Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation

. 2022 Feb 03 ; 14 (3) : . [epub] 20220203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35160591

Grantová podpora
NU20-08-00208 Ministry of Health of the Czech Republic
LM2018129 Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/18_046/0016045 European Regional Development Fund

Collagen, as the main component of connective tissue, is frequently used in various tissue engineering applications. In this study, porous sponge-like collagen scaffolds were prepared by freeze-drying and were then mineralized in a simulated body fluid. The mechanical stability was similar in both types of scaffolds, but the mineralized scaffolds (MCS) contained significantly more calcium, magnesium and phosphorus than the unmineralized scaffolds (UCS). Although the MCS contained a lower percentage (~32.5%) of pores suitable for cell ingrowth (113-357 μm in diameter) than the UCS (~70%), the number of human-osteoblast-like MG-63 cells on days 1, 3 and 7 after seeding was higher on MCS than on UCS, and the cells penetrated deeper into the MCS. The cell growth in extracts prepared by eluting the scaffolds for 7 days in a cell culture medium was also markedly higher in the MCS extracts, as indicated by real-time monitoring in the sensory xCELLigence system for 7 days. From this point of view, MCS are more promising for bone tissue engineering than UCS. However, MCS evoked a more pronounced inflammatory response than UCS, as indicated by the production of tumor necrosis factor-alpha (TNF-α) in macrophage-like RAW 264.7 cells in cultures on these scaffolds.

Zobrazit více v PubMed

Mallis P., Kostakis A., Stavropoulos-Giokas. Michalopoulos E. Future perspectives in small-diameter vascular graft engineering. Bioengineering. 2020;7:160. doi: 10.3390/bioengineering7040160. PubMed DOI PMC

Naung N., Shehata E., Van Sickels J.E. Resorbable versus nonresorbable membranes: When and why? Dent. Clin. N. Am. 2019;63:419–431. doi: 10.1016/j.cden.2019.02.008. PubMed DOI

Imoto K., Yamauchi K., Odashima K., Nogami S., Shimizu Y., Kessler P., Lethaus B., Unuma H., Takahashi T. Periosteal expansion osteogenesis using an innovative, shape-memory polyethylene terephthalate membrane: An experimental study in rabbits. J. Biomed. Mater. Res. B Appl. Biomater. 2021;109:1327–1333. doi: 10.1002/jbm.b.34793. PubMed DOI

Bharadwaz A., Jayasuriya A.C. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;110:110698. doi: 10.1016/j.msec.2020.110698. PubMed DOI PMC

Bačáková L., Pajorová J., Zikmundová M., Filová E., Mikeš P., Jenčová V., Kuželová Košťáková E., Sinica A. Nanofibrous scaffolds for skin tissue engineering and wound healing based on nature-derived polymers. In: Khalil I., editor. Current and Future Aspects of Nanomedicine. IntechOpen; London, UK: 2020. pp. 1–30. DOI

Frosch K.H., Barvencik F., Lohmann C.H., Viereck V., Siggelkow H., Breme J., Dresing K., Stürmer K.M. Migration, matrix production and lamellar bone formation of human osteoblast-like cells in porous titanium implants. Cells Tissues Organs. 2002;170:214–227. doi: 10.1159/000047925. PubMed DOI

Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002. PubMed DOI

Murphy C.M., O’Brien F.J. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes. Migr. 2010;4:377–381. doi: 10.4161/cam.4.3.11747. PubMed DOI PMC

Xia Z., Yu X., Jiang X., Brody H.D., Rowe D.W., Wei M. Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomater. 2013;9:7308–7319. doi: 10.1016/j.actbio.2013.03.038. PubMed DOI PMC

Maher M., Castilho M., Yue Z., Glattauer V., Hughes T.C., Ramshaw J.A.M., Wallace G.G. Shaping collagen for engineering hard tissues: Towards a printomics approach. Acta Biomater. 2021;131:41–61. doi: 10.1016/j.actbio.2021.06.035. PubMed DOI

Yu L., Wei M. Biomineralization of collagen-based materials for hard tissue repair. Int. J. Mol. Sci. 2021;22:944. doi: 10.3390/ijms22020944. PubMed DOI PMC

Knight C.G., Morton L.F., Peachey A.R., Tuckwell D.S., Farndale R.W., Barnes M.J. The collagen-binding A-domains of integrins α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 2000;275:35–40. doi: 10.1074/jbc.275.1.35. PubMed DOI

