Chromosome size matters: genome evolution in the cyperid clade
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36342743
PubMed Central
PMC9851305
DOI
10.1093/aob/mcac136
PII: 6808968
Knihovny.cz E-zdroje
- Klíčová slova
- Chromosome number, Cyperaceae, Juncaceae, Thurniaceae, chromosome size, distribution range size, genome size, holocentric chromosomes, holokinetic drive,
- MeSH
- chromozomy rostlin * genetika MeSH
- délka genomu MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- molekulární evoluce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: While variation in genome size and chromosome numbers and their consequences are often investigated in plants, the biological relevance of variation in chromosome size remains poorly known. Here, we examine genome and mean chromosome size in the cyperid clade (families Cyperaceae, Juncaceae and Thurniaceae), which is the largest vascular plant lineage with predominantly holocentric chromosomes. METHODS: We measured genome size in 436 species of cyperids using flow cytometry, and augment these data with previously published datasets. We then separately compared genome and mean chromosome sizes (2C/2n) amongst the major lineages of cyperids and analysed how these two genomic traits are associated with various environmental factors using phylogenetically informed methods. KEY RESULTS: We show that cyperids have the smallest mean chromosome sizes recorded in seed plants, with a large divergence between the smallest and largest values. We found that cyperid species with smaller chromosomes have larger geographical distributions and that there is a strong inverse association between mean chromosome size and number across this lineage. CONCLUSIONS: The distinct patterns in genome size and mean chromosome size across the cyperids might be explained by holokinetic drive. The numerous small chromosomes might function to increase genetic diversity in this lineage where crossovers are limited during meiosis.
Department of Plant Biology and Ecology University of Seville Reina Mercedes 6 41012 Seville Spain
Institute of Botany of the Czech Academy of Sciences 252 43 Průhonice Czech Republic
Montreal Botanical Garden 4101 Sherbrooke East Montreal QC H1X 2B2 Canada
National Museum Department of Botany Cirkusová 1740 193 00 Prague 9 Czech Republic
New York Botanical Garden Bronx NY 10458 5126 USA
Zobrazit více v PubMed
Avdulov NP. 1931. Karyo-systematische untersuchungen der familie Gramineen. Bulletin of Applied Botany, of Genetics and Plant Breeding, Leningrad 44: 1–428.
Baez M, Kuo Y-T, Dias Y, et al. . 2020. Analysis of the small chromosomal Prionium serratum (Cyperid) demonstrates the importance of reliable methods to differentiate between mono- and holocentricity. Chromosoma 129: 285–297. PubMed PMC
Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57: 28989–28300. doi:10.1111/j.2517-6161.1995.tb02031.x. DOI
Bennett MD. 1987. Variation in genomic form in plants and its ecological implications. New Phytologist 106: 177–200.
Blomberg SP, Garland T, Ives AR. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717–745. doi:10.1111/j.0014-3820.2003.tb00285.x. PubMed DOI
Brown JH. 1984. On the relationship between abundance and distribution of species. The American Naturalist 124: 255–279. doi:10.1086/284267. DOI
Brožová V, Proćków J, Drábková LZ. 2022. Toward finally unraveling the phylogenetic relationships of Juncaceae with respect to another cyperid family, Cyperaceae. Molecular Phylogenetics and Evolution 177: 107588. PubMed
Brummitt RK, Pando F, Hollis S, Brummitt N. 2001. World geographical scheme for recording plant distributions. Pittsburgh, PA: Hunt Institute for Botanical Documentation, Carnegie-Mellon University.
Burchardt P, Buddenhagen CE, Gaeta ML, Souza MD, Marques A, Vanzela ALL. 2020. Holocentric karyotype evolution in Rhynchospora is marked by intense numerical, structural, and genome size changes. Frontiers in Plant Science 11: 1390. PubMed PMC
Bureš P. 1998. A high polyploid Eleocharis uniglumis sl (Cyperaceae) from Central and Southeastern Europe. Folia Geobotanica 33: 429–439. doi:10.1007/bf02803644. DOI
Bureš P, Zedek F. 2014. Holokinetic drive: centromere drive in chromosomes without centromeres. Evolution 68: 2412–2420. doi:10.1111/evo.12437. PubMed DOI
Bureš P, Zedek F, Marková M. 2013. Holocentric chromosomes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF, eds. Plant genome diversity, Vol. 2. Vienna: Springer, 187–208.
Burt A. 2000. Perspective: sex, recombination, and the efficacy of selection – was Weismann right? Evolution 54: 337–351. doi:10.1111/j.0014-3820.2000.tb00038.x. PubMed DOI
Cacho NI, McIntyre PJ, Kliebenstein DJ, Strauss SY. 2021. Genome size evolution is associated with climate seasonality and glucosinolates, but not life history, soil nutrients or range size, across a clade of mustards. Annals of Botany 127: 887–902. doi:10.1093/aob/mcab028. PubMed DOI PMC
Can M, Wei W, Zi H, et al. . 2020. Genome sequence of Kobresia littledalei, the first chromosome-level genome in the family Cyperaceae. Scientific Data 7: 1–8. PubMed PMC
Cardillo M, Dinnage R, McAlister W. 2019. The relationship between environmental niche breadth and geographic range size across plant species. Journal of Biogeography 46: 97–109.
Cardoso P. 2017. red – an R package to facilitate species red list assessments according to the IUCN criteria. Biodiversity Data Journal (5): e20530. PubMed PMC
Carta A, Bedini G, Peruzzi L. 2018. Unscrambling phylogenetic effects and ecological determinants of chromosome number in major angiosperm clades. Scientific Reports 8: 14258. PubMed PMC
Carta A, Bedini G, Peruzzi L. 2020. A deep dive into the ancestral chromosome number and genome size of flowering plants. New Phytologist 228: 1097–1106. doi:10.1111/nph.16668. PubMed DOI
Chamberlain S, Barve V, Mcglinn D, Oldoni D, Desmet P, Geffert L, Ram K. 2020. rgbif: interface to the Global Biodiversity Information Facility API. https://cran.r-project.org/web/packages/rgbif/rgbif.pdf
Chung K, Hipp AL, Roalson EH. 2012. Chromosome number evolves independently of genome size in a clade with nonlocalized centromeres (Carex: Cyperaceae). Evolution 66: 2708–2722. doi:10.1111/j.1558-5646.2012.01624.x. PubMed DOI
Doležel J, Bartoš J, Voglmayr H, Greilhuber J. 2003. Nuclear DNA content and genome size of trout and human. Cytometry A 51: 127–128. PubMed
Dormann CF, Elith J, Bacher S, et al. . 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46.
Drábková LZ, Vlček C. 2009. DNA variation within Juncaceae: comparison of impact of organelle regions on phylogeny. Plant Systematics and Evolution 278: 169–186.
Dunnett CW. 1980. Pairwise multiple comparisons in the homogeneous variance, unequal sample size case. Journal of the American Statistical Association 75: 789–795. doi:10.1080/01621459.1980.10477551. DOI
Edelsbrunner H, Mücke EP. 1994. Three-dimensional alpha shapes. ACM Transactions on Graphics 13: 43–72.
Elliott TL, Muasya AM, Bureš P. 2022. Complex patterns of ploidy in a holocentric plant clade (Schoenus, Cyperaceae) in the Cape biodiversity hotspot. Annals of Botany. doi:10.1093/aob/mcac027. PubMed DOI PMC
Elliott TL, Larridon I, Barrett RL, Bruhl JJ, Costa SM, Escudero M, Hipp AL, Jiménez-Mejías P, Kirschner J, Luceño M, Ignacio Márquez-Corro J, Martín-Bravo S, Roalson EH, Semmouri I, Spalink D, Wayt Thomas W, Villaverde T, Wilson KL, Muthama Muasya A. 2022. Addressing inconsistencies in Cyperaceae and Juncaceae taxonomy: Comment on Brožová et al. Molecular Phylogenetics and Evolution. doi:10.1016/j.ympev.2022.107665. PubMed DOI
Escudero M, Hipp AL, Hansen TF, Voje KL, Luceño M. 2012. Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae). New Phytologist 195: 237–247. doi:10.1111/j.1469-8137.2012.04137.x. PubMed DOI
Escudero M, Maguilla E, Loureiro J, Castro M, Castro S, Modesto L. 2015. Genome size stability despite high chromosome number variation in Carex gr. laevigata. American Journal of Botany 102: 233–238. PubMed
Escudero M, Márquez-Corro JI, Hipp AL. 2016. The phylogenetic origins and evolutionary history of holocentric chromosomes. Systematic Botany 41: 580–585. doi:10.1600/036364416x692442. DOI
Escudero M, Hahn M, Hipp AL. 2018. RAD‐seq linkage mapping and patterns of segregation distortion in sedges: meiosis as a driver of karyotypic evolution in organisms with holocentric chromosomes. Journal of Evolutionary Biology 31: 833–843. doi:10.1111/jeb.13267. PubMed DOI
Flora of North America Editorial Committee. 1993. Flora of North America North of Mexico. New York: Oxford University Press.
Freckleton R, Harvey P, Pagel M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist 160: 712–726. doi:10.1086/343873. PubMed DOI
Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049–1051. doi:10.1126/science.220.4601.1049. PubMed DOI
Gardiner JD, Behnsen J, Brassey CA. 2018. Alpha shapes: determining 3D shape complexity across morphologically diverse structures. BMC Evolutionary Biology 18: 1–16. PubMed PMC
Gaston KJ, Spicer JI. 2001. The relationship between range size and niche breadth: a test using five species of Gammarus (Amphipoda). Global Ecology and Biogeography 10: 179–188. doi:10.1046/j.1466-822x.2001.00225.x. DOI
Global Carex Group, Roalson EH, Jiménez-Mejías P, et al. . 2021. A framework infrageneric classification of Carex (Cyperaceae) and its organizing principles. Journal of Systematics and Evolution 59: 726–762.
Goetghebeur P. 1998. Cyperaceae. In: Kubitzki K, ed. The families and genera of vascular plants. Flowering plants, Monocotyledons: Alismatanae and Commelinanae (except Gramineae). New York: Springer, 141–190.
Govaerts R, Jiménez-Mejías P, Koopman J, et al. . 2021. World checklist of selected plant families. Cyperaceae. Kew: Royal Botanic Gardens,
Greilhuber J, Leitch IJ. 2013. Genome size and the phenotype. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF, eds. Plant genome diversity, Vol. 2. Vienna: Springer, 323–344.
Greilhuber J, Doležel J, Lysák MA, Bennett M. 2005. The origin, evolution and proposed stabilization of the terms ‘Genome Size’ and ‘C-Value’ to describe nuclear DNA contents. Annals of Botany 95: 255–260. PubMed PMC
Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biology 8: 770–777. PubMed
Guerra M, Ribeiro T, Felix LP. 2019. Monocentric chromosomes in Juncus (Juncaceae) and implications for the chromosome evolution of the family. Botanical Journal of the Linnean Society 191: 475–483. doi:10.1093/botlinnean/boz065. DOI
Guignard MS, Nichols RA, Knell RJ,, et al.. 2016. Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. New Phytologist 210: 1195–1206. PubMed PMC
Guignard M, Leitch A, Acquisti C, et al. . 2017. Impacts of nitrogen and phosphorus: from genomes to natural ecosystems and agriculture. Frontiers in Ecology and Evolution 5: 70.
Harms LJ. 1968. Cytotaxonomic studies in Eleocharis subser. Palustres: central United States taxa. American Journal of Botany 55: 966–974. doi:10.1002/j.1537-2197.1968.tb07456.x. DOI
Hasegawa N. 1932. Comparison of chromosome types in Disporum. Cytologia 4: 350–368.
Heitz H. 1925–1926. Der nachweis der chromosomen. Vergleichende Studien über ihre Zahl, Grösse ond Form im Pflanzenreich I. Zeitschrift für Botanik 18: 627–681.
Hidalgo O, Pellicer J, Christenhusz M, Schneider H, Leitch AR, Leitch IJ. 2017. Is there an upper limit to genome size? Trends in Plant Science 22: 567–573. doi:10.1016/j.tplants.2017.04.005. PubMed DOI
Hijmans RJ. 2020. Geographic data analysis and modeling [R package raster version 3.4-5]. https://rspatial.org/raster
Hofstatter PG, Thangavel G, Lux T, et al. . 2022. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 185: 3153–3168.e18. doi:10.1016/j.cell.2022.06.045. PubMed DOI
International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. Nature 436: 793–800. PubMed
IUCN. 2001. IUCN Red List categories and criteria: Version 3.1. IUCN Species Survival Commission. Gland, Switzerland and Cambridge, UK: IUCN.
Jankowska M, Fuchs J, Klocke E, et al. . 2015. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma 124: 519–528. doi:10.1007/s00412-015-0524-y. PubMed DOI
Janzen DH. 1967. Why mountain passes are higher in the tropics? The American Naturalist 101: 233–249.
Johnen L, de Souza TB, Rocha DM, et al. . 2020. Allopolyploidy and genomic differentiation in holocentric species of the Eleocharis montana complex (Cyperaceae). Plant Systematics and Evolution 306: 1–17.
Johnson C. 1998. Species extinction and the relationship between distribution and abundance. Nature 394: 272–274.
Kang M, Wang J, Huang H. 2015. Nitrogen limitation as a driver of genome size evolution in a group of karst plants. Scientific Reports 5: 1–8. PubMed PMC
Karger DN, Conrad O, Böhner J, et al. . 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4: 170122. doi:10.1038/sdata.2017.122. PubMed DOI PMC
Kaur N, Datson PM, Murray BG. 2012. Genome size and chromosome number in the New Zealand species of Schoenus (Cyperaceae). Botanical Journal of the Linnean Society 169: 555–564. doi:10.1111/j.1095-8339.2012.01238.x. DOI
Knight CA, Ackerly DD. 2002. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters 5: 66–76. doi:10.1046/j.1461-0248.2002.00283.x. DOI
Knight CA, Molinari NA, Petrov DA. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95: 177–190. doi:10.1093/aob/mci011. PubMed DOI PMC
Kostoff D. 1939. Evolutionary significance of chromosome size and chromosome number in plants. Current Science 8: 306–310.
Krátká M, Šmerda J, Lojdová K, Bureš P, Zedek F. 2021. Holocentric chromosomes probably do not prevent centromere drive in Cyperaceae. Frontiers in Plant Science 12: 229. PubMed PMC
LaBar T, Adami C. 2020. Genome size and the extinction of small populations. In: Banzhaf W, Cheng BHC, Deb K, et al.., eds. Evolution in action: past, present and future. Cham, Switzerland: Springer, 167–183.
Lafarge T, Pateiro-Lopez B. 2020. Implementation of the 3D alpha-shape for the reconstruction of 3D sets from a point cloud. alphashape3d: R package version 1.3.1. https://CRAN.R-project.org/package=alphashape3d
Larridon I, Spalink D, Jiménez‐Mejías P, et al. . 2021a. The evolutionary history of sedges (Cyperaceae) in Madagascar. Journal of Biogeography 48: 917–932. doi:10.1111/jbi.14048. DOI
Larridon I, Zuntini AR, Léveillé-Bourret E, et al. . 2021b. A new classification of Cyperaceae (Poales) supported by phylogenomic data. Journal of Systematics and Evolution 59: 852–895.
Lee B, Cho Y, Kim S. 2019. Genome size estimation of 43 Korean Carex. Korean Journal of Plant Taxonomy 49: 334–344. doi:10.11110/kjpt.2019.49.4.334. DOI
Leitch AR, Leitch IJ. 2008. Genomic plasticity and the diversity of polyploid plants. Science 320: 481–483. doi:10.1126/science.1153585. PubMed DOI
Leitch IJ, Beaulieu JM, Chase MW, Leitch AR, Fay MF. 2010. Genome size dynamics and evolution in monocots. Journal of Botany 2010: 862516.
Leutner B, Horning N, Schwalb-Willmann J, Hijmans R. 2017. RStoolbox: tools for remote sensing data analysis. R package version 0.1 7. https://CRAN.R-project.org/package=RStoolbox
Levin DA, Funderburg SW. 1979. Genome size in angiosperms: temperate versus tropical species. The American Naturalist 114: 784–795. doi:10.1086/283528. DOI
Linder HP, Rudall PJ. 2005. Evolutionary history of Poales. Annual Review of Ecology, Evolution, and Systematics 36: 107–124. doi:10.1146/annurev.ecolsys.36.102403.135635. DOI
Lipnerová I, Bureš P, Horová L, Šmarda P. 2013. Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition. Annals of Botany 111: 79–94. PubMed PMC
Lucek K, Augustijnen H, Escudero M. 2022. A holocentric twist to chromosomal speciation? Trends in Ecology & Evolution 37: 655–662. PubMed
Luceño M, Vanzela ALL, Guerra M. 1998. Cytotaxonomic studies in Brazilian Rhynchospora (Cyperaceae), a genus exhibiting holocentric chromosomes. Canadian Journal of Botany 76: 440–449.
Lynch M. 2007. The frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences, USA 104: 8597–8604. doi:10.1073/pnas.0702207104. PubMed DOI PMC
Lynch M, Conery JS. 2003. The origins of genome complexity. Science 302: 1401–1404. doi:10.1126/science.1089370. PubMed DOI
Mandrioli M, Manicardi GC. 2020. Holocentric chromosomes. PLoS Genetics 16: e1008918. doi:10.1371/journal.pgen.1008918. PubMed DOI PMC
Márquez-Corro JI, Martín-Bravo S, Pedrosa-Harand A, Hipp AL, Luceño M, Escudero M. 2019a. Karyotype evolution in holocentric organisms. In: eLS. Chichester: John Wiley & Sons.doi: 10.1002/9780470015902.a0028758 DOI
Márquez-Corro JI, Martín-Bravo S, Spalink D, Luceño M, Escudero M. 2019b. Inferring hypothesis-based transitions in clade-specific models of chromosome number evolution in sedges (Cyperaceae). Molecular Phylogenetics and Evolution 135: 203–209. doi:10.1016/j.ympev.2019.03.006. PubMed DOI
Márquez-Corro JI, Martín-Bravo S, Jiménez‐Mejías P, et al. . 2021. Macroevolutionary insights into sedges (Carex: Cyperaceae): the effects of rapid chromosome number evolution on lineage diversification. Journal of Systematics and Evolution 59: 776–790.
Melters DP, Paliulis LV, Korf IF, Chan SW. 2012. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Research 20: 579–593. PubMed
Neumann P, Oliveira L, Čížková J, et al. . 2021. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta. New Phytologist 229: 2365–2377. PubMed
Ng CH, Lee SL, Tnah LH, Ng KKS, Lee CT, Madon M. 2016. Genome size variation and evolution in Dipterocarpaceae. Plant Ecology & Diversity 9: 437–446.
Nijalingappa B. 1974. Cytological studies in Scirpus (Cyperaceae). Proceedings of the Indian Academy of Sciences 80: 134–138.
Nishikawa K, Furuta Y, Ishitobi K. 1984. Chromosomal evolution in genus Carex as viewed from nuclear DNA content, with special reference to its aneuploidy. The Japanese Journal of Genetics 59: 465–472. doi:10.1266/jjg.59.465. DOI
Orme D. 2013. The CAPER package: comparative analysis of phylogenetics and evolution in R. https://cran.r-project.org/web/packages/caper/index.html.
Otto F, Oldiges H, Göhde W, Jain V. 1981. Flow cytometric measurement of nuclear DNA content variations as a potential in vivo mutagenicity test. Cytometry 2: 189–191. PubMed
Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. doi:10.1093/bioinformatics/btg412. PubMed DOI
Pellicer J, Leitch IJ. 2020. The Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist 226: 301–305. PubMed
Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. 2018. Genome size diversity and its impact on the evolution of land plants. Genes 9: 88. doi:10.3390/genes9020088. PubMed DOI PMC
Plačková K, Zedek F, Schubert V, Houben A, Bureš P. 2022. Kinetochore size scales with chromosome size in bimodal karyotypes of Agavoideae. Annals of Botany 130: 77–84. PubMed PMC
Planta J, Liang Y-Y, Xin H, et al. . 2022. Chromosome scale genome assemblies and annotations for Poales species Carex cristatella, Carex scoparia, Juncus effusus and Juncus inflexus. G3 Genes| Genomes| Genetics 12: jkac211. doi:10.1093/g3journal/jkac211. PubMed DOI PMC
R Core Team. 2020. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rice A, Glick L, Abadi S, et al. . 2015. The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytologist 206: 19–26. PubMed
Richardson L. 2019. Beautiful soup documentation Version 4.4.0. https://beautiful-soup-4.readthedocs.io/en/latest/
Roalson EH. 2008. A synopsis of chromosome number variation in the Cyperaceae. The Botanical Review 74: 209–393.
Roalson EH, McCubbin AG, Whitkus R. 2007. Chromosome evolution in Cyperales. Aliso 23: 62–71A.
da Silva CRM, de Souza TB, Trevisan R, et al. . 2017. Genome differentiation, natural hybridisation and taxonomic relationships among Eleocharis viridans, E. niederleinii and E. ramboana (Cyperaceae). Australian Systematic Botany 30: 183–195. doi:10.1071/sb17002. DOI
Slatyer RA, Hirst M, Sexton JP. 2013. Niche breadth predicts geographical range size: a general ecological pattern. Ecology Letters 16: 1104–1114. doi:10.1111/ele.12140. PubMed DOI
Šmarda P, Bureš P, Horová L, Foggi B, Rossi G. 2008. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Annals of Botany 101: 421–433. PubMed PMC
Šmarda P, Hejcman M, Březinová A, et al. . 2013. Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. New Phytologist 200: 911–921. doi:10.1111/nph.12399. PubMed DOI
Šmarda P, Bureš P, Horová L, et al. . 2014. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences, USA 111: E4096–E4102. PubMed PMC
Soltis DE, Soltis PS, Bennett MD, Leitch IJ. 2003. Evolution of genome size in the angiosperms. American Journal of Botany 90: 1596–1603. doi:10.3732/ajb.90.11.1596. PubMed DOI
de Sousa LM, Poggio L, Batjes NH, et al. . 2020. SoilGrids 2.0: producing quality-assessed soil information for the globe. Soil 7: 217–240.
de Souza TB, Chaluvadi SR, Johnen L, et al. . 2018. Analysis of retrotransposon abundance, diversity and distribution in holocentric Eleocharis (Cyperaceae) genomes. Annals of Botany 122: 279–290. PubMed PMC
Stace CA. 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49: 451–477. doi:10.2307/1224344. DOI
Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. 2017. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philosophical Transactions of the Royal Society B: Biological Sciences 372: 20160455. PubMed PMC
Stebbins GL. 1966. Chromosomal variation and evolution: polyploidy and chromosome size and number shed light on evolutionary processes in higher plants. Science 152: 1463–1469. doi:10.1126/science.152.3728.1463. PubMed DOI
Temsch EM, Koutecký P, Urfus T, Šmarda P, Doležel J. 2022. Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants. Cytometry A 101: 710–724. PubMed PMC
Tukey JW. 1949. Comparing individual means in the analysis of variance. Biometrics 5: 99–114. PubMed
Vanzela ALL, Guerra M, Luceño M. 1996. Rhynchospora tenuis Link (Cyperaceae), a species with the lowest number of holocentric chromosomes. Cytobios 88: 219–228.
Varela S, Anderson RP, García-Valdés R, Fernández-González F. 2014. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37: 1084–1091.
Veleba A, Bureš P, Adamec L, Šmarda P, Lipnerová I, Horová L. 2014. Genome size and genomic GC content evolution in the miniature genome‐sized family Lentibulariaceae. New Phytologist 203: 22–28. doi:10.1111/nph.12790. PubMed DOI
Veleba A, Šmarda P, Zedek F, Horová L, Šmerda J, Bureš P. 2017. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Annals of Botany 119: 409–416. doi:10.1093/aob/mcw229. PubMed DOI PMC
Veleba A, Zedek F, Horová L, Veselý P, Srba M, Šmarda P, Bureš P. 2020. Is the evolution of carnivory connected with genome size reduction? American Journal of Botany 107: 1253–1259. doi: 10.1002/ajb2.1526 PubMed DOI
Veselý P, Bureš P, Šmarda P, Pavlíček T. 2012. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Annals of Botany 109: 65–75. PubMed PMC
Vinogradov AE. 2003. Selfish DNA is maladaptive: evidence from the plant Red List. Trends in Genetics 19: 609–614. doi:10.1016/j.tig.2003.09.010. PubMed DOI
Wang S, Veller C, Sun F, et al. . 2019. Per-nucleus crossover covariation and implications for evolution. Cell 177: 326–338. PubMed PMC
WCVP. 2022. World Checklist of Vascular Plants, version 2.0. Facilitated by the Royal Botanic Gardens, Kew. http://wcvp.science.kew.org/
Xu S, Dai Z, Guo P, et al. . 2021. ggtreeExtra: compact visualization of richly annotated phylogenetic data. Molecular Biology and Evolution 38: 4039–4042. doi:10.1093/molbev/msab166. PubMed DOI PMC
Yang X, Post WM, Thornton PE, Jain A. 2013. The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 9: 2525–2537.
Zedek F, Šmerda J, Šmarda P, Bureš P. 2010. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biology 10: 265. doi:10.1186/1471-2229-10-265. PubMed DOI PMC
Zedek F, Veselý P, Horová L, Bureš P. 2016. Flow cytometry may allow microscope-independent detection of holocentric chromosomes in plants. Scientific Reports 6: 27161. doi:10.1038/srep27161. PubMed DOI PMC
Zedek F, Veselý P, Tichý L, et al. . 2022. Holocentric plants are more competitive under higher UV‐B doses. New Phytologist 233: 15–21. PubMed
Zizka A, Silvestro D, Andermann T, et al. . 2019. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution 10: 744–751. doi:10.1111/2041-210x.13152. DOI
Centromere drive may propel the evolution of chromosome and genome size in plants
The smallest angiosperm genomes may be the price for effective traps of bladderworts