Cytokinins and auxins in organs of aquatic carnivorous plants: what do they reflect?
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36215097
PubMed Central
PMC9758306
DOI
10.1093/aob/mcac122
PII: 6755358
Knihovny.cz E-zdroje
- Klíčová slova
- Aldrovanda vesiculosa, Utricularia spp, Droseraceae, Lentibulariaceae, Phytohormone profiles, apices, aquatic rootless plants, leaves, physiological polarity, traps,
- MeSH
- cytokininy metabolismus MeSH
- Droseraceae * fyziologie MeSH
- hluchavkotvaré * MeSH
- kyseliny indoloctové metabolismus MeSH
- Magnoliopsida * fyziologie MeSH
- masožravé rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- kyseliny indoloctové MeSH
BACKGROUND AND AIMS: Aquatic carnivorous plants have typical rootless linear shoots bearing traps and exhibit steep physiological polarity with rapid apical growth. The aim was to analyse auxin and cytokinin metabolites in traps, leaves/shoots and shoot apices in several species of genera Aldrovanda and Utricularia to elucidate how the hormonal profiles reflect the specific organ functions and polarity. METHODS: The main auxin and cytokinin metabolites were analysed in miniature samples (>2 mg dry weight) of different organs of Aldrovanda vesiculosa and six Utricularia species using ultraperformance liquid chromatography coupled with triple quadrupole mass spectrometry. KEY RESULTS: Total contents of biologically active forms (free bases, ribosides) of all four main endogenously occurring cytokinin types were consistently higher in traps than in leaves in four Utricularia species with monomorphic shoots and/or higher than in shoots in two Utricularia species with dimorphic shoots. In Aldrovanda traps, the total content of different cytokinin forms was similar to or lower than that in shoots. In U. australis leaves, feeding on prey increased all cytokinin forms, while no consistent differences occurred in Aldrovanda. In four aquatic Utricularia species with monomorphic shoots, the content of four auxin forms was usually higher in traps than in leaves. Zero IAA content was determined in U. australis leaves from a meso-eutrophic site or when prey-fed. CONCLUSIONS: Different cytokinin and auxin profiles estimated in traps and leaves/shoots of aquatic carnivorous plants indicate an association with different dominant functions of these organs: nutrient uptake by traps versus photosynthetic function of traps. Interplay of cytokinins and auxins regulates apical dominance in these plants possessing strong polarity.
Zobrazit více v PubMed
Adamec L. 2000. Rootless aquatic plant Aldrovanda vesiculosa: physiological polarity, mineral nutrition, and importance of carnivory. Biologia Plantarum 43: 113–119. doi:10.1023/a:1026567300241. DOI
Adamec L. 2009. Photosynthetic CO2 affinity of the aquatic carnivorous plant Utricularia australis (Lentibulariaceae) and its investment in carnivory. Ecological Research 24: 327–333.
Adamec L. 2011. Shoot branching of the aquatic carnivorous plant Utricularia australis as the key process of plant growth. PHYTON Annales Rei Botanicae 51: 133–148.
Adamec L. 2013. A comparison of photosynthetic and respiration rates in six aquatic carnivorous Utricularia species differing in morphology. Aquatic Botany 111: 89–94. doi:10.1016/j.aquabot.2013.06.004. DOI
Adamec L. 2014. Different reutilization of mineral nutrients in senescent leaves of aquatic and terrestrial carnivorous Utricularia species. Aquatic Botany 119: 1–6. doi:10.1016/j.aquabot.2014.06.002. DOI
Adamec L. 2016. Mineral nutrition in aquatic carnivorous plants: effect of carnivory, nutrient reutilization and K+ uptake. Fundamental and Applied Limnology 188: 41–49. doi:10.1127/fal/2016/0780. DOI
Adamec L. 2018a. Ecophysiology of aquatic carnivorous plants. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 256–269.
Adamec L. 2018b. Biological flora of Central Europe: Aldrovanda vesiculosa L. Perspectives in Plant Ecology, Evolution and Systematics 35: 8–21. doi:10.1016/j.ppees.2018.10.001. DOI
Adamec L. 2020. Biological flora of Central Europe: Utricularia intermedia Hayne, U. ochroleuca R.W. Hartm., U. stygia Thor and U. bremii Heer ex Kölliker. Perspectives in Plant Ecology, Evolution and Systematics 44: 125520e125520. doi:10.1016/j.ppees.2020.125520. DOI
Bieleski RL. 1964. The problem of halting enzyme action when extracting plant tissues. Analytical Biochemistry 9: 431–442. doi:10.1016/0003-2697(64)90204-0. PubMed DOI
Conrad K, Kohn B.. 1975. Zunahme von Cytokinin und Auxin in verwundetem Speichergewebe von Solanum tuberosum. Phytochemistry 14: 325–328. doi:10.1016/0031-9422(75)85083-7. DOI
Crane KE, Ross CW.. 1986. Effects of wounding on cytokinin activity in cucumber cotyledons. Plant Physiology 82: 1151–1152. doi:10.1104/pp.82.4.1151. PubMed DOI PMC
Cross A. 2012. Aldrovanda. The waterwheel plant. Poole: Redfern Natural History Productions.
Friday LE. 1989. Rapid turnover of traps in Utricularia vulgaris L. Oecologia 80: 272–277. doi:10.1007/BF00380163. PubMed DOI
Gu JF, Li ZK, Mao YQ, et al. . 2018. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Science 274: 320–331. PubMed
Guisande C, Granado-Lorencio C, Andrade-Sossa C, Duque SR.. 2007. Bladderworts. Functional Plant Science and Biotechnology 1: 58–68.