Yamamoto M., Yamato M., Aoyagi M., Yamamoto K. Identification of integrins involved in cell adhesion to native and denatured type I collagens and the phenotypic transition of rabbit arterial smooth muscle cells. Exp. Cell Res. 1995;219:249–256. doi: 10.1006/excr.1995.1225. PubMed DOI

Wu D., Isaksson P., Ferguson S.J., Persson C. Young’s modulus of trabecular bone at the tissue level: A review. Acta Biomater. 2018;78:1–12. doi: 10.1016/j.actbio.2018.08.001. PubMed DOI

Yang L., van der Werf K.O., Fitié C.F., Bennink M.L., Dijkstra P.J., Feijen J. Mechanical properties of native and cross-linked type I collagen fibrils. Biophys. J. 2008;94:2204–2211. doi: 10.1529/biophysj.107.111013. PubMed DOI PMC

Wenger M.P., Bozec L., Horton M.A., Mesquida P. Mechanical properties of collagen fibrils. Biophys. J. 2007;93:1255–1263. doi: 10.1529/biophysj.106.103192. PubMed DOI PMC

Varley M.C., Neelakantan S., Clyne T.W., Dean J., Brooks R.A., Markaki A.E. Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states. Acta Biomater. 2016;33:166–175. doi: 10.1016/j.actbio.2016.01.041. PubMed DOI

Ma X., He Z., Han F., Zhong Z., Chen L., Li B. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids Surf. B Biointerfaces. 2016;143:81–87. doi: 10.1016/j.colsurfb.2016.03.025. PubMed DOI

Schuster L., Ardjomandi N., Munz M., Umrath F., Klein C., Rupp F., Reinert S., Alexander D. Establishment of collagen: Hydroxyapatite/BMP-2 mimetic peptide composites. Materials. 2020;13:1203. doi: 10.3390/ma13051203. PubMed DOI PMC

Piard C., Luthcke R., Kamalitdinov T., Fisher J. Sustained delivery of vascular endothelial growth factor from mesoporous calcium-deficient hydroxyapatite microparticles promotes in vitro angiogenesis and osteogenesis. J. Biomed. Mater. Res. A. 2021;109:1080–1087. doi: 10.1002/jbm.a.37100. PubMed DOI PMC

Sen K.S., Duarte Campos D.F., Köpf M., Blaeser A., Fischer H. The Effect of addition of calcium phosphate particles to hydrogel-based composite materials on stiffness and differentiation of mesenchymal stromal cells toward osteogenesis. Adv. Health Mater. 2018;7:e1800343. doi: 10.1002/adhm.201800343. PubMed DOI

Ferreira S.A., Young G., Jones J.R., Rankin S. Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;118:111393. doi: 10.1016/j.msec.2020.111393. PubMed DOI

Al-Munajjed A.A., Plunkett N.A., Gleeson J.P., Weber T., Jungreuthmayer C., Levingstone T., Hammer J., O’Brien F.J. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. J. Biomed. Mater. Res. B Appl. Biomater. 2009;90:584–591. doi: 10.1002/jbm.b.31320. PubMed DOI

Quan B.D., Wojtas M., Sone E.D. Polyaminoacids in biomimetic collagen mineralization: Roles of isomerization and disorder in polyaspartic and polyglutamic acids. Biomacromolecules. 2021;22:2996–3004. doi: 10.1021/acs.biomac.1c00402. PubMed DOI

Gkioni K., Leeuwenburgh S.C.G., Douglas T.E.L., Mikos A.G., Jansen J.A. Mineralization of hydrogels for bone regeneration. Tissue Eng. Part B Rev. 2010;16:577–585. doi: 10.1089/ten.teb.2010.0462. PubMed DOI

Coyac B.R., Chicatun F., Hoac B., Nelea V., Chaussain C., Nazhat S.N., McKee M.D. Mineralization of dense collagen hydrogel scaffolds by human pulp cells. J. Dent. Res. 2013;92:648–654. doi: 10.1177/0022034513488599. PubMed DOI

Liu G., Pastakia M., Fenn M.B., Kishore V. Saos-2 cell-mediated mineralization on collagen gels: Effect of densification and bioglass incorporation. J. Biomed. Mater. Res. A. 2016;104:1121–1134. doi: 10.1002/jbm.a.35651. PubMed DOI

Liskova J., Douglas T.E.L., Wijnants R., Samal S.K., Mendes A.C., Chronakis I., Bacakova L., Skirtach A.G. Phytase-mediated enzymatic mineralization of chitosan-enriched hydrogels. Mater. Lett. 2018;214:186–189. doi: 10.1016/j.matlet.2017.12.004. DOI

