A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction

. 2012 May 17 ; 8 (1) : 17. [epub] 20120517

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid22594941

BACKGROUND: We have developed a new analytical approach for isolation and quantification of cytokinins (CK) in minute amounts of fresh plant material, which combines a simple one-step purification with ultra-high performance liquid chromatography-fast scanning tandem mass spectrometry. RESULTS: Plant tissue samples (1-5 mg FW) were purified by stop-and-go-microextraction (StageTip purification), which previously has only been applied for clean-up and pre-concentration of peptides. We found that a combination of two reverse phases and one cation-exchange phase, was the best tool, giving a total extraction recovery higher than 80%. The process was completed by a single chromatographic analysis of a wide range of naturally occurring cytokinins (bases, ribosides, O- and N-glucosides, and nucleotides) in 24.5 minutes using an analytical column packed with sub-2-microne particles. In multiple reaction monitoring mode, the detection limits ranged from 0.05 to 5 fmol and the linear ranges for most cytokinins were at least five orders of magnitude. The StageTip purification was validated and optimized using samples of Arabidopsis thaliana seedlings, roots and shoots where eighteen cytokinins were successfully determined. CONCLUSIONS: The combination of microextraction with one-step high-throughput purification provides fast, effective and cheap sample preparation prior to qualitative and quantitative measurements. Our procedure can be used after modification also for other phytohormones, depending on selectivity, affinity and capacity of the selected sorbents.

Zobrazit více v PubMed

Miller CO, Skoog F, von Saltza MH, Strong M. Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc. 1955;77:1392. doi: 10.1021/ja01610a105. DOI

Mok DWS, Mok MC. Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:89–118. doi: 10.1146/annurev.arplant.52.1.89. PubMed DOI

Sakakibara H. Cytokinins: Activity, biosynthesis, and translocation. Annu Rev Plant Biol. 2006;57:431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI

Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T. Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 2004;45:1299–1305. doi: 10.1093/pcp/pch132. PubMed DOI

Werner T, Schmülling T. Cytokinin action in plant development. Curr Opin Plant Biol. 2009;12:527–538. doi: 10.1016/j.pbi.2009.07.002. PubMed DOI

Tarkowski P, Ge L, Yong JWH, Tan SN. Analytical methods for cytokinins. Trends Anal Chem. 2009;28:323–335. doi: 10.1016/j.trac.2008.11.010. DOI

Bieleski RL. The problem of halting enzyme action when extracting plant tissues. Anal Biochem. 1964;9:431–442. doi: 10.1016/0003-2697(64)90204-0. PubMed DOI

Hoyerová K, Gaudinová A, Malbeck J, Dobrev PI, Kocábek T, Šolcová B, Trávníčková A, Kamínek M. Efficiency of different methods of extraction and purification of cytokinins. Phytochem. 2006;67:1151–1159. doi: 10.1016/j.phytochem.2006.03.010. PubMed DOI

Dobrev PI, Kamínek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI

Novák O, Tarkowski P, Tarkowská D, Doležal K, Lenobel R, Strnad M. Quantitative analysis of cytokinins in plants by liquid chromatography–single-quadrupole mass spectrometry. Anal Chim Acta. 2003;480:207–218. doi: 10.1016/S0003-2670(03)00025-4. DOI

Takei K, Yamaya T, Sakakibara H. A method for separation and determination of cytokinin nucleotides from plant tissues. J Plant Res. 2003;116:265–269. doi: 10.1007/s10265-003-0099-1. PubMed DOI

Hauserová E, Swaczynová J, Doležal K, Lenobel R, Popa I, Hajdúch M, Vydra D, Fuksová K, Strnad M. Batch immunoextraction method for efficient purification of aromatic cytokinins. J Chromatogr A. 2005;1100:116–125. doi: 10.1016/j.chroma.2005.09.020. PubMed DOI

Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochem. 2008;69:2214–2224. doi: 10.1016/j.phytochem.2008.04.022. PubMed DOI

van Rhijn JA, Heskampa HH, Davelaarb E, Jordib W, Lelouxa MS, Brinkmanc UAT. Quantitative determination of glycosylated and aglycon isoprenoid cytokinins at sub-picomolar levels by microcolumn liquid chromatography combined with electrospray tandem mass spectrometry. J Chromatogr A. 2001;929:31–42. doi: 10.1016/S0021-9673(01)01134-7. PubMed DOI

Zhang H, Horgan KJ, Stewart Reynolds PH, Norris GE, Jameson PE. Novel cytokinins: The predominant forms in mature buds of Pinus radiata. Plant Physiol. 2001;112:127–134. doi: 10.1034/j.1399-3054.2001.1120117.x. PubMed DOI

Müller M, Munné-Bosch S. Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods. 2011;7:37. doi: 10.1186/1746-4811-7-37. PubMed DOI PMC

Liu Z, Yuan B-F, Feng Y-Q. Tandem solid phase extraction followed by online trapping–hydrophilic interaction chromatography–tandem mass spectrometry for sensitive detection of endogenous cytokinins in plant tissues. Phyctochem Anal. 2012. PubMed DOI

Ljung K, Sandberg G, Moritz T. In: Plant hormones: Biosynthesis, Signal Transduction, Action! Revised 3rd edition. Davies PJ, editor. Dordrecht: Kluwer Academic Publishers; 2010. Methods of plant hormone analysis; pp. 717–740.

Keough T, Lacey MP, Youngquist RS. Solid-phase derivatization of tryptic peptides for rapid protein identification by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2002;16:1003–1015. doi: 10.1002/rcm.670. PubMed DOI

Pluskal MG, Bogdanova A, Lopez M, Gutierrez S, Pitt AM. Multiwell in-gel protein digestion and microscale sample preparation for protein identification by mass spectrometry. Proteomics. 2002;2:145–150. doi: 10.1002/1615-9861(200202)2:2<145::AID-PROT145>3.0.CO;2-Y. PubMed DOI

van Hout MWJ, van Egmond WMA, Franke JP, de Zeeuw RA, de Jong GJ. Feasibility of the direct coupling of solid-phase extraction–pipette tips with a programmed-temperature vaporiser for gas chromatographic analysis of drugs in plasma. J Chromatogr B. 2002;766:37–45. doi: 10.1016/S0378-4347(01)00431-5. PubMed DOI

Kumazawa T, Hasegawa C, Lee XP, Hara K, Seno H, Suzuki O, Sato K. Simultaneous determination of methamphetamine and amphetamine in human urine using pipette tip solid-phase extraction and gas chromatography–mass spectrometry. J Pharm Biomed Anal. 2007;44:602–607. doi: 10.1016/j.jpba.2006.12.025. PubMed DOI

Rappsilber J, Mann M, Ishihama Y. Stop and Go Extraction Tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem. 2003;75:663–670. doi: 10.1021/ac026117i. PubMed DOI

Ishihama Y, Rappsilber J, Mann M. Modular Stop and Go Extraction Tips with stacked disks for parallel and multidimensional peptide fractionation in proteomics. J Proteome Res. 2006;5:988–994. doi: 10.1021/pr050385q. PubMed DOI

Saito H, Oda Y, Sato T, Kuromitsu J, Ishihama Y. Multiplexed two-dimensional liquid chromatography for MALDI and nanoelectrospray ionization mass spectrometry in proteomics. J Proteome Res. 2006;5:1803–1807. doi: 10.1021/pr0601178. PubMed DOI

Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI

Prinsen E, Van Dongen W, Esmans EL, Van Onckelen HA. Micro and capillary liquid chromatography–tandem mass spectrometry: a new dimension in phytohormone research. J Chromatogr A. 1998;826:25–37. doi: 10.1016/S0021-9673(98)00763-8. DOI

Nguyen DTT, Guillarme D, Rudaz S, Veuthey JL. Fast analysis in liquid chromatography using small particle size and high pressure. J Sep Sci. 2006;29:1836–1848. doi: 10.1002/jssc.200600189. PubMed DOI

Wu N, Clausen AM. Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations. J Sep Sci. 2007;30:1167–1182. doi: 10.1002/jssc.200700026. PubMed DOI

Nováková L, Vlčková H. A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta. 2009;656:8–35. doi: 10.1016/j.aca.2009.10.004. PubMed DOI

Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M, Katoh E, Xiang H, Tanahashi T, Hasebe M, Banks JA, Ashikari M, Kitano H, Ueguchi-Tanaka M, Matsuoka M. The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the bryophyte Physcomitrella patens. Plant Cell. 2007;19:3058–3079. doi: 10.1105/tpc.107.051524. PubMed DOI PMC

Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell. 2007;19:3037–3057. doi: 10.1105/tpc.107.054999. PubMed DOI PMC

Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol. 2009;50:1201–1214. doi: 10.1093/pcp/pcp057. PubMed DOI PMC

Turečková V, Novák O, Strnad M. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Talanta. 2009;80:390–399. doi: 10.1016/j.talanta.2009.06.027. PubMed DOI

Liu Z, Wei F, Feng Y-Q. Determination of cytokinins in plant samples by polymer monolith microextraction coupled with hydrophilic interaction chromatography-tandem mass spectrometry. Anal Methods. 2010;2:1676–1685. doi: 10.1039/c0ay00334d. DOI

Qureshi MN, Stecher G, Huck C, Bonn GK. Preparation of polymer based sorbents for solid phase extraction of polyphenolic compounds. Centr Eur J Chem. 2011;9:206–212. doi: 10.2478/s11532-011-0006-x. DOI

Tarkowski P, Václavíková K, Novák O, Pertry I, Hanuš J, Whenham R, Vereecke D, Šebela M, Strnad M. Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2010;680:86–91. doi: 10.1016/j.aca.2010.09.020. PubMed DOI

Koshimiz K, Matsubar S, Kusaki T, Mitsui T. Isolation of a new cytokinin from immature yellow lupin seeds. Agric Biol Chem. 1967;31:795–801. doi: 10.1271/bbb1961.31.795. DOI

Matsubara S, Shiojiri S, Fujii T, Ogawa N, Imamura K, Yamagishi K, Koshimizu K. Synthesis and cytokinin activity of (R)-(+)-dihydrozeatin and (S)-(−)-dihydrozeatin and their ribosides. Phytochem. 1977;16:933–937. doi: 10.1016/S0031-9422(00)86698-4. DOI

Witters E, Vanhoutte K, Dewitte W, Macháčková I, Benková E, Van Dongen W, Esmans EL, Van Onckelen HA. Analysis of cyclic nucleotides and cytokinins in minute plant samples using phase-system switching capillary electrospray-liquid chromatography-tandem mass spectrometry. Phytochem Anal. 1999;10:143–151. doi: 10.1002/(SICI)1099-1565(199905/06)10:3<143::AID-PCA441>3.0.CO;2-G. DOI

Béres T, Zatloukal M, Voller J, Niemann P, Gahsche MC, Tarkowski P, Novák O, Hanuš J, Strnad M, Doležal K. Tandem mass spectrometry identification and LC-MS quantification of intact cytokinin nucleotides in K-562 human leukemia cells. Anal Bioanal Chem. 2010;398:2071–2080. doi: 10.1007/s00216-010-4126-5. PubMed DOI

Kenny DJ, Worthington KR, Hoyes JB. Scanwave: A new approach to enhancing spectral data on a tandem quadrupole mass spectrometer. J Am Soc Mass Spectrom. 2010;21:1061–1069. doi: 10.1016/j.jasms.2010.02.017. PubMed DOI

Nordström A, Tarkowski P, Tarkowská D, Doležal K, Åstot C, Sandberg G, Moritz T. Derivatization for LC-electrospray ionization–MS: a tool for improving reversed-phase separation and ESI responses of bases, ribosides, and intact nucleotides. Anal Chem. 2004;76:2869–2877. doi: 10.1021/ac0499017. PubMed DOI

Hussain A, Krischke M, Roitsch T, Hasnain S. Rapid determination of cytokinins and auxin in Cyanobacteria. Curr Microbiol. 2010;61:361–369. doi: 10.1007/s00284-010-9620-7. PubMed DOI

Rittenberg D, Foster L. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem. 1940;133:727–744.

Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, Kermode AR. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J. 2003;35:405–417. doi: 10.1046/j.1365-313X.2003.01800.x. PubMed DOI

Jones B, Gunneras SA, Petersson SV, Tarkowski P, Graham N, May S, Doležal K, Sandberg G, Ljung K. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell. 2010;22:2956–2969. doi: 10.1105/tpc.110.074856. PubMed DOI PMC

Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupička M, Vaňková R, Strnad M, Motyka V. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI

Riefler M, Novák O, Strnad M, Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 2006;18:40–54. doi: 10.1105/tpc.105.037796. PubMed DOI PMC

Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell. 2010;22:3905–3920. doi: 10.1105/tpc.109.072694. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Karrikinolide1 (KAR1), a Bioactive Compound from Smoke, Improves the Germination of Morphologically Dormant Apium graveolens L. Seeds by Reducing Indole-3-Acetic Acid (IAA) Levels

. 2024 Jul 29 ; 13 (15) : . [epub] 20240729

Hormonal profiles in dormant turions of 22 aquatic plant species: do they reflect functional or taxonomic traits?

. 2024 Jul 09 ; 134 (2) : 219-232.

Profiling of 1-aminocyclopropane-1-carboxylic acid and selected phytohormones in Arabidopsis using liquid chromatography-tandem mass spectrometry

. 2024 Mar 16 ; 20 (1) : 41. [epub] 20240316

Characteristics of turion development in two aquatic carnivorous plants: Hormonal profiles, gas exchange and mineral nutrient content

. 2024 Jan ; 8 (1) : e558. [epub] 20240111

Hormonal crosstalk controls cell death induced by kinetin in roots of Vicia faba ssp. minor seedlings

. 2023 Jul 19 ; 13 (1) : 11661. [epub] 20230719

Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species

. 2023 ; 14 () : 1217421. [epub] 20230718

CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth

. 2023 Mar 27 ; 14 (1) : 1683. [epub] 20230327

The Role of a Cytokinin Antagonist in the Progression of Clubroot Disease

. 2023 Feb 05 ; 13 (2) : . [epub] 20230205

Cytokinins and auxins in organs of aquatic carnivorous plants: what do they reflect?

. 2022 Dec 16 ; 130 (6) : 869-882.

High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing

. 2022 Nov 16 ; 18 (1) : 122. [epub] 20221116

IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth

. 2022 ; 13 () : 932008. [epub] 20221014

Molecular framework integrating nitrate sensing in root and auxin-guided shoot adaptive responses

. 2022 Aug 02 ; 119 (31) : e2122460119. [epub] 20220725

Impairment of root auxin-cytokinins homeostasis induces collapse of incompatible melon grafts during fruit ripening

. 2022 ; 9 () : uhac110. [epub] 20220517

CLAVATA modulates auxin homeostasis and transport to regulate stem cell identity and plant shape in a moss

. 2022 Apr ; 234 (1) : 149-163. [epub] 20220208

Changing Temperature Conditions during Somatic Embryo Maturation Result in Pinus pinaster Plants with Altered Response to Heat Stress

. 2022 Jan 24 ; 23 (3) : . [epub] 20220124

Plant Growth Regulators INCYDE and TD-K Underperform in Cereal Field Trials

. 2021 Oct 27 ; 10 (11) : . [epub] 20211027

Jasmonate inhibits adventitious root initiation through repression of CKX1 and activation of RAP2.6L transcription factor in Arabidopsis

. 2021 Oct 26 ; 72 (20) : 7107-7118.

Soil nutrient status of KwaZulu-Natal savanna and grassland biomes causes variation in cytokinin functional groups and their levels in above-ground and underground parts of three legumes

. 2021 Jun ; 27 (6) : 1337-1351. [epub] 20210614

Early stages of legume-rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins

. 2021 Apr ; 7 (4) : 428-436. [epub] 20210322

Priming Maritime Pine Megagametophytes during Somatic Embryogenesis Improved Plant Adaptation to Heat Stress

. 2021 Feb 26 ; 10 (3) : . [epub] 20210226

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...