Is the evolution of carnivory connected with genome size reduction?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32882073
DOI
10.1002/ajb2.1526
Knihovny.cz E-zdroje
- Klíčová slova
- Sarraceniaceae, c-value, carnivorous plants, flow cytometry, genome miniaturization, life form, nuclear DNA content, nutrient limitation,
- MeSH
- délka genomu MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- lidé MeSH
- Magnoliopsida genetika MeSH
- masožravci * MeSH
- polyploidie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PREMISE: As repeatedly shown, the remarkable variation in the genome size of angiosperms can be shaped by extrinsic selective pressures, including nutrient availability. Carnivory has evolved independently in 10 angiosperm clades, but all carnivorous plants share a common affinity to nutrient-poor habitats. As such, carnivory and genome reduction could be responses to the same environmental pressure. Indeed, the smallest genomes among flowering plants are found in the carnivorous family Lentibulariaceae, where a unique mutation in cytochrome c oxidase (COX) is suspected to promote genome miniaturization. Despite these hypotheses, a phylogenetically informed test of genome size and nutrient availability across carnivorous clades has so far been missing. METHODS: Using linear mixed models, we compared genome sizes of 127 carnivorous plants from 7 diverse angiosperm clades with 1072 of their noncarnivorous relatives. We also tested whether genome size in Lentibulariaceae reflects the presence of the COX mutation. RESULTS: The genome sizes of carnivorous plants do not differ significantly from those of their noncarnivorous relatives. Based on available data, no significant association between the COX mutation and genome miniaturization could be confirmed, not even when considering polyploidy. CONCLUSIONS: Carnivory alone does not seem to significantly affect genome size decrease. Plausibly, it might actually counterbalance the effect of nutrient limitation on genome size evolution. The role of the COX mutation in genome miniaturization needs to be evaluated by analysis of a broader data set because current knowledge of its presence across Lentibulariaceae covers less than 10% of the species diversity in this family.
Zobrazit více v PubMed
Adamec, L. 2006. Respiration and photosynthesis of bladders and leaves of aquatic Utricularia species. Plant Biology 8: 765-769.
Adamec, L.2011. Ecophysiological look at plant carnivory: Why are plants carnivorous? In J. Seckbach and Z. Dubinski [eds.], All flesh is grass. Plant-animal interrelationships, vol. 16, Cellular origin, life in extreme habitats and astrobiology, 455-489. Springer Science + Business Media B. V., Dordrecht, Netherlands.
Adamec, L. 2017. Quantification of growth benefit of carnivorous plants from prey. Carnivorous Plant Newsletter 46: 1-7.
Adamec, L., and A. Pavlovič. 2018. Mineral nutrition of terrestrial carnivorous plants. In A. M. Ellison and L. Adamec [eds.], Carnivorous plants: Physiology, ecology, and evolution, 221-231. Oxford University Press, Oxford, UK.
Albach, D. C., and J. Greilhuber. 2004. Genome size variation and evolution in Veronica. Annals of Botany 94: 897-911.
Albert, V. A., R. W. Jobson, T. P. Michael, and D. J. Taylor. 2010. The carnivorous bladderwort (Utricularia, Lentibulariaceae): a system inflates. Journal of Experimental Botany 61: 5-9.
Beaulieu, J. M., I. J. Leitch, S. Patel, A. Pendharkar, and C. A. Knight. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975-986.
Baduel, P., S. Bray, M. Vallejo-Marin, F. Kolář, and L. Yant. 2018. The “polyploid hop”: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Frontiers in Ecology and Evolution 6: 117.
Bennett, M. D. 1971. The duration of meiosis. Proceedings of the Royal Society, B, Biological Sciences 178: 259-275.
Bennett, M. D. 1987. Variation in genomic form in plants and its ecological implications. New Phytologist 106 (Supplement): 177-200.
Bennett, M. D., and I. J. Leitch. 2005. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Annals of Botany 95: 45-90.
Bennett, M. D., and I. J. Leitch. 2012. Plant DNA C-values database (release 6.0, December 2012). Website: http://data.kew.org/cvalues/.
Dixon, K. V., J. S. Pate, and W. J. Bailey. 1980. Nitrogen nutrition of the tuberous sundew Drosera erythrorhiza Lindl. with a special reference to catch of arthropod fauna by its glandular leaves. Australian Journal of Botany 28: 283-297.
Ellenberg, H., and D. Mueller-Dombois. 1967. A key to Raunkiaer plant life-forms with revised subdivisions. Berichte des Geobotanischen Institutes der Eidgenössischen Technischen Hochschule, Stiftung Rübel 37: 56-73.
Ellison, A. M., and L. Adamec. 2018. Introduction: What is a carnivorous plant? In A. M. Ellison and L. Adamec [eds.], Carnivorous plants: Physiology, ecology, and evolution, 3-6. Oxford University Press, Oxford, UK.
Ellison, A. M., and N. J. Gotelli. 2009. Energetics and the evolution of carnivorous plants-Darwin’s ‘most wonderful plants in the world’. Journal of Experimental Botany 60: 19-42.
Fleischmann, A., T. P. Michael, F. Rivadavia, A. Sousa, W. Wang, E. M. Temsch, J. Greilhuber, et al. 2014. Evolution of genome size and chromosome numbers in the carnivorous plant genus Genlisea (Lentibulariaceae). Annals of Botany 114: 1651-1663.
Fleischmann, A., J. Schlauer, S. A. Smith, and T. J. Givnish. 2018. Evolution of carnivory in angiosperms. In A. M. Ellison and L. Adamec [eds.], Carnivorous plants: Physiology, ecology, and evolution, 22-41. Oxford University Press, Oxford, UK.
Francis, D., M. S. Davies, and P. W. Barlow. 2008. A strong nucleotypic effect on the cell cycle regardless of ploidy level. Annals of Botany 101: 747-757.
Fukushima, K., X. Fang, D. Alvarez-Ponce, H. Cai, L. Carretero-Paulet, C. Chen, T. H. Chang, et al. 2017. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nature Ecology and Evolution 6: 59.
Givnish, T. J., E. L. Burkhardt, R. E. Happel, and J. E. Weintraub. 1984. Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. American Naturalist 124: 479-497.
Givnish, T. J., K. W. Sparks, S. J. Hunter, and A. Pavlovič. 2018. Why are plants carnivorous? Cost/benefit analysis, whole-plant growth, and the context-specific advantages of botanical carnivory. In A. M. Ellison and L. Adamec [eds.], Carnivorous plants: Physiology, ecology, and evolution, 232-255. Oxford University Press, Oxford, UK.
Greilhuber, J., T. Borsch, K. Müller, A. Worberg, S. Porembski, and W. Barthlott. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biology 8: 770-777.
Guignard, M. S., R. A. Nichols, R. J. Knell, A. Macdonald, C.-A. Romila, M. Trimmer, I. J. Leitch, and A. R. Leitch. 2016. Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. New Phytologist 210: 1195-1206.
Guignard, M. S., A. R. Leitch, C. Acquisti, C. Eizaguirre, J. J. Elser, D. O. Hessen, and I. J. Leitch. 2017. Impacts of nitrogen and phosphorus: From genomes to natural ecosystems and agriculture. Frontiers in Ecology and Evolution 5: 1-9.
Hadfield, J. D. 2010. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software 33: 1-22.
Hanson, L., K. A. McMahon, M. A. T. Johnson, and M. D. Bennett. 2001. First nuclear DNA C-values for 25 angiosperm families. Annals of Botany 87: 251-258.
Hassler, M.2019. World plants: synonymic checklists of the vascular plants of the World (version Nov 2018). In Y. Roskov, G. Ower, T. Orrell, D. Nicolson, N. Bailly, P. M. Kirk, T. Bourgoin, et al. [eds.], Species 2000 & ITIS Catalogue of life, 2019 Annual checklist. Website: www.catalogueoflife.org/annual-checklist/2019. Species 2000: Naturalis, Leiden, the Netherlands [accessed 7 December 2019].
Hessen, D. O., P. D. Jeyasingh, M. Neiman, and L. J. Weider. 2009. Genome streamlining and the elemental costs of growth. Trends in Ecology and Evolution 25: 75-80.
Hessen, D. O., M. Ventura, and J. J. Elser. 2008. Do phosphorus requirements for RNA limit genome size in crustacean plankton? Genome 51: 685-691.
Heubl, G., G. Bringmann, and H. Meimberg. 2006. Molecular phylogeny and character evolution of carnivorous plant families in Caryophyllales - revisited. Plant Biology 8: 821-830.
Ibarra-Laclette, E., V. A. Albert, A. Herrera-Estrella, and L. Herrera-Estrella. 2011. Is GC bias in the nuclear genome of the carnivorous plant Utricularia driven by ROS-based mutation and biased gene conversion? Plant Signaling & Behavior 6: 1631-1634.
Ibarra-Laclette, E., E. Lyons, G. Hernández-Guzmán, C. A. Pérez-Torres, L. Carretero-Paulet, T.-H. Chang, T. Lan, et al. 2013. Architecture and evolution of a minute plant genome. Nature 498: 94-98.
International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. Nature 436: 793-800.
Jobson, R. W., and V. A. Albert. 2002. Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. Cladistics 18: 127-136.
Jobson, R. W., N. Rasmus, L. Laakkonen, M. Wikström, and V. A. Albert. 2004. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation. Proceedings of the National Academy of Sciences, USA 101: 18064-18068.
Johnson, M. A. T. 1980. Chromosome numbers in Akania and Cephalotus. Kew Bulletin 34: 37-38.
Kang, M., J. Wang, and H. Huang. 2015. Nitrogen limitation as a driver of genome size evolution in a group of karst plants. Scientific Reports 5: 11636.
Keighery, G. J. 1979. Chromosome counts in Cephalotus (Cephalotaceae). Plant Systematics and Evolution 133: 103-104.
Kondo, K. 1969. Chromosome numbers of carnivorous plants. Bulletin of Torrey Botanical Club 96: 322-328.
Kress, A. 1970. Zytotaxonomische Untersuchungen an einigen Insektenfängern (Droseraceae, Byblidaceae, Cephalotaceae, Roridulaceae, Sarraceniaceae). Berichte der Deutschen Botanischen Gesellschaft 83: 55-62.
Laakkonen, L., R. W. Jobson, and V. A. Albert. 2006. A new model for the evolution of carnivory in the bladderwort plant (Utricularia): Adaptive changes in cytochrome c oxidase (COX) provide respiratory power. Plant Biology 8: 758-764.
Leitch, A. R., and I. J. Leitch. 2008. Genomic plasticity and the diversity of polyploid plants. Science 320: 481-483.
Leitch, A. R., and I. J. Leitch. 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist 194: 629-646.
Leitch, I. J., and M. D. Bennett. 2007. Genome size and its uses: the impact of flow cytometry. In J. Doležel, J. Greilhuber, and J. Suda [eds.], Flow cytometry with plant cells, 153-176. Wiley-VCH Verlag, Weinheim, Germany.
Leushkin, E. V., R. A. Sutormin, E. R. Nabieva, A. A. Penin, A. S. Kondrashov, and M. D. Logacheva. 2013. The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genomics 14: 476.
Meimberg, H., P. Dittrich, G. Bringmann, J. Schlauer, and G. Heubl. 1999. Molecular phylogeny of Caryophyllidae s.l. based on matK sequences with special emphasis on carnivorous taxa. Plant Biology 2: 218-228.
Olefeld, J. L., S. Majda, D. C. Albach, S. Marks, and J. Boenigk. 2018. Genome size of chrysophytes varies with cell size and nutritional mode. Organisms Diversity & Evolution 18: 163-173.
Peng, C.-I., and P. Goldblatt. 1983. Confirmation of the chromosome number in Cephalotaceae and Roridulaceae. Annals of the Missouri Botanical Garden 70: 197-198.
PoWO. 2019. Plants of the world online. Facilitated by the Royal Botanic Gardens, Kew. Website: http://www.plantsoftheworldonline.org/ [accessed 7 December 2019].
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Raven, J. A. 2013. RNA function and phosphorus use by photosynthetic organisms. Frontiers in Plant Science 4: 536.
Renner, T., T. Lan, K. M. Farr, E. Ibarra-Laclette, L. Herrera-Estrella, S. C. Schuster, M. Hasebe, et al. 2018. Carnivorous plant genomes. In A. M. Ellison and L. Adamec [eds.], Carnivorous plants: Physiology, ecology, and evolution, 135-153. Oxford University Press, Oxford, UK.
Smith, S. A., and J. W. Brown. 2018. Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany 105: 302-314.
Sterner, R. W., and J. J. Elser. 2002. Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJ, USA.
Stebbins, G. L. 1938. Cytological characteristics associated with the different growth habits in the dicotyledons. American Journal of Botany 25: 180-198.
Stevens, P. F.2001. onward.Angiosperm phylogeny website, version 14, July 2017 [and more or less continuously updated since]. Website: http://www.mobot.org/MOBOT/research/APweb/ [accessed 15 September 2018].
Šmarda, P., P. Bureš, L. Horová, I. J. Leitch, L. Mucina, E. Pacini, L. Tichý, et al. 2014. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences, USA 111: E4096-E4102.
Šmarda, P., P. Bureš, L. Horová, B. Foggi, and G. Rossi. 2008. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Annals of Botany 101: 421-433.
Šmarda, P., M. Hejcman, A. Březinová, L. Horová, H. Steigerová, F. Zedek, P. Bureš, et al. 2013. Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. New Phytologist 200: 911-921.
Veleba, A., P. Bureš, L. Adamec, P. Šmarda, I. Lipnerová, and L. Horová. 2014. Genome size and genomic GC content evolution in the miniature genome sized family Lentibulariaceae. New Phytologist 203: 22-28.
Veleba, A., P. Šmarda, F. Zedek, L. Horová, J. Šmerda, and P. Bureš. 2017. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Annals of Botany 119: 409-416.
Veselý, P., P. Bureš, P. Šmarda, and T. Pavlíček. 2012. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Annals of Botany 109: 65-75.
Veselý, P., P. Bureš, and P. Šmarda. 2013. Nutrient reserves may allow for genome size increase: evidence from comparison of geophytes and their sister non-geophytic relatives. Annals of Botany 112: 1193-1200.
Vu, G. T. H., T. Schmutzer, F. Bull, H. X. Cao, J. Fuchs, T. D. Tran, G. Jovtchev, et al. 2015. Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome 8: 1-14.
Watson, A. P., J. N. Matthiessen, and B. P. Springett. 1982. Arthropod associates and macronutrient status of the red-ink sundew (Drosera erythrorhiza Lindl.). Australian Journal of Ecology 7: 13-22.
Walker, J. F., Y. Yang, M. J. Moore, J. Mikenas, A. Timoneda, S. F. Brockington, and S. A. Smith. 2017. Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales. American Journal of Botany 104: 858-867.
Wendel, J., J. Greilhuber, J. Dolezel, and I. J. Leitch. 2013. Plant genome diversity, vol. 2. Physical structure of plant genomes. Springer, Heidelberg, Germany.
Zahradníček, J., J. Chrtek, M. Z. Ferreira, A. Krahulcová, and J. Fehrer. 2018. Genome size variation in the genus Andryala (Hieraciinae, Asteraceae). Folia Geobotanica 53: 429-447.
The smallest angiosperm genomes may be the price for effective traps of bladderworts
Chromosome size matters: genome evolution in the cyperid clade
Recent ecophysiological, biochemical and evolutional insights into plant carnivory