Various Simulated Body Fluids Lead to Significant Differences in Collagen Tissue Engineering Scaffolds

. 2021 Aug 05 ; 14 (16) : . [epub] 20210805

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34442910

Grantová podpora
NV19-02-00068 Ministerstvo Zdravotnictví Ceské Republiky
First Faculty GAUK 5070/2019 Grantová Agentura, Univerzita Karlova
Progres Q29/LF1 Ministerstvo Školství, Mládeže a Tělovýchovy

This study aims to point out the main drawback with respect to the design of simulated body environments. Three media commonly used for the simulation of the identical body environment were selected, i.e., Kokubo's simulated body fluid that simulates the inorganic component of human blood plasma, human blood plasma, and phosphate buffer saline. A comparison was performed of the effects of the media on collagen scaffolds. The mechanical and structural effects of the media were determined via the application of compression mechanical tests, the determination of mass loss, and image and micro-CT analyses. The adsorption of various components from the media was characterized employing energy-dispersive spectrometry. The phase composition of the materials before and after exposure was determined using X-ray diffraction. Infrared spectroscopy was employed for the interpretation of changes in the collagen secondary structure. Major differences in terms of the mechanical properties and mass loss were observed between the three media. Conversely, only minor structural changes were detected. Since no general recommendation exists for selecting the simulated body environment, it is necessary to avoid the simplification of the results and, ideally, to utilize alternative methods to describe the various aspects of degradation processes that occur in the media.

Zobrazit více v PubMed

Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI

Shao H., Yu X., Lin T., Peng J., Wang A., Zhang Z., Zhang Y., Liu S., Zhao M. Effect of PCL concentration on PCL/CaSiO3 porous composite scaffolds for bone engineering. Ceram. Int. 2020;46:13082–13087. doi: 10.1016/j.ceramint.2020.02.079. DOI

Tang Y., Wu C., Zhang P., Zhao K., Wu Z. Degradation behaviour of non-sintered graphene/barium titanate/magnesium phosphate cement bio-piezoelectric composites. Ceram. Int. 2020;46:12626–12636. doi: 10.1016/j.ceramint.2020.02.028. DOI

Kareem M.M., Tanner K.E. Optimising micro-hydroxyapatite reinforced poly (lactide acid) electrospun scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 2020;31:1–13. doi: 10.1007/s10856-020-06376-8. PubMed DOI

Chen Z., Kang L., Meng Q.-Y., Liu H., Wang Z., Guo Z., Cui F.-Z. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration. Mater. Sci. Eng. C. 2014;45:94–102. doi: 10.1016/j.msec.2014.08.060. PubMed DOI

Shi K., Ma Q., Su T., Wang Z. Preparation of porous materials by selective enzymatic degradation: Effect of in vitro degradation and in vivo compatibility. Sci. Rep. 2020;10:7031. doi: 10.1038/s41598-020-63892-x. PubMed DOI PMC

Rynkevic R., Martins P., Fernandes A., Vange J., Gallego M.R., Wach R.A., Mes T., Bosman A.W., Deprest J. In vitro simulation of in vivo degradation and cyclic loading of novel degradable electrospun meshes for prolapse repair. Polym. Test. 2019;78:105957. doi: 10.1016/j.polymertesting.2019.105957. DOI

Rynkevic R., Martins P., Pereira F., Ramião N., Fernandes A.A. In vitro study of the mechanical performance of hernia mesh under cyclic loading. J. Mater. Sci. Mater. Electron. 2017;28:176. doi: 10.1007/s10856-017-5984-6. PubMed DOI

Zhen Z., Xi T.-F., Zheng Y. A review on in vitro corrosion performance test of biodegradable metallic materials. Trans. Nonferr. Met. Soc. China. 2013;23:2283–2293. doi: 10.1016/S1003-6326(13)62730-2. DOI

