Characteristics of turion development in two aquatic carnivorous plants: Hormonal profiles, gas exchange and mineral nutrient content

. 2024 Jan ; 8 (1) : e558. [epub] 20240111

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38222932

Turions are vegetative, dormant, and storage overwintering organs formed in perennial aquatic plants in response to unfavorable ecological conditions and originate by extreme condensation of apical shoot segments. The contents of cytokinins, auxins, and abscisic acid were estimated in shoot apices of summer growing, rootless aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia australis, and in developing turions at three stages and full maturity to reveal hormonal patterns responsible for turion development. The hormones were analyzed in miniature turion samples using ultraperformance liquid chromatography coupled with triple quadrupole mass spectrometry. Photosynthetic measurements in young leaves also confirmed relatively high photosynthetic rates at later turion stages. The content of active cytokinin forms was almost stable in A. vesiculosa during turion development but markedly decreased in U. australis. In both species, auxin content culminated in the middle of turion development and then decreased again. The content of abscisic acid as the main inhibitory hormone was very low in growing plants in both species but rose greatly at first developmental stages and stayed very high in mature turions. The hormonal data indicate a great strength of developing turions within sink-source relationships and confirm the central role of abscisic acid in regulating the turion development.

Zobrazit více v PubMed

Adamec, L. (1997). Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa . Aquatic Botany, 59, 297–306. 10.1016/S0304-3770(97)00054-5 DOI

Adamec, L. (2000). Rootless aquatic plant Aldrovanda vesiculosa: Physiological polarity, mineral nutrition, and importance of carnivory. Biologia Plantarum, 43, 113–119. 10.1023/A:1026567300241 DOI

Adamec, L. (2003). Ecophysiological characterization of dormancy states in turions of the aquatic carnivorous plant Aldrovanda vesiculosa . Biologia Plantarum, 47, 395–402.

Adamec, L. (2008). Respiration of turions and winter apices in aquatic carnivorous plants. Biologia, 63, 515–520. 10.2478/s11756-008-0073-4 DOI

Adamec, L. (2010). Tissue mineral nutrient content in turions of aquatic plants: Does it represent a storage function? Fundamental and Applied Limnology, 176, 145–151. 10.1127/1863-9135/2010/0176-0145 DOI

Adamec, L. (2011). Dark respiration and photosynthesis of dormant and sprouting turions of aquatic plants. Fundamental and Applied Limnology, 179, 151–158. 10.1127/1863-9135/2011/0179-0151 DOI

Adamec, L. (2013). A comparison of photosynthetic and respiration rates in six aquatic carnivorous Utricularia species differing in morphology. Aquatic Botany, 111, 89–94. 10.1016/j.aquabot.2013.06.004 DOI

Adamec, L. (2018a). Ecophysiological characteristics of turions of aquatic plants: A review. Aquatic Botany, 148, 64–77. 10.1016/j.aquabot.2018.04.011 DOI

Adamec, L. (2018b). Ecophysiology of aquatic carnivorous plants. In Ellison A. M. & Adamec L. (Eds.), Carnivorous plants: Physiology, ecology, and evolution (pp. 256–269). Oxford University Press.

Adamec, L. , Kučerová, A. , & Janeček, Š. (2020). Mineral nutrients, photosynthetic pigments and storage carbohydrates in turions of 21 aquatic plant species. Aquatic Botany, 165, 103238. 10.1016/j.aquabot.2020.103238 DOI

Adamec, L. , Plačková, L. , & Doležal, K. (2022). Cytokinins and auxins in organs of aquatic carnivorous plants: What do they reflect? Annals of Botany, 130, 869–882. 10.1093/aob/mcac122 PubMed DOI PMC

Bartley, M. R. , & Spence, D. H. N. (1987). Dormancy and propagation in helophytes and hydrophytes. Archiv für Hydrobiologie (Beiheft), 27, 139–155.

