A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
22594941
PubMed Central
PMC3492005
DOI
10.1186/1746-4811-8-17
PII: 1746-4811-8-17
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: We have developed a new analytical approach for isolation and quantification of cytokinins (CK) in minute amounts of fresh plant material, which combines a simple one-step purification with ultra-high performance liquid chromatography-fast scanning tandem mass spectrometry. RESULTS: Plant tissue samples (1-5 mg FW) were purified by stop-and-go-microextraction (StageTip purification), which previously has only been applied for clean-up and pre-concentration of peptides. We found that a combination of two reverse phases and one cation-exchange phase, was the best tool, giving a total extraction recovery higher than 80%. The process was completed by a single chromatographic analysis of a wide range of naturally occurring cytokinins (bases, ribosides, O- and N-glucosides, and nucleotides) in 24.5 minutes using an analytical column packed with sub-2-microne particles. In multiple reaction monitoring mode, the detection limits ranged from 0.05 to 5 fmol and the linear ranges for most cytokinins were at least five orders of magnitude. The StageTip purification was validated and optimized using samples of Arabidopsis thaliana seedlings, roots and shoots where eighteen cytokinins were successfully determined. CONCLUSIONS: The combination of microextraction with one-step high-throughput purification provides fast, effective and cheap sample preparation prior to qualitative and quantitative measurements. Our procedure can be used after modification also for other phytohormones, depending on selectivity, affinity and capacity of the selected sorbents.
Zobrazit více v PubMed
Miller CO, Skoog F, von Saltza MH, Strong M. Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc. 1955;77:1392. doi: 10.1021/ja01610a105. DOI
Mok DWS, Mok MC. Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:89–118. doi: 10.1146/annurev.arplant.52.1.89. PubMed DOI
Sakakibara H. Cytokinins: Activity, biosynthesis, and translocation. Annu Rev Plant Biol. 2006;57:431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI
Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T. Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 2004;45:1299–1305. doi: 10.1093/pcp/pch132. PubMed DOI
Werner T, Schmülling T. Cytokinin action in plant development. Curr Opin Plant Biol. 2009;12:527–538. doi: 10.1016/j.pbi.2009.07.002. PubMed DOI
Tarkowski P, Ge L, Yong JWH, Tan SN. Analytical methods for cytokinins. Trends Anal Chem. 2009;28:323–335. doi: 10.1016/j.trac.2008.11.010. DOI
Bieleski RL. The problem of halting enzyme action when extracting plant tissues. Anal Biochem. 1964;9:431–442. doi: 10.1016/0003-2697(64)90204-0. PubMed DOI
Hoyerová K, Gaudinová A, Malbeck J, Dobrev PI, Kocábek T, Šolcová B, Trávníčková A, Kamínek M. Efficiency of different methods of extraction and purification of cytokinins. Phytochem. 2006;67:1151–1159. doi: 10.1016/j.phytochem.2006.03.010. PubMed DOI
Dobrev PI, Kamínek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI
Novák O, Tarkowski P, Tarkowská D, Doležal K, Lenobel R, Strnad M. Quantitative analysis of cytokinins in plants by liquid chromatography–single-quadrupole mass spectrometry. Anal Chim Acta. 2003;480:207–218. doi: 10.1016/S0003-2670(03)00025-4. DOI
Takei K, Yamaya T, Sakakibara H. A method for separation and determination of cytokinin nucleotides from plant tissues. J Plant Res. 2003;116:265–269. doi: 10.1007/s10265-003-0099-1. PubMed DOI
Hauserová E, Swaczynová J, Doležal K, Lenobel R, Popa I, Hajdúch M, Vydra D, Fuksová K, Strnad M. Batch immunoextraction method for efficient purification of aromatic cytokinins. J Chromatogr A. 2005;1100:116–125. doi: 10.1016/j.chroma.2005.09.020. PubMed DOI
Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochem. 2008;69:2214–2224. doi: 10.1016/j.phytochem.2008.04.022. PubMed DOI
van Rhijn JA, Heskampa HH, Davelaarb E, Jordib W, Lelouxa MS, Brinkmanc UAT. Quantitative determination of glycosylated and aglycon isoprenoid cytokinins at sub-picomolar levels by microcolumn liquid chromatography combined with electrospray tandem mass spectrometry. J Chromatogr A. 2001;929:31–42. doi: 10.1016/S0021-9673(01)01134-7. PubMed DOI
Zhang H, Horgan KJ, Stewart Reynolds PH, Norris GE, Jameson PE. Novel cytokinins: The predominant forms in mature buds of Pinus radiata. Plant Physiol. 2001;112:127–134. doi: 10.1034/j.1399-3054.2001.1120117.x. PubMed DOI
Müller M, Munné-Bosch S. Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods. 2011;7:37. doi: 10.1186/1746-4811-7-37. PubMed DOI PMC
Liu Z, Yuan B-F, Feng Y-Q. Tandem solid phase extraction followed by online trapping–hydrophilic interaction chromatography–tandem mass spectrometry for sensitive detection of endogenous cytokinins in plant tissues. Phyctochem Anal. 2012. PubMed DOI
Ljung K, Sandberg G, Moritz T. In: Plant hormones: Biosynthesis, Signal Transduction, Action! Revised 3rd edition. Davies PJ, editor. Dordrecht: Kluwer Academic Publishers; 2010. Methods of plant hormone analysis; pp. 717–740.
Keough T, Lacey MP, Youngquist RS. Solid-phase derivatization of tryptic peptides for rapid protein identification by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2002;16:1003–1015. doi: 10.1002/rcm.670. PubMed DOI
Pluskal MG, Bogdanova A, Lopez M, Gutierrez S, Pitt AM. Multiwell in-gel protein digestion and microscale sample preparation for protein identification by mass spectrometry. Proteomics. 2002;2:145–150. doi: 10.1002/1615-9861(200202)2:2<145::AID-PROT145>3.0.CO;2-Y. PubMed DOI
van Hout MWJ, van Egmond WMA, Franke JP, de Zeeuw RA, de Jong GJ. Feasibility of the direct coupling of solid-phase extraction–pipette tips with a programmed-temperature vaporiser for gas chromatographic analysis of drugs in plasma. J Chromatogr B. 2002;766:37–45. doi: 10.1016/S0378-4347(01)00431-5. PubMed DOI
Kumazawa T, Hasegawa C, Lee XP, Hara K, Seno H, Suzuki O, Sato K. Simultaneous determination of methamphetamine and amphetamine in human urine using pipette tip solid-phase extraction and gas chromatography–mass spectrometry. J Pharm Biomed Anal. 2007;44:602–607. doi: 10.1016/j.jpba.2006.12.025. PubMed DOI
Rappsilber J, Mann M, Ishihama Y. Stop and Go Extraction Tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem. 2003;75:663–670. doi: 10.1021/ac026117i. PubMed DOI
Ishihama Y, Rappsilber J, Mann M. Modular Stop and Go Extraction Tips with stacked disks for parallel and multidimensional peptide fractionation in proteomics. J Proteome Res. 2006;5:988–994. doi: 10.1021/pr050385q. PubMed DOI
Saito H, Oda Y, Sato T, Kuromitsu J, Ishihama Y. Multiplexed two-dimensional liquid chromatography for MALDI and nanoelectrospray ionization mass spectrometry in proteomics. J Proteome Res. 2006;5:1803–1807. doi: 10.1021/pr0601178. PubMed DOI
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI
Prinsen E, Van Dongen W, Esmans EL, Van Onckelen HA. Micro and capillary liquid chromatography–tandem mass spectrometry: a new dimension in phytohormone research. J Chromatogr A. 1998;826:25–37. doi: 10.1016/S0021-9673(98)00763-8. DOI
Nguyen DTT, Guillarme D, Rudaz S, Veuthey JL. Fast analysis in liquid chromatography using small particle size and high pressure. J Sep Sci. 2006;29:1836–1848. doi: 10.1002/jssc.200600189. PubMed DOI
Wu N, Clausen AM. Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations. J Sep Sci. 2007;30:1167–1182. doi: 10.1002/jssc.200700026. PubMed DOI
Nováková L, Vlčková H. A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta. 2009;656:8–35. doi: 10.1016/j.aca.2009.10.004. PubMed DOI
Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M, Katoh E, Xiang H, Tanahashi T, Hasebe M, Banks JA, Ashikari M, Kitano H, Ueguchi-Tanaka M, Matsuoka M. The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the bryophyte Physcomitrella patens. Plant Cell. 2007;19:3058–3079. doi: 10.1105/tpc.107.051524. PubMed DOI PMC
Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell. 2007;19:3037–3057. doi: 10.1105/tpc.107.054999. PubMed DOI PMC
Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol. 2009;50:1201–1214. doi: 10.1093/pcp/pcp057. PubMed DOI PMC
Turečková V, Novák O, Strnad M. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Talanta. 2009;80:390–399. doi: 10.1016/j.talanta.2009.06.027. PubMed DOI
Liu Z, Wei F, Feng Y-Q. Determination of cytokinins in plant samples by polymer monolith microextraction coupled with hydrophilic interaction chromatography-tandem mass spectrometry. Anal Methods. 2010;2:1676–1685. doi: 10.1039/c0ay00334d. DOI
Qureshi MN, Stecher G, Huck C, Bonn GK. Preparation of polymer based sorbents for solid phase extraction of polyphenolic compounds. Centr Eur J Chem. 2011;9:206–212. doi: 10.2478/s11532-011-0006-x. DOI
Tarkowski P, Václavíková K, Novák O, Pertry I, Hanuš J, Whenham R, Vereecke D, Šebela M, Strnad M. Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2010;680:86–91. doi: 10.1016/j.aca.2010.09.020. PubMed DOI
Koshimiz K, Matsubar S, Kusaki T, Mitsui T. Isolation of a new cytokinin from immature yellow lupin seeds. Agric Biol Chem. 1967;31:795–801. doi: 10.1271/bbb1961.31.795. DOI
Matsubara S, Shiojiri S, Fujii T, Ogawa N, Imamura K, Yamagishi K, Koshimizu K. Synthesis and cytokinin activity of (R)-(+)-dihydrozeatin and (S)-(−)-dihydrozeatin and their ribosides. Phytochem. 1977;16:933–937. doi: 10.1016/S0031-9422(00)86698-4. DOI
Witters E, Vanhoutte K, Dewitte W, Macháčková I, Benková E, Van Dongen W, Esmans EL, Van Onckelen HA. Analysis of cyclic nucleotides and cytokinins in minute plant samples using phase-system switching capillary electrospray-liquid chromatography-tandem mass spectrometry. Phytochem Anal. 1999;10:143–151. doi: 10.1002/(SICI)1099-1565(199905/06)10:3<143::AID-PCA441>3.0.CO;2-G. DOI
Béres T, Zatloukal M, Voller J, Niemann P, Gahsche MC, Tarkowski P, Novák O, Hanuš J, Strnad M, Doležal K. Tandem mass spectrometry identification and LC-MS quantification of intact cytokinin nucleotides in K-562 human leukemia cells. Anal Bioanal Chem. 2010;398:2071–2080. doi: 10.1007/s00216-010-4126-5. PubMed DOI
Kenny DJ, Worthington KR, Hoyes JB. Scanwave: A new approach to enhancing spectral data on a tandem quadrupole mass spectrometer. J Am Soc Mass Spectrom. 2010;21:1061–1069. doi: 10.1016/j.jasms.2010.02.017. PubMed DOI
Nordström A, Tarkowski P, Tarkowská D, Doležal K, Åstot C, Sandberg G, Moritz T. Derivatization for LC-electrospray ionization–MS: a tool for improving reversed-phase separation and ESI responses of bases, ribosides, and intact nucleotides. Anal Chem. 2004;76:2869–2877. doi: 10.1021/ac0499017. PubMed DOI
Hussain A, Krischke M, Roitsch T, Hasnain S. Rapid determination of cytokinins and auxin in Cyanobacteria. Curr Microbiol. 2010;61:361–369. doi: 10.1007/s00284-010-9620-7. PubMed DOI
Rittenberg D, Foster L. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem. 1940;133:727–744.
Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, Kermode AR. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J. 2003;35:405–417. doi: 10.1046/j.1365-313X.2003.01800.x. PubMed DOI
Jones B, Gunneras SA, Petersson SV, Tarkowski P, Graham N, May S, Doležal K, Sandberg G, Ljung K. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell. 2010;22:2956–2969. doi: 10.1105/tpc.110.074856. PubMed DOI PMC
Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupička M, Vaňková R, Strnad M, Motyka V. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI
Riefler M, Novák O, Strnad M, Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 2006;18:40–54. doi: 10.1105/tpc.105.037796. PubMed DOI PMC
Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell. 2010;22:3905–3920. doi: 10.1105/tpc.109.072694. PubMed DOI PMC
Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species
CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth
The Role of a Cytokinin Antagonist in the Progression of Clubroot Disease
Cytokinins and auxins in organs of aquatic carnivorous plants: what do they reflect?
High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing
IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth
Molecular framework integrating nitrate sensing in root and auxin-guided shoot adaptive responses
Plant Growth Regulators INCYDE and TD-K Underperform in Cereal Field Trials