Tas A.C. The use of physiological solutions or media in calcium phosphate synthesis and processing. Acta Biomater. 2014;10:1771–1792. doi: 10.1016/j.actbio.2013.12.047. PubMed DOI

Győri E., Fábián I., Lázár I. Effect of the Chemical Composition of Simulated Body Fluids on Aerogel-Based Bioactive Composites. J. Compos. Sci. 2017;1:15. doi: 10.3390/jcs1020015. DOI

Choi Y., Hong S.I. Apatite deposition and collagen coating effects in Ti-Al-V and Ti-Al-Nb alloys. Phys. Met. Met. 2014;115:1307–1312. doi: 10.1134/S0031918X1413002X. DOI

Su C.-Y., Zhou Q., Zou C.-H. Surface Deposition on Titania in a Physiological Solution with Ultraviolet Irradiation in Situ and Effect of Heat Treatment. Coatings. 2019;9:80. doi: 10.3390/coatings9020080. DOI

Chen X., Zhang L., Yang X., Li Z., Sun X., Lin M., Yang G., Gou Z. Micronutrients-incorporated calcium phosphate particles with protective effect on osteoporotic bone tissue. J. Nutr. Health Aging. 2013;17:426–433. doi: 10.1007/s12603-013-0006-y. PubMed DOI

Chen F., Cao X., Yu J., Su H., Wei S., Hong H., Liu C. Quaternary Ammonium Groups Modified Starch Microspheres for Instant Hemorrhage Control. Colloids Surf. B Biointerfaces. 2017;159:937–944. doi: 10.1016/j.colsurfb.2017.08.024. PubMed DOI

Chen F., Cao X., Chen X., Wei J., Liu C. Calcium-modified microporous starch with potent hemostatic efficiency and excellent degradability for hemorrhage control. J. Mater. Chem. B. 2015;3:4017–4026. doi: 10.1039/C5TB00250H. PubMed DOI

Eagle H. Amino Acid Metabolism in Mammalian Cell Cultures. Science. 1959;130:432–437. doi: 10.1126/science.130.3373.432. PubMed DOI

Yao T., Asayama Y. Animal-cell culture media: History, characteristics, and current issues. Reprod. Med. Biol. 2017;16:99–117. doi: 10.1002/rmb2.12024. PubMed DOI PMC

Yilmaz B., Pazarçeviren A.E., Tezcaner A., Evis Z. Historical development of simulated body fluids used in biomedical applications: A review. Microchem. J. 2020;155:104713. doi: 10.1016/j.microc.2020.104713. DOI

Vallet-Regí M., Salinas A.J. Role of the Short Distance Order in Glass Reactivity. Materials. 2018;11:415. doi: 10.3390/ma11030415. PubMed DOI PMC

Šupová M., Suchý T., Sucharda Z., Filová E., Kinderen J.N.L.M., Steinerová M., Bačáková L., Martynková G.S. The comprehensive in vitro evaluation of eight different calcium phosphates: Significant parameters for cell behavior. J. Am. Ceram. Soc. 2018;102:2882–2904. doi: 10.1111/jace.16110. DOI

Wang J., Liu C. Biomimetic Collagen/Hydroxyapatite Composite Scaffolds: Fabrication and Characterizations. J. Bionic Eng. 2014;11:600–609. doi: 10.1016/S1672-6529(14)60071-8. DOI

Klimek K., Belcarz A., Pazik R., Sobierajska P., Han T., Wiglusz R.J., Ginalska G. “False” cytotoxicity of ions-adsorbing hydroxyapatite—Corrected method of cytotoxicity evaluation for ceramics of high specific surface area. Mater. Sci. Eng. C. 2016;65:70–79. doi: 10.1016/j.msec.2016.03.105. PubMed DOI

Zhao W., Lemaître J., Bowen P. A comparative study of simulated body fluids in the presence of proteins. Acta Biomater. 2017;53:506–514. doi: 10.1016/j.actbio.2017.02.006. PubMed DOI

