Various Simulated Body Fluids Lead to Significant Differences in Collagen Tissue Engineering Scaffolds
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-02-00068
Ministerstvo Zdravotnictví Ceské Republiky
First Faculty GAUK 5070/2019
Grantová Agentura, Univerzita Karlova
Progres Q29/LF1
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34442910
PubMed Central
PMC8399520
DOI
10.3390/ma14164388
PII: ma14164388
Knihovny.cz E-zdroje
- Klíčová slova
- XRD, blood plasma, collagen, mass loss, mechanical properties, micro-CT, porosity, scaffold, simulated body fluid, structural parameters,
- Publikační typ
- časopisecké články MeSH
This study aims to point out the main drawback with respect to the design of simulated body environments. Three media commonly used for the simulation of the identical body environment were selected, i.e., Kokubo's simulated body fluid that simulates the inorganic component of human blood plasma, human blood plasma, and phosphate buffer saline. A comparison was performed of the effects of the media on collagen scaffolds. The mechanical and structural effects of the media were determined via the application of compression mechanical tests, the determination of mass loss, and image and micro-CT analyses. The adsorption of various components from the media was characterized employing energy-dispersive spectrometry. The phase composition of the materials before and after exposure was determined using X-ray diffraction. Infrared spectroscopy was employed for the interpretation of changes in the collagen secondary structure. Major differences in terms of the mechanical properties and mass loss were observed between the three media. Conversely, only minor structural changes were detected. Since no general recommendation exists for selecting the simulated body environment, it is necessary to avoid the simplification of the results and, ideally, to utilize alternative methods to describe the various aspects of degradation processes that occur in the media.
Faculty of Mechanical Engineering Czech Technical University Prague 160 00 Prague 6 Czech Republic
Institute of Anatomy 1st Faculty of Medicine Charles University 120 00 Prague 2 Czech Republic
Nanotechnology Centre CEET VŠB Technical University of Ostrava 708 00 Ostrava Poruba Czech Republic
Zobrazit více v PubMed
Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI
Shao H., Yu X., Lin T., Peng J., Wang A., Zhang Z., Zhang Y., Liu S., Zhao M. Effect of PCL concentration on PCL/CaSiO3 porous composite scaffolds for bone engineering. Ceram. Int. 2020;46:13082–13087. doi: 10.1016/j.ceramint.2020.02.079. DOI
Tang Y., Wu C., Zhang P., Zhao K., Wu Z. Degradation behaviour of non-sintered graphene/barium titanate/magnesium phosphate cement bio-piezoelectric composites. Ceram. Int. 2020;46:12626–12636. doi: 10.1016/j.ceramint.2020.02.028. DOI
Kareem M.M., Tanner K.E. Optimising micro-hydroxyapatite reinforced poly (lactide acid) electrospun scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 2020;31:1–13. doi: 10.1007/s10856-020-06376-8. PubMed DOI
Chen Z., Kang L., Meng Q.-Y., Liu H., Wang Z., Guo Z., Cui F.-Z. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration. Mater. Sci. Eng. C. 2014;45:94–102. doi: 10.1016/j.msec.2014.08.060. PubMed DOI
Shi K., Ma Q., Su T., Wang Z. Preparation of porous materials by selective enzymatic degradation: Effect of in vitro degradation and in vivo compatibility. Sci. Rep. 2020;10:7031. doi: 10.1038/s41598-020-63892-x. PubMed DOI PMC
