The smallest but fastest: ecophysiological characteristics of traps of aquatic carnivorous Utricularia

. 2011 May ; 6 (5) : 640-6. [epub] 20110501

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid21499028

Aquatic Utricularia species usually grow in standing, nutrient-poor humic waters. They take up all necessary nutrients either directly from the water by rootless shoots or from animal prey by traps. The traps are hollow bladders, 1-6 mm long with elastic walls and have a mobile trap door. The inner part of the trap is densely lined with quadrifid and bifid glands and these are involved in the secretion of digestive enzymes, resorption of nutrients and pumping out the water. The traps capture small aquatic animals but they also host a community of microorganisms considered as commensals. How do these perfect traps function, kill and digest their prey? How do they provide ATP energy for their demanding physiological functions? What are the nature of the interactions between the traps and the mutualistic microorganisms living inside as commensals? In this mini review, all of these questions are considered from an ecophysiologist's point of view, based on the most recent literature data and unpublished results. A new concept on the role of the commensal community for the plants is presented.

Zobrazit více v PubMed

Juniper BE, Robins RJ, Joel DM. The carnivorous plants. London: Academic Press Ltd.; 1989. pp. 1–353.

Taylor P. The genus Utricularia: A taxonomic monograph. Vol. 4. Kew: Kew Bulletin, Additional Series; 1989. pp. 1–724.

Adamec L. Mineral nutrition of carnivorous plants: A review. Bot Rev. 1997;63:273–299.

Guisande C, Granado-Lorencio C, Andrade-Sossa C, Duque SR. Bladderworts. Funct Plant Sci Biotechnol. 2007;1:58–68.

Friday LE. Rapid turnover of traps in Utricularia vulgaris L. Oecologia. 1989;80:272–277. PubMed

Adamec L. Photosynthetic CO2 affinity of the aquatic carnivorous plant Utricularia australis (Lentibulariaceae) and its investment in carnivory. Ecol Res. 2009;24:327–333.

Adamec L, Sirová D, Vrba J. Contrasting growth effects of prey capture in two carnivorous plant species. Fundam Appl Limnol. 2010;176:153–160.

Sydenham PH, Findlay GP. The rapid movement of the bladder of Utricularia sp. Aust J Biol Sci. 1973;26:1115–1126.

Sydenham PH, Findlay GP. Transport of solutes and water by resetting bladders of Utricularia. Aust J Plant Physiol. 1975;2:335–351.

Sasago A, Sibaoka T. Water extrusion in the trap bladders of Utricularia vulgaris I. A possible pathway of water across the bladder wall. Bot Mag. 1985;98:55–66.

Sasago A, Sibaoka T. Water extrusion in the trap bladders of Utricularia vulgaris II. A possible mechanism of water outflow. Bot Mag. 1985;98:113–124.

Adamec L. Respiration and photosynthesis of bladders and leaves of aquatic Utricularia species. Plant Biol. 2006;8:765–769. PubMed

Mette N, Wilbert N, Barthlott W. Food composition of aquatic bladderworts (Utricularia, Lentibulariaceae) in various habitats. Beitr Biol Pfl. 2000;72:1–13.

Richards JH. Bladder function in Utricularia purpurea (Lentibulariaceae): is carnivory important? Am J Bot. 2001;88:170–176. PubMed

Jobson RW, Morris EC. Feeding ecology of a carnivorous bladderwort (Utricularia uliginosa, Lentibulariaceae) Aust Ecol. 2001;26:680–691.

Sirová D, Adamec L, Vrba J. Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia. New Phytol. 2003;159:669–675. PubMed

Sirová D, Borovec J, Cerná B, Rejmánková E, Adamec L, Vrba J. Microbial community development in the traps of aquatic Utricularia species. Aquat Bot. 2009;90:129–136.

Peroutka M, Adlassnig W, Volgger M, Lendl T, Url WG, Lichtscheidl IK. Utricularia: a vegetarian carnivorous plant? Algae as prey of bladderwort in oligotrophic bogs. Plant Ecol. 2008;199:153–162.

Alkhalaf IA, Hübener T, Porembski S. Prey spectra of aquatic Utricularia species (Lentibulariaceae) in northeastern Germany: The role of planktonic algae. Flora. 2009;204:700–708.

Cochran-Stafira DL, von Ende CN. Integrating bacteria into food webs: Studies with Sarracenia purpurea inquilines. Ecology. 1998;79:880–898.

Kneitel JM, Miller TE. Resource and top-predator regulation in the pitcher plant (Sarracenia purpurea) inquiline community. Ecology. 2002;83:680–688.

Gray SM, Miller TE, Mouquet N, Daufresne T. Nutrient limitation in detritus-based microcosms in Sarracenia purpurea. Hydrobiologia. 2006;573:173–181.

Adamec L. Oxygen concentrations inside the traps of the carnivorous plants Utricularia and Genlisea (Lentibulariaceae) Ann Bot. 2007;100:849–856. PubMed PMC

Marmottant P, Vincent O, Quilliet C. Cayenne, French Guiana: Book of Abstracts, Plant Biomechanics Conference. 2009. Study of the ultrafast trap of an aquatic carnivorous plant.

Vincent O, Weisskopf C, Poppinga S, Masselter T, Speck T, Joyeux M, et al. Ultra-fast underwater suction traps. Proc R Soc B. 2011 PubMed PMC

Adamec L. The comparison of mechanically stimulated and spontaneous firings in traps of aquatic carnivorous Utricularia species. Aquat Bot. 2011;94:44–49.

Płachno JB, Jankun A. Transfer cell wall architecture in secretory hairs of Utricularia intermedia traps. Acta Biol Cracov Ser Bot. 2004;46:193–200.

Adamec L. 2010. Unpublished results.

Jobson RW, Nielsen R, Laakkonen L, Wikström M, Albert VA. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation. Proc Natl Acad Sci USA. 2004;101:18064–18068. PubMed PMC

Laakkonen L, Jobson RW, Albert VA. A new model for the evolution of carnivory in the bladderwort plant (Utricularia): adaptive changes in cytochrome c oxidase (COX) provide respiratory power. Plant Biol. 2006;8:758–764. PubMed

Adamec L. Mineral nutrient relations in the aquatic carnivorous plant Utricularia australis and its investment in carnivory. Fund Appl Limnol. 2008;171:175–183.

Adamec L. Mineral cost of carnivory in aquatic carnivorous plants. Flora. 2010;205:618–621.

Kibriya S, Jones JI. Nutrient availability and the carnivorous habit in Utricularia vulgaris. Freshwater Biol. 2007;52:500–509.

Heslop-Harrison Y. Enzyme release in carnivorous plants. In: Dingle JT, Dean RT, editors. Lysozymes in biology and pathology. Amsterdam: North Holland Publishing; 1975. pp. 525–578. PubMed

Parkes DM. Adaptive mechanisms of surfaces and glands in some carnivorous plants. Monash University: Clayton, Victoria, Australia; 1980. MSc thesis.

Vintéjoux C, Shoar-Ghafari A. Glandes digestives de l'Utriculaire: ultrastructures et fonctions. Acta Bot Gall. 2005;152:131–145. (Fre).

Płachno BJ, Adamec L, Lichtscheidl IK, Peroutka M, Adlassnig W, Vrba J. Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants. Plant Biol. 2006;8:813–820. PubMed

Adamec L, Sirová D, Vrba J, Rejmánková E. Enzyme production in the traps of aquatic Utricularia species. Biologia. 2010;65:273–278.

Adamec L. Ecophysiological look at plant carnivory: Why are plants carnivorous? In: Seckbach J, Dubinski Z, editors. All flesh is grass. Plant-animal interrelationships. Cellular origin, life in extreme habitats and astrobiology. Dordrecht, Heidelberg, London, New York: Springer Science + Business Media BV; 2011. pp. 455–489.

Sirová D, Borovec J, Šantrucková H, Šantrucek J, Vrba J, Adamec L. Utricularia carnivory revisited: Plants supply photosynthetic carbon to traps. J Exp Bot. 2010;61:99–103. PubMed

Jobson RW, Morris EW, Burgin S. Carnivory and nitrogen supply affect the growth of the bladderwort Utricularia uliginosa. Aust J Bot. 2000;48:549–560.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace