Cytokinin, auxin and physiological polarity in the aquatic carnivorous plants Aldrovanda vesiculosa and Utricularia australis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27098087
PubMed Central
PMC4866309
DOI
10.1093/aob/mcw020
PII: mcw020
Knihovny.cz E-zdroje
- Klíčová slova
- Aldrovanda vesiculosa, Auxin, Utricularia australis, cytokinin, growth polarity, phytohormones, rootless aquatic plants,
- MeSH
- cytokininy metabolismus MeSH
- Droseraceae fyziologie MeSH
- kyseliny indoloctové metabolismus MeSH
- Magnoliopsida fyziologie MeSH
- masožravci MeSH
- vodní organismy MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- indoleacetamide MeSH Prohlížeč
- indoleacetic acid MeSH Prohlížeč
- kyseliny indoloctové MeSH
BACKGROUND AND AIMS: The typical rootless linear shoots of aquatic carnivorous plants exhibit clear, steep polarity associated with very rapid apical shoot growth. The aim of this study was to determine how auxin and cytokinin contents are related to polarity and shoot growth in such plants. METHODS: The main auxin and cytokinin metabolites in separated shoot segments and turions of two carnivorous plants, Aldrovanda vesiculosa and Utricularia australis, were analysed using ultra-high-performance liquid chromatography coupled with triple quad mass spectrometry. KEY RESULTS: In both species, only isoprenoid cytokinins were identified. Zeatin cytokinins predominated in the apical parts, with their concentrations decreasing basipetally, and the trans isomer predominated in A. vesiculosa whereas the cis form was more abundant in U australis. Isopentenyladenine-type cytokinins, in contrast, increased basipetally. Conjugated cytokinin metabolites, the O-glucosides, were present at high concentrations in A. vesiculosa but only in minute amounts in U. australis. N(9)-glucoside forms were detected only in U. australis, with isopentenyladenine-9-glucoside (iP9G) being most abundant. In addition to free indole-3-acetic acid (IAA), indole-3-acetamide (IAM), IAA-aspartate (IAAsp), IAA-glutamate (IAGlu) and IAA-glycine (IAGly) conjugates were identified. CONCLUSIONS: Both species show common trends in auxin and cytokinin levels, the apical localization of the cytokinin biosynthesis and basipetal change in the ratio of active cytokinins to auxin, in favour of auxin. However, our detailed study of cytokinin metabolic profiles also revealed that both species developed different regulatory mechanisms of active cytokinin content; on the level of their degradation, in U. australis, or in the biosynthesis itself, in the case of A. vesiculosa Results indicate that the rapid turnover of these signalling molecules along the shoots is essential for maintaining the dynamic balance between the rapid polar growth and development of the apical parts and senescence of the older, basal parts of the shoots.
Zobrazit více v PubMed
Adamec L. 1997a. Mineral nutrition of carnivorous plants: a review. Botanical Review 63: 273–299.
Adamec L. 1997b. Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa. Aquatic Botany 59: 297–306.
Adamec L. 1999. Turion overwintering of aquatic carnivorous plants. Carnivorous Plant Newsletter 28: 19–24.
Adamec L. 2000. Rootless aquatic plant Aldrovanda vesiculosa: physiological polarity, mineral nutrition, and importance of carnivory. Biologia Plantarum 43: 113–119.
Adamec L. 2008a. Mineral nutrient relations in the aquatic carnivorous plant Utricularia australis and its investment in carnivory. Fundamental and Applied Limnology 171: 175–183.
Adamec L. 2008b. The influence of prey capture on photosynthetic rate in two aquatic carnivorous plant species. Aquatic Botany 89: 66–70.
Adamec L. 2009. Photosynthetic CO2 affinity of the aquatic carnivorous plant Utricularia australis (Lentibulariaceae) and its investment in carnivory. Ecological Research 24: 327–333.
Adamec L. 2010. Tissue mineral nutrient content in turions of aquatic plants: does it represent a storage function? Fundamental and Applied Limnology 176: 145–151.
Adamec L. 2011a. Functional characteristics of traps of aquatic carnivorous Utricularia species. Aquatic Botany 95: 226–233. PubMed PMC
Adamec L. 2011b. Shoot branching of the aquatic carnivorous plant Utricularia australis as the key process of plant growth. Phyton 51: 133–148.
Adamec L. 2013. A comparison of photosynthetic and respiration rates in six aquatic carnivorous Utricularia species differing in morphology. Aquatic Botany 111: 89–94.
Adamec L. 2014. Different reutilization of mineral nutrients in senescent leaves of aquatic and terrestrial carnivorous Utricularia species. Aquatic Botany 119: 1–6.
Adamec L, Kovářová M. 2006. Field growth characteristics of two aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia australis. Folia Geobotanica 41: 395–406.
Arthur GD, Stirk WA, Novak O, Hekera P, van Staden J. 2007. Occurrence of nutrients and plant hormones (cytokinins and IAA) in the water fern Salvinia molesta during growth and composting. Environmental and Experimental Botany 61: 137–144.
Bajguz A, Piotrowska A. 2009. Conjugates of auxin and cytokinin. Phytochemistry 70: 957–969. PubMed
Eklöf S, Åstot C, Blackwell J, Moritz T, Olsson O, Sandberg G. 1997. Auxin-cytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiology 38: 225–235.