Best, E. P. H. (1979). Growth substances and dormancy in Ceratophyllum demersum . Physiologia Plantarum, 45, 399–406. 10.1111/j.1399-3054.1979.tb02603.x DOI

Chaloupková, K. , & Smart, C. C. (1994). The abscisic‐acid induction of a novel peroxidase is antagonized by cytokinin in Spirodela polyrhiza L. Plant Physiology, 105, 497–507. 10.1104/pp.105.2.497 PubMed DOI PMC

Davies, P. J. (2004). Plant hormones: Biosynthesis, signal transduction, action. Springer.

Gonzalez‐Lemes, I. , Acosta‐Maspons, A. , Cetz‐Chel, J. E. , Polania, J. A. , Acosta‐Gallegos, J. A. , Herrera‐Estrella, A. , & Covarrubias, A. A. (2023). Carbon‐concentrating mechanisms in pods are key elements for terminal drought resistance in Phaseolus vulgaris . Journal of Experimental Botany, 74, 1642–1658. 10.1093/jxb/erac504 PubMed DOI

Hamaoka, N. , Moriyama, T. , Taniguchi, T. , Suriyasak, C. , & Ishibashi, Y. (2023). Bulbil formation on water yam (Dioscorea alata L.) is promoted by waterlogged soil. Agronomy‐Basel, 13, 484. 10.3390/agronomy13020484 DOI

Helder, R. J. (1988). A quantitative approach to the inorganic carbon system in aqueous media used in biological research: Dilute solutions isolated from the atmosphere. Plant, Cell & Environment, 11, 211–230. 10.1111/j.1365-3040.1988.tb01140.x DOI

Hongpakdee, P. , Siritrakulsak, P. , Ohtake, N. , Sueyoshi, K. , Ohyama, T. , & Ruamrungsri, S. (2010). Changes in endogenous abscisic acid, trans‐zeatin riboside, indole‐3‐acetic acid levels and the photosynthetic rate during the growth cycle of curcuma alismatifolia gagnep. in different production seasons. European Journal of Agricultural Sciences, 75, 204–213.

Hussain, S. , Nanda, S. , Zhang, J. H. , Rehmani, M. I. A. , Suleman, M. , Li, G. J. , & Hou, H. W. (2021). Auxin and cytokinin interplay during leaf morphogenesis and phyllotaxy. Plants, 10, 1732. 10.3390/plants10081732 PubMed DOI PMC

Kara, A. N. , Kotov, A. A. , & Bukhov, N. G. (1997). Specific distribution of gibberellins, cytokinins, indole‐3‐acetic acid, and abscisic acid in radish plants closely correlates with photomorphogenetic responses to blue or red light. Journal of Plant Physiology, 151, 51–59. 10.1016/S0176-1617(97)80035-1 DOI

Kondhare, K. R. , Patil, A. B. , & Giri, A. P. (2021). Auxin: An emerging regulator of tuber and storage root development. Plant Science, 306, 110854. 10.1016/j.plantsci.2021.110854 PubMed DOI

Kučerová, A. , & Adamec, L. (2022). Foliar resorption efficiency does not change along an elevational gradient in two dominant peatbog plant species. Folia Geobotanica, 57, 247–257. 10.1007/s12224-023-09427-4 DOI

Li, G. , Chen, Y. , Zhao, X. , Yang, J. , Wang, X. , Li, X. , Hu, S. , & Hou, H. (2022). Genome‐wide analysis of the growth‐regulating factor (GRF) family in aquatic plants and their roles in the ABA‐induced turion formation of Spirodela polyrhiza . International Journal of Molecular Sciences, 23, 10485. 10.3390/ijms231810485 PubMed DOI PMC

Liang, G. H. , Hua, Y. P. , Chen, H. F. , Luo, J. S. , Xiang, H. K. , Song, H. X. , & Zhang, Z. H. (2023). Increased nitrogen use efficiency via amino acid remobilization from source to sink organs in Brassica napus . Crop Journal, 11, 119–131. 10.1016/j.cj.2022.05.011 DOI

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids. Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. 10.1016/0076-6879(87)48036-1 DOI

