMed DOI PMC
Mrízová K., Jiskrová E., Vyroubalová Š., Novák O., Ohnoutková L., Pospíšilová H., et al. (2013). Overexpression of cytokinin dehydrogenase genes in barley ( PubMed DOI PMC
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assay with tobacco tissue cultures. DOI
Mýtinová Z., Motyka V., Haisel D., Lubovská Z., Trávníèková A., Dobrev P., et al. (2011). Antioxidant enzymatic protection during tobacco leaf ageing is affected by cytokinin depletion. DOI
Neff M. M., Chory J. (1998). Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during PubMed DOI PMC
Novák O., Hauserová E., Amakorová P., Doležal K., Strnad M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. PubMed DOI
Petersen T. N., Brunak S., von Heijne G., Nielsen H. (2011). SignalP 4.0 PubMed DOI
Pineda Rodó A., Brugière N., Vankova R., Malbeck J., Olson J. M., Haines S. C., et al. (2008). Over-expression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation. PubMed DOI PMC
Poppenberger B., Fujioka S., Soeno K., George G. L., Vaistij F. E., Hiranuma S., et al. (2005). The UGT73C5 of PubMed DOI PMC
Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Èudejková M. M., et al. (2016). Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. PubMed DOI
Quilliam R. S., Swarbrick P. J., Scholes J. D., Rolfe S. A. (2006). Imaging photosynthesis in wounded leaves of PubMed DOI
Romanov G. A., Lomin S. N., Schmülling T. (2006). Biochemical characteristics and ligand-binding properties of PubMed DOI
Romanov G. A., Spíchal L., Lomin S. N., Strnad M., Schmülling T. (2005). A live cell hormone-binding assay on transgenic bacteria expressing a eukaryotic receptor protein. PubMed DOI
Sakakibara H. (2006). Cytokinins: activity, biosynthesis, and translocation. PubMed DOI
Schäfer M., Meza-Canales I. D., Brütting C., Baldwin I. T., Meldau S. (2015). Cytokinin concentrations and CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2)- and NaCHK3-mediated perception modulate herbivory-induced defense signaling and defenses in PubMed DOI
Singh S., Letham D. S., Palni L. M. S. (1992). Cytokinin biochemistry in relation to leaf senescence. VIII. Translocation, metabolism and biosynthesis of cytokinins in relation to sequential leaf senescence of tobacco. DOI
Šmehilová M., Galuszka P., Bilyeu K. D., Jaworek P., Kowalska M., Šebela M., et al. (2009). Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize. PubMed DOI
Spíchal L. (2012). Cytokinins - Recent news and views of evolutionally old molecules. PubMed DOI
Spíchal L., Rakova N. Y., Riefler M., Mizuno T., Romanov G. A., Strnad M., et al. (2004). Two cytokinin receptors of PubMed DOI
Stolz A., Riefler M., Lomin S. N., Achazi K., Romanov G. A., Schmülling T. (2011). The specificity of cytokinin signalling in PubMed DOI
Sun J., Hirose N., Wang X., Wen P., Xue L., Sakakibara H., et al. (2005). DOI
Sun Y.-G., Wang B., Jin S.-H., Qu X.-X., Li Y.-J., Hou B.-K. (2013). Ectopic expression of PubMed DOI PMC
Svačinová J., Novák O., Plačková L., Lenobel R., Holík J., Strnad M., et al. (2012). A new approach for cytokinin isolation from PubMed DOI PMC
Tan B. C., Joseph L. M., Deng W. T., Liu L. J., Li Q. B., Cline K., et al. (2003). Molecular characterization of the PubMed DOI
Tian Q.-Y., Sun P., Zhang W.-H. (2009). Ethylene is involved in nitrate-dependent root growth and branching in PubMed DOI
Uzelac B., Janoševiæ D., Simonović A., Motyka V., Dobrev P. I., Budimir S. (2015). Characterization of natural leaf senescence in tobacco ( PubMed DOI
Veach Y. K., Martin R. C., Mok D. W. S., Malbeck J., Vankova R., Mok M. C. (2003). O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. PubMed DOI PMC
Vylíčilová H., Husičková A., Spíchal L., Srovnal J., Doležal K., Plíhal O., et al. (2016). C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. PubMed DOI
Vyroubalová Š., Václavíková K., Turečková V., Novák O., Šmehilová M., Hluska T., et al. (2009). Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. PubMed DOI PMC
Wagstaff C., Yang T. J. W., Stead A. D., Buchanan-Wollaston V., Roberts J. A. (2009). A molecular and structural characterization of senescing PubMed DOI
Wang J., Ma X.-M., Kojima M., Sakakibara H., Hou B.-K. (2013). Glucosyltransferase UGT76C1 finely modulates cytokinin responses via cytokinin N-glucosylation in PubMed DOI
Wang J., Ma X.-M. X.-M., Kojima M., Sakakibara H., Hou B.-K. (2011). N-Glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in PubMed DOI
Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H., Schmülling T. (2003). Cytokinin-deficient transgenic PubMed DOI PMC
Winkel-Shirley B. (1999). Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. DOI
Woo H.-H. H., Jeong B. R., Hirsch A. M., Hawes M. C. (2007). Characterization of PubMed DOI PMC
Zalabák D., Galuszka P., Mrízová K., Podlešáková K., Gu R., Frébortová J. (2014). Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes. PubMed DOI
Zalabák D., Pospíšilová H., Šmehilová M., Mrízová K., Frébort I., Galuszka P. (2013). Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. PubMed DOI
Epigenetics and plant hormone dynamics: a functional and methodological perspective
Cytokinin N-glucosides: Occurrence, Metabolism and Biological Activities in Plants
Applications of Cytokinins in Horticultural Fruit Crops: Trends and Future Prospects
New Insights Into the Metabolism and Role of Cytokinin N-Glucosides in Plants
Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress
Auxins and Cytokinins-The Role of Subcellular Organization on Homeostasis
Profiles of Endogenous Phytohormones Over the Course of Norway Spruce Somatic Embryogenesis
Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve trans-Zeatin in Shoots