Almora-Barrios N., De Leeuw N.H. Molecular Dynamics Simulation of the Early Stages of Nucleation of Hydroxyapatite at a Collagen Template. Cryst. Growth Des. 2012;12:756–763. doi: 10.1021/cg201092s. DOI

Suchy T., Šupová M., Sauerová P., Verdánová M., Sucharda Z., Rýglová Š., Žaloudková M., Sedlacek R., Kalbacova M.H. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds—an in vitro evaluation using mesenchymal stem cells. Biomed. Mater. 2015;10:065008. doi: 10.1088/1748-6041/10/6/065008. PubMed DOI

Suchý T., Šupová M., Bartoš M., Sedláček R., Piola M., Soncini M., Fiore G.B., Sauerova P., Kalbacova M.H. Dry versus hydrated collagen scaffolds: Are dry states representative of hydrated states? J. Mater. Sci. Mater. Med. 2018;29:20. doi: 10.1007/s10856-017-6024-2. PubMed DOI

Jiřík M., Bartoš M., Tomášek P., Malečková A., Kural T., Horakova J., Lukáš D., Suchý T., Kochová P., Kalbacova M.H., et al. Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using X-ray microtomography. Microsc. Res. Tech. 2018;81:551–568. doi: 10.1002/jemt.23011. PubMed DOI

Payne K.J., Veis A. Fourier transform ir spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers. 1988;27:1749–1760. doi: 10.1002/bip.360271105. PubMed DOI

Prystupa D., Donald A. Infrared study of gelatin conformations in the gel and sol states. Polym. Gels Netw. 1996;4:87–110. doi: 10.1016/0966-7822(96)00003-2. DOI

Jackson M., Choo L.-P., Watson P.H., Halliday W.C., Mantsch H.H. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1995;1270:1–6. doi: 10.1016/0925-4439(94)00056-V. PubMed DOI

Pielesz A. Temperature-dependent FTIR spectra of collagen and protective effect of partially hydrolysed fucoidan. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;118:287–293. doi: 10.1016/j.saa.2013.08.056. PubMed DOI

Rabotyagova O.S., Cebe P., Kaplan D.L. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater. Sci. Eng. C. 2008;28:1420–1429. doi: 10.1016/j.msec.2008.03.012. PubMed DOI PMC

Usoltsev D., Sitnikova V., Kajava A., Uspenskaya M. FTIR Spectroscopy Study of the Secondary Structure Changes in Human Serum Albumin and Trypsin under Neutral Salts. Biomolecules. 2020;10:606. doi: 10.3390/biom10040606. PubMed DOI PMC

Susi H., Byler D.M. Resolution-enhanced fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 1986;130:290–311. doi: 10.1016/0076-6879(86)30015-6. PubMed DOI

Camacho N.P., West P., Torzilli P.A., Mendelsohn R. FTIR microscopic imaging of collagen and proteoglycan in bovine carti-lage. Biopolymers. 2001;62:1–8. doi: 10.1002/1097-0282(2001)62:1<1::AID-BIP10>3.0.CO;2-O. PubMed DOI

Rieppo L., Saarakkala S., Närhi T., Helminen H., Jurvelin J., Rieppo J. Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthr. Cartil. 2012;20:451–459. doi: 10.1016/j.joca.2012.01.010. PubMed DOI

Movasaghi Z., Rehman S., Rehman I.U. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2008;43:134–179. doi: 10.1080/05704920701829043. DOI

Guilbert M., Said G., Happillon T., Untereiner V., Garnotel R., Jeannesson P., Sockalingum G.D. Probing non-enzymatic glycation of type I collagen: A novel approach using Raman and infrared biophotonic methods. Biochim. Biophys. Acta (BBA) Gen. Subj. 2013;1830:3525–3531. doi: 10.1016/j.bbagen.2013.01.016. PubMed DOI

Giraud-Guille M.-M., Besseau L., Chopin C., Durand P., Herbage D. Structural aspects of fish skin collagen which forms ordered arrays via liquid crystalline states. Biomaterials. 2000;21:899–906. doi: 10.1016/S0142-9612(99)00244-6. PubMed DOI

Ellis D., McGavin S. The structure of collagen—An X-ray study. J. Ultrastruct. Res. 1970;32:191–211. doi: 10.1016/S0022-5320(70)80001-6. PubMed DOI

Słota D., Głąb M., Tyliszczak B., Douglas T., Rudnicka K., Miernik K., Urbaniak M.M., Rusek-Wala P., Sobczak-Kupiec A. Composites Based on Hydroxyapatite and Whey Protein Isolate for Applications in Bone Regeneration. Materials. 2021;14:2317. doi: 10.3390/ma14092317. PubMed DOI PMC

Tan R., Feng Q., She Z., Wang M., Jin H., Li J., Yu X. In vitro and in vivo degradation of an injectable bone repair composite. Polym. Degrad. Stab. 2010;95:1736–1742. doi: 10.1016/j.polymdegradstab.2010.05.015. DOI

Grover C.N., Cameron R., Best S.M. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. J. Mech. Behav. Biomed. Mater. 2012;10:62–74. doi: 10.1016/j.jmbbm.2012.02.028. PubMed DOI

Zulkifli F.H., Hussain F.S.J., Rasad M.S.B.A., Yusoff M. In vitro degradation study of novel HEC/PVA/collagen nanofibrous scaffold for skin tissue engineering applications. Polym. Degrad. Stab. 2014;110:473–481. doi: 10.1016/j.polymdegradstab.2014.10.017. DOI

Muthukumar T., Aravinthan A., Sharmila J., Kim N.S., Kim J.-H. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydr. Polym. 2016;152:566–574. doi: 10.1016/j.carbpol.2016.07.003. PubMed DOI

Li X., Feng Q., Cui F. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres. Mater. Sci. Eng. C. 2006;26:716–720. doi: 10.1016/j.msec.2005.06.062. DOI

Al-Munajjed A.A., Plunkett N.A., Gleeson J.P., Weber T., Jungreuthmayer C., Levingstone T., Hammer J., O’Brien F.J. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009;90:584–591. doi: 10.1002/jbm.b.31320. PubMed DOI

Lickorish D., Ramshaw J.A.M., Werkmeister J.A., Glattauer V., Howlett C.R. Collagen-hydroxyapatite composite prepared by biomimetic process. J. Biomed. Mater. Res. 2003;68:19–27. doi: 10.1002/jbm.a.20031. PubMed DOI

Permyakova E.S., Kiryukhantsev-Korneev P.V., Gudz K.Y., Konopatsky A.S., Polčak J., Zhitnyak I.Y., Gloushankova N.A., Shtansky D.V., Manakhov A.M. Comparison of Different Approaches to Surface Functionalization of Biodegradable Polycaprolactone Scaffolds. Nanomaterials. 2019;9:1769. doi: 10.3390/nano9121769. PubMed DOI PMC

Zhao X., Li H., Xu Z., Li K., Cao S., Jiang G. Selective preparation and characterization of nano-hydroxyapatite/collagen coatings with three-dimensional network structure. Surf. Coat. Technol. 2017;322:227–237. doi: 10.1016/j.surfcoat.2017.05.042. DOI

Ficai A., Andronescu E., Voicu G., Albu M.G., Ilie A. Biomimetically synthesis of collagen/hydroxyapatite composite ma-terials. Mater. Plast. 2010;47:205–208.

Bartoš M., Suchý T., Foltán R. Note on the use of different approaches to determine the pore sizes of tissue engineering scaffolds: What do we measure? Biomed. Eng. Online. 2018;17:1–15. doi: 10.1186/s12938-018-0543-z. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation

. 2022 Feb 03 ; 14 (3) : . [epub] 20220203

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace