CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36973257
PubMed Central
PMC10042822
DOI
10.1038/s41467-023-37282-6
PII: 10.1038/s41467-023-37282-6
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis * metabolismus MeSH
- cytokininy * metabolismus MeSH
- glutaredoxiny genetika metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- peptidy metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy * MeSH
- glutaredoxiny MeSH
- peptidy MeSH
C-TERMINALLY ENCODED PEPTIDE (CEP) and cytokinin hormones act over short and long distances to control plant responses to environmental cues. CEP and cytokinin pathway mutants share phenotypes, however, it is not known if these pathways intersect. We show that CEP and cytokinin signalling converge on CEP DOWNSTREAM (CEPD) glutaredoxins to inhibit primary root growth. CEP inhibition of root growth was impaired in mutants defective in trans-zeatin (tZ)-type cytokinin biosynthesis, transport, perception, and output. Concordantly, mutants affected in CEP RECEPTOR 1 showed reduced root growth inhibition in response to tZ, and altered levels of tZ-type cytokinins. Grafting and organ-specific hormone treatments showed that tZ-mediated root growth inhibition involved CEPD activity in roots. By contrast, root growth inhibition by CEP depended on shoot CEPD function. The results demonstrate that CEP and cytokinin pathways intersect, and utilise signalling circuits in separate organs involving common glutaredoxin genes to coordinate root growth.
Zobrazit více v PubMed
Norman JMV, Breakfield NW, Benfey PN. Intercellular communication during plant development. Plant Cell. 2011;23:855–864. doi: 10.1105/tpc.111.082982. PubMed DOI PMC
Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue BPA. The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell. 2015;27:2095–2118. doi: 10.1105/tpc.15.00440. PubMed DOI PMC
Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86. doi: 10.1186/s12870-016-0771-y. PubMed DOI PMC
Roy, S., Lundquist, P., Udvardi, M. & Scheible, W.-R. Small and Mighty: Peptide hormones in plant biology. Plant Cell30, tpc.118.tt0718 (2018).
Murphy E, Smith S, Smet ID. Small signaling peptides in Arabidopsis development: How cells communicate over a short distance. Plant Cell. 2012;24:3198–3217. doi: 10.1105/tpc.112.099010. PubMed DOI PMC
Shabala S, White RG, Djordjevic MA, Ruan Y-L, Mathesius U. Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Funct. Plant Biol. 2016;43:87–104. doi: 10.1071/FP15252. PubMed DOI
Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc. Natl. Acad. Sci. 2009;106:16529. doi: 10.1073/pnas.0908122106. PubMed DOI PMC
Kondo Y, Hirakawa Y, Kieber JJ, Fukuda H. CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling. Plant Cell Physiol. 2011;52:37–48. doi: 10.1093/pcp/pcq129. PubMed DOI PMC
Taleski M, Imin N, Djordjevic MA. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. J. Exp. Bot. 2018;69:1829–1836. doi: 10.1093/jxb/ery037. PubMed DOI
Delay C, Imin N, Djordjevic MA. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. J. Exp. Bot. 2013;64:5383–5394. doi: 10.1093/jxb/ert332. PubMed DOI
Ogilvie HA, Imin N, Djordjevic MA. Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes. BMC Genomics. 2014;15:870. doi: 10.1186/1471-2164-15-870. PubMed DOI PMC
Tabata R, et al. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science. 2014;346:343–346. doi: 10.1126/science.1257800. PubMed DOI
Okamoto S, Suzuki T, Kawaguchi M, Higashiyama T, Matsubayashi Y. A comprehensive strategy for identifying long-distance mobile peptides in xylem sap. Plant J. 2015;84:611–620. doi: 10.1111/tpj.13015. PubMed DOI
Patel N, et al. Diverse peptide hormones affecting root growth identified in the Medicago truncatula secreted peptidome. Mol. Cell. Proteom. 2018;17:160. doi: 10.1074/mcp.RA117.000168. PubMed DOI PMC
Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J. Exp. Bot. 2013;64:5395–5409. doi: 10.1093/jxb/ert369. PubMed DOI