Eklöf S, Åstot C, Sitbon F, Moritz T, Olsson O, Sandberg G. 2000. Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin- and cytokinin-overproducing phenotypes. Plant Journal 23: 279–284. PubMed
Englund G, Harms S. 2003. Effects of light and microcrustacean prey on growth and investment in carnivory in Utricularia vulgaris. Freshwater Biology 48: 786–794.
Fabian-Galan G, Salageanu N. 1968. Considerations on the nutrition of certain carnivorous plants (Drosera capensis and Aldrovanda vesiculosa). Revue Roumaine de Biologie Série Botanique 13: 275–280.
Friday LE. 1989. Rapid turnover of traps in Utricularia vulgaris L. Oecologia 80: 272–277. PubMed
Guisande C, Granado-Lorencio C, Andrade-Sossa C, Duque SR. 2007. Bladderworts. Functional Plant Science and Biotechnology 1: 58–68.
Jones B, Gunneras SA, Petersson SV, Tarkowski P. et al. 2010. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22: 2956–2969. PubMed PMC
Juniper BE, Robins RJ, Joel DM. 1989. The carnivorous plants. London, UK: Academic Press.
Kamiński R. 1987. Studies on the ecology of Aldrovanda vesiculosa L. I. Ecological differentiation of A. vesiculosa population under the influence of chemical factors in the habitat. Ekologia Polska 35: 559–590.
Kosiba P. 1992a. Studies on the ecology Utricularia vulgaris L. I. Ecological differentiation of Urticularia vulgaris L. population affected by chemical factors of the habitat. Ekologia Polska 40: 147–192.
Kosiba P. 1992b. Studies on the ecology of Utricularia vulgaris L. II. Physical, chemical and biotic factors and the growth of Utricularia vulgaris L. in cultures in vitro. Ekologia Polska 40: 193–212.
Knight SE. 1992. Costs of carnivory in the common bladderwort, Utricularia macrorhiza. Oecologia 89: 348–355. PubMed
Kuhlemeier C, Reinhardt D. 2001. Auxin and phyllotaxis. Trends in Plant Science 6: 187–189. PubMed
Kurakawa T, Ueda N, Maekawa M, et al. 2007. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445: 652–655. PubMed
Ljung K. 2013. Auxin metabolism and homeostasis during plant development. Development 140: 943–950. PubMed
Nakamura M, Kiefer CS, Grebe M. 2012. Planar polarity, tissue polarity and planar morphogenesis in plants. Current Opinion in Plant Biology 15: 593–600. PubMed
Nordström A, Tarkowski P, Tarkowská D. et al. 2004. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proceedings of the National Academy of Sciences of the USA 101: 8039–8044. PubMed PMC
Normanly J. 2010. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harbor Perspectives in Biology 2: a001594. PubMed PMC
Novák O, Tarkowski P, Tarkowská D, Doležal K, Lenobel R, Strnad M. 2003. Quantitative analysis of cytokinins in plants by liquid chromatography–single-quadrupole mass spectrometry. Analytica Chimica Acta 480: 207–218.
Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M. 2008. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69: 2214–2224. PubMed
Ouyang J, Shao X, Li J. 2000. Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant Journal 24: 327–334. PubMed
Palni LMS, Burch L, Horgan R. 1988. The effect of auxin concentration on cytokinin stability and metabolism. Planta 174: 231–234. PubMed
Pěnčík A, Rolčík J, Novák O. et al. 2009. Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80: 651–655. PubMed
Perrot-Rechenmann C. 2010. Cellular responses to auxin: division versus expansion. Cold Spring Harbor Perspectives in Biology 2: a001446. PubMed PMC
Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B. 2004. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiology 135: 978–988. PubMed PMC
Richards JH. 2001. Bladder function in Utricularia purpurea (Lentibulariaceae): is carnivory important? American Journal of Botany 88: 170–176. PubMed
Sakakibara H. 2005. Cytokinin biosynthesis and regulation. Vitamins and Hormones 72: 271–287. PubMed
Sirová D, Borovec J, Černá B, Rejmánková E, Adamec L, Vrba J. 2009. Microbial community development in the traps of aquatic Utricularia species. Aquatic Botany 90: 129–136.
Spíchal L. 2012. Cytokinins - recent news and views of evolutionally old molecules. Functional Plant Biology 39: 267–284. PubMed
Stirk WA, van Staden J. 2003. Occurrence of cytokinin-like compounds in two aquatic ferns and their exudates. Environmental and Experimental Botany 49: 77–85.
Taiz L, Zeiger E. 2010. Plant physiology, 5th edn. Sunderland, MA: Sinauer Associates.
Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H. 2006. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant Journal 45: 1028–1036. PubMed
Tarkowská D, Novák O, Floková K. et al. 2014. Quo vadis plant hormone analysis? Planta 240: 55–76. PubMed
Taylor P. 1989. The genus Utricularia: a taxonomic monograph (Kew Bulletin Additional Series XIV). London, UK: HMSO.
Vernoux T, Kronenberger J, Grandjean O, Laufs P, Traas J. 2000. PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127: 5157–5165. PubMed
Winston RD, Gorham PR. 1979. Roles of endogenous and exogenous growth regulators in dormancy of Utricularia vulgaris. Canadian Journal of Botany 57: 2750–2759.
Woodward AW, Bartel B. 2005. Auxin: regulation, action, and interaction. Annals of Botany 95: 707–735. PubMed PMC
Cytokinins and auxins in organs of aquatic carnivorous plants: what do they reflect?