The smallest angiosperm genomes may be the price for effective traps of bladderworts

. 2024 Dec 31 ; 134 (7) : 1131-1138.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39012023

BACKGROUND: Species of the carnivorous family Lentibulariaceae exhibit the smallest genomes in flowering plants. We explored the hypothesis that their minute genomes result from the unique mitochondrial cytochrome c oxidase (COX) mutation. The mutation may boost mitochondrial efficiency, which is especially useful for suction-bladder traps of Utricularia, but also increase DNA-damaging reactive oxygen species, leading to genome shrinkage through deletion-biased DNA repair. We aimed to explore the impact of this mutation on genome size, providing insights into genetic mutation roles in plant genome evolution under environmental pressures. METHODS: We compiled and measured genome and mean chromosome sizes for 127 and 67 species, respectively, representing all three genera (Genlisea, Pinguicula and Utricularia) of Lentibulariaceae. We also isolated and analysed COX sequences to detect the mutation. Through phylogenetic regressions and Ornstein-Uhlenbeck models of trait evolution, we assessed the impact of the COX mutation on the genome and chromosome sizes across the family. RESULTS: Our findings reveal significant correlations between the COX mutation and smaller genome and chromosome sizes. Specifically, species carrying the ancestral COX sequence exhibited larger genomes and chromosomes than those with the novel mutation. This evidence supports the notion that the COX mutation contributes to genome downsizing, with statistical analyses confirming a directional evolution towards smaller genomes in species harbouring these mutations. CONCLUSIONS: Our study confirms that the COX mutation in Lentibulariaceae is associated with genome downsizing, probably driven by increased reactive oxygen species production and subsequent DNA damage requiring deletion-biased repair mechanisms. While boosting mitochondrial energy output, this genetic mutation compromises genome integrity and may potentially affect recombination rates, illustrating a complex trade-off between evolutionary advantages and disadvantages. Our results highlight the intricate processes by which genetic mutations and environmental pressures shape genome size evolution in carnivorous plants.

Komentář v

PubMed

Zobrazit více v PubMed

Adamec L. 2006. Respiration and photosynthesis of bladders and leaves of aquatic Utricularia species. Plant Biology (Stuttgart, Germany) 8: 765–769. PubMed

Adamec L. 2011. The smallest but fastest: ecophysiological characteristics of traps of aquatic carnivorous Utricularia. Plant Signaling & Behavior 6: 640–646. PubMed PMC

Adamec L. 2013. A comparison of photosynthetic and respiration rates in six aquatic carnivorous Utricularia species differing in morphology. Aquatic Botany 111: 89–94.

Akaike H. 1978. A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of Statistical Mathematics 30: 9–14.

Albert VA, Jobson RW, Michael TP, Taylor DJ.. 2010. The carnivorous bladderwort (Utricularia, Lentibulariaceae): a system inflates. Journal of Experimental Botany 61: 5–9. PubMed

Baba SP, Bhatnagar A.. 2018. Role of thiols in oxidative stress. Current Opinion in Toxicology 7: 133–139. PubMed PMC

Beaulieu JM, OʹMeara B.. 2022. OUwie: analysis of evolutionary rates in an OU framework. R package version 2.10. https://CRAN.R-project.org/package=OUwie(7 February 2024, date last accessed).

Bennett MD, Leitch IJ.. 2005. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Annals of Botany 95: 45–90. PubMed PMC

Bennetzen JL, Wang H.. 2014. The contributions of transposable elements to the structure, function and evolution of plant genomes. Annual Review of Plant Biology 65: 505–530. PubMed

Bhadra S, Leitch IJ, Onstein RE.. 2023. From genome size to trait evolution during angiosperm radiation. Trends in Genetics 39: 728–735. PubMed

Bureš P, Elliott TL, Veselý P, et al.2024. The global distribution of genome size in angiosperms is shaped by climate. New Phytologist 242: 744–759. PubMed

Chase MW, Christenhusz MJM, Fay MF, et al.; Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20.

Drori M, Rice A, Einhorn M, Chay O, Glick L, Mayrose I.. 2018. OneTwoTree: an online tool for phylogeny reconstruction. Molecular Ecology Resources 18: 1492–1499. PubMed

Elliott TL, Zedek F, Barrett RL, et al.2022. Chromosome size matters: genome evolution in the cyperid clade. Annals of Botany 130: 999–1014. PubMed PMC

Ellison AM, Gotelli NJ.. 2009. Energetics and the evolution of carnivorous plants—Darwin’s ‘most wonderful plants in the world’. Journal of Experimental Botany 60: 19–42. PubMed

Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ.. 2021. Exploring environmental selection on genome size in angiosperms. Trends in Plant Science 26: 1039–1049. PubMed

Fleischmann A, Michael TP, Rivadavia F, et al.2014. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Annals of Botany 114: 1651–1663. PubMed PMC

Francis D, Davies MS, Barlow PW.. 2008. A strong nucleotypic effect on the cell cycle regardless of ploidy level. Annals of Botany 101: 747–757. PubMed PMC

Givnish TJ, Burkhardt EL, Happel RE, Weintraub JE.. 1984. Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. American Naturalist 124: 479–497.

Givnish TJ, Sparks KW, Hunter SJ, Pavlovič A.. 2018. Why are plants carnivorous? Cost/benefit analysis, whole-plant growth, and the context-specific advantages of botanical carnivory. In: Ellison AM, Adamec L. eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 232–255.

Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W.. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biology (Stuttgart, Germany) 8: 770–777. PubMed

Hanson L, McMahon KA, Johnson MAT, Bennett MD.. 2001. First nuclear DNA C-values for 25 angiosperm families. Annals of Botany 87: 251–258. PubMed

Ho LST, Ane C.. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology 63: 397–408. PubMed

Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, et al.2013. Architecture and evolution of a minute plant genome. Nature 498: 94–98. PubMed PMC

Jobson RW, Nielsen R, Laakkonen L, Wikström M, Albert VA.. 2004. Adaptive evolution of cytochrome c oxidase: infrastructure for a carnivorous plant radiation. Proceedings of the National Academy of Sciences of the United States of America 101: 18064–18068. PubMed PMC

Klomsiri C, Karplus PA, Poole LB.. 2011. Cysteine-based redox switches in enzymes. Antioxidants & Redox Signaling 14: 1065–1077. PubMed PMC

Knight CA, Molinari NA, Petrov DA.. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95: 177–190. PubMed PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K.. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. PubMed PMC

Laakkonen L, Jobson RW, Albert VA.. 2006. A new model for the evolution of carnivory in the bladderwort plant (Utricularia): Adaptive changes in cytochrome c oxidase (COX) provide respiratory power. Plant Biology (Stuttgart, Germany) 8: 758–764. PubMed

Leitch AR, Leitch IJ.. 2008. Genomic plasticity and the diversity of polyploid plants. Science 320: 481–483. PubMed

Leushkin EV, Sutormin RA, Nabieva ER, Penin AA, Kondrashov AS, Logacheva MD.. 2013. The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genomics 14: 476. PubMed PMC

Li J, Liu ZL.. 2022. Complete chloroplast genome sequence of the carnivorous herb Pinguicula alpina (Lentibulariaceae). Mitochondrial DNA. Part B, Resources 7: 1061–1062. PubMed PMC

Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry 79: 181–211. PubMed PMC

Lisch D. 2013. How important are transposons for plant evolution? Nature Reviews. Genetics 14: 49–61. PubMed

Lynch M, Conery JS.. 2003. The origins of genome complexity. Science 302: 1401–1404. PubMed

Mello B. 2018. Estimating timetrees with MEGA and the TimeTree resource. Molecular Biology and Evolution 35: 2334–2342. PubMed

Pellicer J, Leitch IJ.. 2020. The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. The New Phytologist 226: 301–305. PubMed

Peng Y, Yang J, Leitch IJ, et al.2022. Plant genome size modulates grassland community responses to multi-nutrient additions. The New Phytologist 236: 2091–2102. PubMed

Poppinga S, Weisskopf C, Westermeier AS, Masselter T, Speck T.. 2015. Fastest predators in the plant kingdom: functional morphology and biomechanics of suction traps found in the largest genus of carnivorous plants. AoB Plants 8: plv140. PubMed PMC

Ritz KR, Noor MAF, Singh ND.. 2017. Variation in recombination rate: adaptive or not? Trends in Genetics 33: 364–374. PubMed

Roddy AB, Théroux-Rancourt G, Abbo T, et al.2020. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. International Journal of Plant Sciences 181: 75–87.

Schubert I, Vu GTH.. 2016. Genome stability and evolution: attempting a holistic view. Trends in Plant Science 21: 749–757. PubMed

Shrivastav M, De Haro LP, Nickoloff JA.. 2008. Regulation of DNA double-strand break repair pathway choice. Cell Research 18: 134–147. PubMed

Silva SR, Moraes AP, Penha HA, et al.2019. The terrestrial carnivorous plant Utricularia reniformis sheds light on environmental and life-form genome plasticity. International Journal of Molecular Sciences 21: 3. PubMed PMC

Silva SR, Miranda VFO, Michael TP, et al.2023. The phylogenomics and evolutionary dynamics of the organellar genomes in carnivorous Utricularia and Genlisea species (Lentibulariaceae). Molecular Phylogenetics and Evolution 181: 107711. PubMed

Šímová I, Herben T.. 2012. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proceedings Biological Sciences 279: 867–875. PubMed PMC

Šmarda P, Hejcman M, Březinová A, et al.2013. Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. The New Phytologist 200: 911–921. PubMed

Šmarda P, Knápek O, Březinová A, et al.2019. Genome sizes and genomic guanine + cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia 91: 117–142.

Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM.. 2017. Recombination: the good, the bad and the variable. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 372: 20170279. PubMed PMC

Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S.. 2012. Estimating divergence times in large molecular phylogenies. Proceedings of the National Academy of Sciences of the United States of America 109: 19333–19338. PubMed PMC

Tenaillon MI, Hollister JD, Gaut BS.. 2010. A triptych of the evolution of plant transposable elements. Trends in Plant Science 15: 471–478. PubMed

Veleba A, Bureš P, Adamec L, Šmarda P, Lipnerová I, Horová L.. 2014. Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae. The New Phytologist 203: 22–28. PubMed

Veleba A, Šmarda P, Zedek F, Horová L, Šmerda J, Bureš P.. 2017. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Annals of Botany 119: 409–416. PubMed PMC

Veleba A, Zedek F, Horová L, et al.2020. Is the evolution of carnivory connected with genome size reduction? American Journal of Botany 107: 1253–1259. PubMed

Veselý P, Bures P, Šmarda P, Pavlícek T.. 2012. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Annals of Botany 109: 65–75. PubMed PMC

Vincent O, Marmottant P.. 2011. Carnivorous Utricularia: the buckling scenario. Plant Signaling & Behavior 6: 1752–1754. PubMed PMC

Vu GTH, Schmutzer T, Bull F, et al.2015. Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome 8: eplantgenome2015.04.0021. PubMed

Wagenmakers EJ, Farrell S.. 2004. AIC model selection using Akaike weights. Psychonomic Bulletin & Review 11: 192–196. PubMed

Westermeier AS, Fleischmann A, Müller K, et al.2017. Trap diversity and character evolution in carnivorous bladderworts (Utricularia, Lentibulariaceae). Scientific Reports 7: 12052. PubMed PMC

Wickham H. 2016. Programming with ggplot2. In: ggplot2. Use R!. Cham: Springer, 241–253. doi: https://doi.org/10.1007/978-3-319-24277-4_12 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...