Rynkevic R., Martins P., Fernandes A., Vange J., Gallego M.R., Wach R.A., Mes T., Bosman A.W., Deprest J. In vitro simulation of in vivo degradation and cyclic loading of novel degradable electrospun meshes for prolapse repair. Polym. Test. 2019;78:105957. doi: 10.1016/j.polymertesting.2019.105957. DOI
Rynkevic R., Martins P., Pereira F., Ramião N., Fernandes A.A. In vitro study of the mechanical performance of hernia mesh under cyclic loading. J. Mater. Sci. Mater. Electron. 2017;28:176. doi: 10.1007/s10856-017-5984-6. PubMed DOI
Zhen Z., Xi T.-F., Zheng Y. A review on in vitro corrosion performance test of biodegradable metallic materials. Trans. Nonferr. Met. Soc. China. 2013;23:2283–2293. doi: 10.1016/S1003-6326(13)62730-2. DOI
Tas A.C. The use of physiological solutions or media in calcium phosphate synthesis and processing. Acta Biomater. 2014;10:1771–1792. doi: 10.1016/j.actbio.2013.12.047. PubMed DOI
Győri E., Fábián I., Lázár I. Effect of the Chemical Composition of Simulated Body Fluids on Aerogel-Based Bioactive Composites. J. Compos. Sci. 2017;1:15. doi: 10.3390/jcs1020015. DOI
Choi Y., Hong S.I. Apatite deposition and collagen coating effects in Ti-Al-V and Ti-Al-Nb alloys. Phys. Met. Met. 2014;115:1307–1312. doi: 10.1134/S0031918X1413002X. DOI
Su C.-Y., Zhou Q., Zou C.-H. Surface Deposition on Titania in a Physiological Solution with Ultraviolet Irradiation in Situ and Effect of Heat Treatment. Coatings. 2019;9:80. doi: 10.3390/coatings9020080. DOI
Chen X., Zhang L., Yang X., Li Z., Sun X., Lin M., Yang G., Gou Z. Micronutrients-incorporated calcium phosphate particles with protective effect on osteoporotic bone tissue. J. Nutr. Health Aging. 2013;17:426–433. doi: 10.1007/s12603-013-0006-y. PubMed DOI
Chen F., Cao X., Yu J., Su H., Wei S., Hong H., Liu C. Quaternary Ammonium Groups Modified Starch Microspheres for Instant Hemorrhage Control. Colloids Surf. B Biointerfaces. 2017;159:937–944. doi: 10.1016/j.colsurfb.2017.08.024. PubMed DOI
Chen F., Cao X., Chen X., Wei J., Liu C. Calcium-modified microporous starch with potent hemostatic efficiency and excellent degradability for hemorrhage control. J. Mater. Chem. B. 2015;3:4017–4026. doi: 10.1039/C5TB00250H. PubMed DOI
Eagle H. Amino Acid Metabolism in Mammalian Cell Cultures. Science. 1959;130:432–437. doi: 10.1126/science.130.3373.432. PubMed DOI
Yao T., Asayama Y. Animal-cell culture media: History, characteristics, and current issues. Reprod. Med. Biol. 2017;16:99–117. doi: 10.1002/rmb2.12024. PubMed DOI PMC
Yilmaz B., Pazarçeviren A.E., Tezcaner A., Evis Z. Historical development of simulated body fluids used in biomedical applications: A review. Microchem. J. 2020;155:104713. doi: 10.1016/j.microc.2020.104713. DOI
Vallet-Regí M., Salinas A.J. Role of the Short Distance Order in Glass Reactivity. Materials. 2018;11:415. doi: 10.3390/ma11030415. PubMed DOI PMC
Šupová M., Suchý T., Sucharda Z., Filová E., Kinderen J.N.L.M., Steinerová M., Bačáková L., Martynková G.S. The comprehensive in vitro evaluation of eight different calcium phosphates: Significant parameters for cell behavior. J. Am. Ceram. Soc. 2018;102:2882–2904. doi: 10.1111/jace.16110. DOI
Wang J., Liu C. Biomimetic Collagen/Hydroxyapatite Composite Scaffolds: Fabrication and Characterizations. J. Bionic Eng. 2014;11:600–609. doi: 10.1016/S1672-6529(14)60071-8. DOI
Klimek K., Belcarz A., Pazik R., Sobierajska P., Han T., Wiglusz R.J., Ginalska G. “False” cytotoxicity of ions-adsorbing hydroxyapatite—Corrected method of cytotoxicity evaluation for ceramics of high specific surface area. Mater. Sci. Eng. C. 2016;65:70–79. doi: 10.1016/j.msec.2016.03.105. PubMed DOI
Zhao W., Lemaître J., Bowen P. A comparative study of simulated body fluids in the presence of proteins. Acta Biomater. 2017;53:506–514. doi: 10.1016/j.actbio.2017.02.006. PubMed DOI
Almora-Barrios N., De Leeuw N.H. Molecular Dynamics Simulation of the Early Stages of Nucleation of Hydroxyapatite at a Collagen Template. Cryst. Growth Des. 2012;12:756–763. doi: 10.1021/cg201092s. DOI
Suchy T., Šupová M., Sauerová P., Verdánová M., Sucharda Z., Rýglová Š., Žaloudková M., Sedlacek R., Kalbacova M.H. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds—an in vitro evaluation using mesenchymal stem cells. Biomed. Mater. 2015;10:065008. doi: 10.1088/1748-6041/10/6/065008. PubMed DOI
Suchý T., Šupová M., Bartoš M., Sedláček R., Piola M., Soncini M., Fiore G.B., Sauerova P., Kalbacova M.H. Dry versus hydrated collagen scaffolds: Are dry states representative of hydrated states? J. Mater. Sci. Mater. Med. 2018;29:20. doi: 10.1007/s10856-017-6024-2. PubMed DOI
Jiřík M., Bartoš M., Tomášek P., Malečková A., Kural T., Horakova J., Lukáš D., Suchý T., Kochová P., Kalbacova M.H., et al. Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using X-ray microtomography. Microsc. Res. Tech. 2018;81:551–568. doi: 10.1002/jemt.23011. PubMed DOI
Payne K.J., Veis A. Fourier transform ir spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers. 1988;27:1749–1760. doi: 10.1002/bip.360271105. PubMed DOI
Prystupa D., Donald A. Infrared study of gelatin conformations in the gel and sol states. Polym. Gels Netw. 1996;4:87–110. doi: 10.1016/0966-7822(96)00003-2. DOI
Jackson M., Choo L.-P., Watson P.H., Halliday W.C., Mantsch H.H. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1995;1270:1–6. doi: 10.1016/0925-4439(94)00056-V. PubMed DOI
Pielesz A. Temperature-dependent FTIR spectra of collagen and protective effect of partially hydrolysed fucoidan. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;118:287–293. doi: 10.1016/j.saa.2013.08.056. PubMed DOI
Rabotyagova O.S., Cebe P., Kaplan D.L. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater. Sci. Eng. C. 2008;28:1420–1429. doi: 10.1016/j.msec.2008.03.012. PubMed DOI PMC
Usoltsev D., Sitnikova V., Kajava A., Uspenskaya M. FTIR Spectroscopy Study of the Secondary Structure Changes in Human Serum Albumin and Trypsin under Neutral Salts. Biomolecules. 2020;10:606. doi: 10.3390/biom10040606. PubMed DOI PMC
Susi H., Byler D.M. Resolution-enhanced fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 1986;130:290–311. doi: 10.1016/0076-6879(86)30015-6. PubMed DOI
Camacho N.P., West P., Torzilli P.A., Mendelsohn R. FTIR microscopic imaging of collagen and proteoglycan in bovine carti-lage. Biopolymers. 2001;62:1–8. doi: 10.1002/1097-0282(2001)62:1<1::AID-BIP10>3.0.CO;2-O. PubMed DOI
Rieppo L., Saarakkala S., Närhi T., Helminen H., Jurvelin J., Rieppo J. Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthr. Cartil. 2012;20:451–459. doi: 10.1016/j.joca.2012.01.010. PubMed DOI
Movasaghi Z., Rehman S., Rehman I.U. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2008;43:134–179. doi: 10.1080/05704920701829043. DOI
Guilbert M., Said G., Happillon T., Untereiner V., Garnotel R., Jeannesson P., Sockalingum G.D. Probing non-enzymatic glycation of type I collagen: A novel approach using Raman and infrared biophotonic methods. Biochim. Biophys. Acta (BBA) Gen. Subj. 2013;1830:3525–3531. doi: 10.1016/j.bbagen.2013.01.016. PubMed DOI
Giraud-Guille M.-M., Besseau L., Chopin C., Durand P., Herbage D. Structural aspects of fish skin collagen which forms ordered arrays via liquid crystalline states. Biomaterials. 2000;21:899–906. doi: 10.1016/S0142-9612(99)00244-6. PubMed DOI
Ellis D., McGavin S. The structure of collagen—An X-ray study. J. Ultrastruct. Res. 1970;32:191–211. doi: 10.1016/S0022-5320(70)80001-6. PubMed DOI
Słota D., Głąb M., Tyliszczak B., Douglas T., Rudnicka K., Miernik K., Urbaniak M.M., Rusek-Wala P., Sobczak-Kupiec A. Composites Based on Hydroxyapatite and Whey Protein Isolate for Applications in Bone Regeneration. Materials. 2021;14:2317. doi: 10.3390/ma14092317. PubMed DOI PMC
Tan R., Feng Q., She Z., Wang M., Jin H., Li J., Yu X. In vitro and in vivo degradation of an injectable bone repair composite. Polym. Degrad. Stab. 2010;95:1736–1742. doi: 10.1016/j.polymdegradstab.2010.05.015. DOI
Grover C.N., Cameron R., Best S.M. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. J. Mech. Behav. Biomed. Mater. 2012;10:62–74. doi: 10.1016/j.jmbbm.2012.02.028. PubMed DOI
Zulkifli F.H., Hussain F.S.J., Rasad M.S.B.A., Yusoff M. In vitro degradation study of novel HEC/PVA/collagen nanofibrous scaffold for skin tissue engineering applications. Polym. Degrad. Stab. 2014;110:473–481. doi: 10.1016/j.polymdegradstab.2014.10.017. DOI
Muthukumar T., Aravinthan A., Sharmila J., Kim N.S., Kim J.-H. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydr. Polym. 2016;152:566–574. doi: 10.1016/j.carbpol.2016.07.003. PubMed DOI
Li X., Feng Q., Cui F. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres. Mater. Sci. Eng. C. 2006;26:716–720. doi: 10.1016/j.msec.2005.06.062. DOI
Al-Munajjed A.A., Plunkett N.A., Gleeson J.P., Weber T., Jungreuthmayer C., Levingstone T., Hammer J., O’Brien F.J. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009;90:584–591. doi: 10.1002/jbm.b.31320. PubMed DOI
Lickorish D., Ramshaw J.A.M., Werkmeister J.A., Glattauer V., Howlett C.R. Collagen-hydroxyapatite composite prepared by biomimetic process. J. Biomed. Mater. Res. 2003;68:19–27. doi: 10.1002/jbm.a.20031. PubMed DOI
Permyakova E.S., Kiryukhantsev-Korneev P.V., Gudz K.Y., Konopatsky A.S., Polčak J., Zhitnyak I.Y., Gloushankova N.A., Shtansky D.V., Manakhov A.M. Comparison of Different Approaches to Surface Functionalization of Biodegradable Polycaprolactone Scaffolds. Nanomaterials. 2019;9:1769. doi: 10.3390/nano9121769. PubMed DOI PMC
Zhao X., Li H., Xu Z., Li K., Cao S., Jiang G. Selective preparation and characterization of nano-hydroxyapatite/collagen coatings with three-dimensional network structure. Surf. Coat. Technol. 2017;322:227–237. doi: 10.1016/j.surfcoat.2017.05.042. DOI
Ficai A., Andronescu E., Voicu G., Albu M.G., Ilie A. Biomimetically synthesis of collagen/hydroxyapatite composite ma-terials. Mater. Plast. 2010;47:205–208.
Bartoš M., Suchý T., Foltán R. Note on the use of different approaches to determine the pore sizes of tissue engineering scaffolds: What do we measure? Biomed. Eng. Online. 2018;17:1–15. doi: 10.1186/s12938-018-0543-z. PubMed DOI PMC