Novák, O. , Hauserová, E. , Amakorová, P. , Doležal, K. , & Strnad, M. (2008). Cytokinin profiling in plant tissues using ultra‐performance liquid chromatography‐electrospray tandem mass spectrometry. Phytochemistry, 69, 2214–2224. 10.1016/j.phytochem.2008.04.022 PubMed DOI

Pasaribu, B. , Acosta, K. , Aylward, A. , Liang, Y. X. , Abramson, B. W. , Colt, K. , Hartwick, N. T. , Shanklin, J. , Michael, T. P. , & Lam, E. (2023). Genomics of turions from the greater duckweed reveal its pathways for dormancy and re‐emergence strategy. New Phytologist, 239, 116–131. 10.1111/nph.18941 PubMed DOI

Pěnčík, A. , Rolčík, J. , Novák, O. , Magnus, V. , Barták, P. , Buchtík, R. , Salopek‐Sondi, B. , & Strnad, M. (2009). Isolation of novel indole‐3‐acetic acid conjugates by immunoaffinity extraction. Talanta, 80, 651–655. 10.1016/j.talanta.2009.07.043 PubMed DOI

Ron'zhina, E. S. (2009). Source and sink effects of cytokinins in potato (Solanum tuberosum L.) plants. Acta Horticulturae, 835, 39–48.

Sculthorpe, C. D. (1967). The biology of aquatic vascular plants. Edward Arnold.

Šimura, J. , Spíchal, L. , Adamec, L. , Pěnčík, A. , Rolčík, J. , Novák, O. , & Strnad, M. (2016). Cytokinin, auxin and physiological polarity in the aquatic carnivorous plants Aldrovanda vesiculosa and Utricularia australis . Annals of Botany, 117, 1037–1044. 10.1093/aob/mcw020 PubMed DOI PMC

Skoog, F. , & Miller, C. O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biology, 54, 118–130. PubMed

Smart, C. C. , Fleming, A. J. , Chaloupková, K. , & Hanke, D. E. (1995). The physiological role of abscisic acid in eliciting turion morphogenesis. Plant Physiology, 108, 623–632. 10.1104/pp.108.2.623 PubMed DOI PMC

Smart, C. C. , & Trewavas, A. J. (1983). Abscisic‐acid‐induced turion germination in Spirodela polyrhiza L. I. Production and development of the turion. Plant, Cell & Environment, 6, 507–514.

Svačinová, J. , Novák, O. , Plačková, L. , Lenobel, R. , Holík, J. , Strnad, M. , & Doležal, K. (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: Pipette tip solid‐phase extraction. Plant Methods, 8, 17. 10.1186/1746-4811-8-17 PubMed DOI PMC

Tarkowská, D. , Novák, O. , Floková, K. , Tarkowski, P. , Turečková, V. , Gruz, J. , Rolčík, J. , & Strnad, M. (2014). Quo vadis plant hormone analysis? Planta, 240, 55–76. 10.1007/s00425-014-2063-9 PubMed DOI

Wang, W. Q. , Wu, Y. R. , & Messing, J. (2014). RNA‐Seq transcriptome analysis of Spirodela dormancy without reproduction. BMC Genomics, 15, 60. 10.1186/1471-2164-15-60 PubMed DOI PMC

Weber, J. A. , & Noodén, L. D. (1976). Environmental and hormonal control of turion formation in Myriophyllum verticillatum . Plant & Cell Physiology, 17, 721–731. 10.1093/oxfordjournals.pcp.a075328 DOI

Winston, R. D. , & Gorham, P. R. (1979a). Turions and dormancy states in Utricularia vulgaris . Canadian Journal of Botany, 57, 2740–2749. 10.1139/b79-324 DOI

Winston, R. D. , & Gorham, P. R. (1979b). Roles of endogenous and exogenous growth regulators in dormancy of Utricularia vulgaris . Canadian Journal of Botany, 57, 2750–2759. 10.1139/b79-325 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...