Chapman K, Taleski M, Ogilvie HA, Imin N, Djordjevic MA. CEP–CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth. J. Exp. Bot. 2019;70:3955–3967. doi: 10.1093/jxb/erz207. PubMed DOI PMC
Huault E, et al. Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase. PLOS Genet. 2014;10:e1004891. doi: 10.1371/journal.pgen.1004891. PubMed DOI PMC
Mohd-Radzman NA, et al. Different pathways act downstream of the CEP peptide receptor CRA2 to regulate lateral root and nodule development. Plant Physiol. 2016;171:2536. doi: 10.1104/pp.16.00113. PubMed DOI PMC
Lee H-C, et al. A new method to visualize CEP hormone–CEP receptor interactions in vascular tissue in vivo. J. Exp. Bot. 2021;72:6164–6174. doi: 10.1093/jxb/erab244. PubMed DOI
Delay C, et al. CEP3 levels affect starvation-related growth responses of the primary root. J. Exp. Bot. 2019;70:4763–4774. doi: 10.1093/jxb/erz270. PubMed DOI PMC
Chapman K, et al. CEP receptor signalling controls root system architecture in Arabidopsis and Medicago. N. Phytol. 2020;226:1809–1821. doi: 10.1111/nph.16483. PubMed DOI
Laffont C, et al. Independent regulation of symbiotic nodulation by the SUNN negative and CRA2 positive systemic pathways. Plant Physiol. 2019;180:559. doi: 10.1104/pp.18.01588. PubMed DOI PMC
Gautrat P, Laffont C, Frugier F. Compact root architecture 2 promotes root competence for nodulation through the miR2111 systemic effector. Curr. Biol. 2020;30:1339–1345.e3. doi: 10.1016/j.cub.2020.01.084. PubMed DOI
Taleski M, Chapman K, Imin N, Djordjevic MA, Groszmann M. The peptide hormone receptor CEPR1 functions in the reproductive tissue to control seed size and yield. Plant Physiol. 2020;183:620–636. doi: 10.1104/pp.20.00172. PubMed DOI PMC
Ohkubo Y, Tanaka M, Tabata R, Ogawa-Ohnishi M, Matsubayashi Y. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat. Plants. 2017;3:1–6. doi: 10.1038/nplants.2017.29. PubMed DOI
Ohkubo Y, Kuwata K, Matsubayashi Y. A type 2C protein phosphatase activates high-affinity nitrate uptake by dephosphorylating NRT2.1. Nat. Plants. 2021;7:310–316. doi: 10.1038/s41477-021-00870-9. PubMed DOI
Werner T, Schmülling T. Cytokinin action in plant development. Curr. Opin. Plant Biol. 2009;12:527–538. doi: 10.1016/j.pbi.2009.07.002. PubMed DOI
Kieber JJ, Schaller GE. Cytokinins. Arab. Book. 2014;12:e0168. doi: 10.1199/tab.0168. PubMed DOI PMC
Cortleven A, et al. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019;42:998–1018. doi: 10.1111/pce.13494. PubMed DOI
Naulin PA, et al. Nitrate induction of primary root growth requires cytokinin signaling in Arabidopsis thaliana. Plant Cell Physiol. 2019;61:342–352. doi: 10.1093/pcp/pcz199. PubMed DOI
Miyawaki K, et al. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl Acad. Sci. 2006;103:16598–16603. doi: 10.1073/pnas.0603522103. PubMed DOI PMC
Takei K, Yamaya T, Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J. Biol. Chem. 2004;279:41866–41872. doi: 10.1074/jbc.M406337200. PubMed DOI
Kiba T, Takei K, Kojima M, Sakakibara H. Side-chain modification of cytokinins controls shoot growth in Arabidopsis. Dev. Cell. 2013;27:452–461. doi: 10.1016/j.devcel.2013.10.004. PubMed DOI
Zhang K, et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 2014;5:1–12b. PubMed
Ko D, et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc. Natl. Acad. Sci. 2014;111:7150–7155. doi: 10.1073/pnas.1321519111. PubMed DOI PMC
Stolz A, et al. The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J. 2011;67:157–168. doi: 10.1111/j.1365-313X.2011.04584.x. PubMed DOI
Riefler M, Novak O, Strnad M, Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 2006;18:40–54. doi: 10.1105/tpc.105.037796. PubMed DOI PMC
Chang L, Ramireddy E, Schmülling T. Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes. J. Exp. Bot. 2013;64:5021–5032. doi: 10.1093/jxb/ert291. PubMed DOI PMC
Mason MG, et al. Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell. 2005;17:3007–3018. doi: 10.1105/tpc.105.035451. PubMed DOI PMC
Argyros RD, et al. Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell. 2008;20:2102–2116. doi: 10.1105/tpc.108.059584. PubMed DOI PMC
Patterson K, et al. Nitrate-regulated glutaredoxins control Arabidopsis primary root growth. Plant Physiol. 2016;170:989–999. doi: 10.1104/pp.15.01776. PubMed DOI PMC
Jung J-Y, Ahn JH, Schachtman DP. CC-type glutaredoxins mediate plant response and signaling under nitrate starvation in Arabidopsis. BMC Plant Biol. 2018;18:281. doi: 10.1186/s12870-018-1512-1. PubMed DOI PMC
Ota R, Ohkubo Y, Yamashita Y, Ogawa-Ohnishi M, Matsubayashi Y. Shoot-to-root mobile CEPD-like 2 integrates shoot nitrogen status to systemically regulate nitrate uptake in Arabidopsis. Nat. Commun. 2020;11:1–9. doi: 10.1038/s41467-020-14440-8. PubMed DOI PMC
Landrein B, et al. Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins. Proc. Natl. Acad. Sci. 2018;115:1382–1387. doi: 10.1073/pnas.1718670115. PubMed DOI PMC
Poitout A, et al. Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-zeatin in shoots. Plant Cell. 2018;30:1243–1257. doi: 10.1105/tpc.18.00011. PubMed DOI PMC
Oldroyd GED, Leyser O. A plant’s diet, surviving in a variable nutrient environment. Science. 2020;368:eaba0196. doi: 10.1126/science.aba0196. PubMed DOI
Dello Ioio R, et al. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol. 2007;17:678–682. doi: 10.1016/j.cub.2007.02.047. PubMed DOI
Bartrina I, et al. Gain-of-function mutants of the cytokinin receptors AHK2 and AHK3 regulate plant organ size, flowering time and plant longevity. Plant Physiol. 2017;173:1783–1797. doi: 10.1104/pp.16.01903. PubMed DOI PMC
Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H. Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol. 2007;48:523–539. doi: 10.1093/pcp/pcm022. PubMed DOI
Monden K, et al. Root-specific reduction of cytokinin perception enhances shoot growth in Arabidopsis thaliana. Plant Cell Physiol. 2022;63:484–493. doi: 10.1093/pcp/pcac013. PubMed DOI
Werner T, Motyka V, Strnad M, Schmülling T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. 2001;98:10487–10492. doi: 10.1073/pnas.171304098. PubMed DOI PMC
Plet J, et al. MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J. 2011;65:622–633. doi: 10.1111/j.1365-313X.2010.04447.x. PubMed DOI
Werner T, et al. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J. Exp. Bot. 2008;59:2659–2672. doi: 10.1093/jxb/ern134. PubMed DOI PMC
Růžička K, et al. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc. Natl. Acad. Sci. 2009;106:4284–4289. doi: 10.1073/pnas.0900060106. PubMed DOI PMC
Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell. 2011;23:69–80. doi: 10.1105/tpc.110.079079. PubMed DOI PMC
Laffont C, et al. The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically. Nat. Commun. 2020;11:3167. doi: 10.1038/s41467-020-16968-1. PubMed DOI PMC
Kiba T, Takebayashi Y, Kojima M, Sakakibara H. Sugar-induced de novo cytokinin biosynthesis contributes to Arabidopsis growth under elevated CO 2. Sci. Rep. 2019;9:1–15. doi: 10.1038/s41598-019-44185-4. PubMed DOI PMC
Kleinboelting N, Huep G, Kloetgen A, Viehoever P, Weisshaar B. GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res. 2012;40:D1211–D1215. doi: 10.1093/nar/gkr1047. PubMed DOI PMC
Nitschke S, et al. Circadian stress regimes affect the circadian clock and cause jasmonic acid-dependent cell death in cytokinin-deficient Arabidopsis plants. Plant Cell. 2016;28:1616–1639. PubMed PMC
Bryan AC, Obaidi A, Wierzba M, Tax FE. XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana. Planta. 2012;235:111–122. doi: 10.1007/s00425-011-1489-6. PubMed DOI
Lobet G, Pagès L, Draye X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol. 2011;157:29–39. doi: 10.1104/pp.111.179895. PubMed DOI PMC
Svačinová J, et al. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods. 2012;8:17. doi: 10.1186/1746-4811-8-17. PubMed DOI PMC
Antoniadi I, et al. Cell-type-specific cytokinin distribution within the Arabidopsis primary root Apex. Plant Cell. 2015;27:1955–1967. doi: 10.1105/tpc.15.00176. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139:5–17. doi: 10.1104/pp.105.063743. PubMed DOI PMC