Hayat Q, Hayat S, Ali B, Ahmad A.. 2009. Auxin analogues and nitrogen metabolism, photosynthesis, and yield of chickpea. Journal of Plant Nutrition 32: 1469–1485. doi:10.1080/01904160903092671. DOI
Hou MM, Wu DX, Li Y, Tao WQ, Chao L, Zhang YL.. 2021. The role of auxin in nitrogen-modulated shoot branching. Plant Signaling & Behavior 16: e1885888. PubMed PMC
Hoyerová K, Gaudinová A, Malbeck J, et al. . 2006. Efficiency of different methods of extraction and purification of cytokinins. Phytochemistry 67: 1151–1159. doi:10.1016/j.phytochem.2006.03.010. PubMed DOI
Hussain S, Nanda S, Zhang JH, et al. . 2021. Auxin and cytokinin interplay during leaf morphogenesis and phyllotaxy. Plants 10: e1732. PubMed PMC
Jakšová J, Novák O, Adamec L, Pavlovič A.. 2021. Contrasting effect of prey capture on jasmonate signalling in two genera of aquatic carnivorous plants (Aldrovanda, Utricularia). Plant Physiology and Biochemistry 166: 459–565. PubMed
Juniper BE, Robins RJ, Joel DM.. 1989. The carnivorous plants. London: Academic Press.
Kiba T, Kudo T, Kojima M, Sakakibara H.. 2010. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. Journal of Experimental Botany 62: 1399–1409. doi:10.1093/jxb/erq410. PubMed DOI
Koeslin-Findeklee F, Becker MA, van der Graaff E, Roitsch T, Horst WJ.. 2015. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals. Journal of Experimental Botany 66: 3669–3681. doi:10.1093/jxb/erv170. PubMed DOI PMC
Lacuesta M, Saiz-Fernandez I, Podlešáková K, et al. . 2018. The trans and cis zeatin isomers play different roles in regulating growth inhibition induced by high nitrate concentrations in maize. Plant Growth Regulation 85: 199–209. doi:10.1007/s10725-018-0383-7. DOI
Miranda VFO, Silva SR, Reut MS, et al. . 2021. A historical perspective of bladderworts (Utricularia): traps, carnivory and body architecture. Plants 10: 2656e2656. doi:10.3390/plants10122656. PubMed DOI PMC
Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M.. 2008. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69: 2214–2224. doi:10.1016/j.phytochem.2008.04.022. PubMed DOI
Pěnčík A, Rolčík J, Novák O, et al. . 2009. Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80: 651–655. doi:10.1016/j.talanta.2009.07.043. PubMed DOI
Poppinga S, Bauer U, Speck T, Volkov AG.. 2018. Motile traps. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 180–193.
Richards JH. 2001. Bladder function in Utricularia purpurea (Lentibulariaceae): is carnivory important? American Journal of Botany 88: 170–176. doi:10.2307/2657137. PubMed DOI
Sano H, Seo S, Orudgev E, et al. . 1994. Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection. Proceedings of the National Academy of Sciences of the USA 91: 10556–10560. PubMed PMC
Shimizu-Sato S, Tanaka M, Mori H.. 2009. Auxin-cytokinin interactions in the control of shoot branching. Plant Molecular Biology 69: 429–435. PubMed
Silva-Navas J, Conesa CM, Saez A, et al. . 2019. Role of cis-zeatin in root responses to phosphate starvation. New Phytologist 224: 242–257. PubMed
Šimura J, Spíchal L, Adamec L, et al. . 2016. Cytokinin, auxin and physiological polarity in the aquatic carnivorous plants Aldrovanda vesiculosa and Utricularia australis. Annals of Botany 117: 1037–1044. doi:10.1093/aob/mcw020. PubMed DOI PMC
Sirová D, Adamec L, Vrba J.. 2003. Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia. New Phytologist 159: 669–675. doi:10.1046/j.1469-8137.2003.00834.x. PubMed DOI
Sirová D, Borovec J, Černá B, Rejmánková E, Adamec L, Vrba J.. 2009. Microbial community development in the traps of aquatic Utricularia species. Aquatic Botany 90: 129–136.
Smigocki AC. 1995. Expression of a wound-inducible cytokinin biosynthesis gene in transgenic tobacco: correlation of root expression with induction of cytokinin effects. Plant Science 109: 153–163. doi:10.1016/0168-9452(94)04157-c. DOI
Sun D, Zhang L, Yu Q, et al. . 2021. Integrated signals of jasmonates, sugars, cytokinins and auxin influence the initial growth of the second buds of chrysanthemum after decapitation. Biology 10: 440e440. doi:10.3390/biology10050440. PubMed DOI PMC
Svačinová J, Novák O, Plačková L, et al. . 2012. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8: e17. PubMed PMC
Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H.. 2006. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant Journal 45: 1028–1036. PubMed
Tarkowská D, Novák O, Floková K, et al. . 2014. Quo vadis plant hormone analysis? Planta 240: 55–76. doi:10.1007/s00425-014-2063-9. PubMed DOI
Taylor P. 1989. The genus Utricularia: a taxonomic monograph. Kew Bulletin Additional Series XIV. London: HMSO.
Werner T, Holst K, Pörs Y, et al. . 2008. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. Journal of Experimental Botany 59: 2659–2672. doi:10.1093/jxb/ern134. PubMed DOI PMC