Antebi B., Cheng X., Harris J.N., Gower L.B., Chen X.D., Ling J. Biomimetic collagen-hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique. Tissue Eng. Part C Methods. 2013;19:487–496. doi: 10.1089/ten.tec.2012.0452. PubMed DOI PMC

Wang Y., Van Manh N., Wang H., Zhong X., Zhang X., Li C. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects. Int. J. Nanomed. 2016;11:2053–2067. doi: 10.2147/IJN.S102844. PubMed DOI PMC

Diogo G.S., Marques C.F., Sotelo C.G., Pérez-Martín R.I., Pirraco R.P., Reis R.L., Silva T.H. Cell-laden biomimetically mineralized shark-skin-collagen-based 3D printed hydrogels for the engineering of hard tissues. ACS Biomater. Sci. Eng. 2020;6:3664–3672. doi: 10.1021/acsbiomaterials.0c00436. PubMed DOI

Acri T.M., Laird N.Z., Jaidev L.R., Meyerholz D.K., Salem A.K., Shin K. Nonviral gene delivery embedded in biomimetically mineralized matrices for bone tissue engineering. Tissue Eng. Part A. 2021;27:1074–1083. doi: 10.1089/ten.tea.2020.0206. PubMed DOI PMC

Chen L., Wu C., Wei D., Chen S., Xiao Z., Zhu H., Luo H., Sun J., Fan H. Biomimetic mineralized microenvironment stiffness regulated BMSCs osteogenic differentiation through cytoskeleton mediated mechanical signaling transduction. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;119:111613. doi: 10.1016/j.msec.2020.111613. PubMed DOI

Alijotas-Reig J., Fernández-Figueras M.T., Puig L. Inflammatory, immune-mediated adverse reactions related to soft tissue dermal fillers. Semin. Arthritis Rheum. 2013;43:241–258. doi: 10.1016/j.semarthrit.2013.02.001. PubMed DOI

Rücker M., Laschke M.W., Junker D., Carvalho C., Schramm A., Mülhaupt R., Gellrich N.C., Menger M.D. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials. 2006;27:5027–5038. doi: 10.1016/j.biomaterials.2006.05.033. PubMed DOI

Panda N.N., Jonnalagadda S., Pramanik K. Development and evaluation of cross-linked collagen-hydroxyapatite scaffolds for tissue engineering. J. Biomater. Sci. Polym. Ed. 2013;24:2031–2044. doi: 10.1080/09205063.2013.822247. PubMed DOI

Nishimoto S., Goto Y., Morishige H., Shiraishi R., Doi M., Akiyama K., Yamauchi S., Sugahara T. Mode of action of the immunostimulatory effect of collagen from jellyfish. Biosci. Biotechnol. Biochem. 2008;72:2806–2814. doi: 10.1271/bbb.80154. PubMed DOI

Lambert L., Novakova M., Lukac P., Cechova D., Sukenikova L., Hrdy J., Mlcek M., Chlup H., Suchy T., Grus T. Evaluation of the immunogenicity of a vascular graft covered with collagen derived from the European carp (Cyprinus carpio) and bovine collagen. Biomed. Res. Int. 2019;2019:5301405. doi: 10.1155/2019/5301405. PubMed DOI PMC

Sun Y., Liu S., Fu Y., Kou X.X., He D.Q., Wang G.N., Fu C.C., Liu Y., Zhou Y.H. Mineralized collagen regulates macrophage polarization during bone regeneration. J. Biomed. Nanotechnol. 2016;12:2029–2040. doi: 10.1166/jbn.2016.2296. PubMed DOI

Shi X.D., Chen L.W., Li S.W., Sun X.D., Cui F.Z., Ma H.M. The observed difference of RAW264.7 macrophage phenotype on mineralized collagen and hydroxyapatite. Biomed. Mater. 2018;13:041001. doi: 10.1088/1748-605X/aab523. PubMed DOI

Oyane A., Kim H.M., Furuya T., Kokubo T., Miyazaki T., Nakamura T. Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. A. 2003;65:188–195. doi: 10.1002/jbm.a.10482. PubMed DOI

Clover J., Gowen M. Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone. 1994;15:585–591. doi: 10.1016/8756-3282(94)90305-0. PubMed DOI

Hoberg M., Gratz H.H., Noll M., Jones D.B. Mechanosensitivity of human osteosarcoma cells and phospholipase C β2 expression. Biochem. Biophys. Res. Commun. 2005;333:142–149. doi: 10.1016/j.bbrc.2005.05.088. PubMed DOI

Parizek M., Douglas T.E.L., Novotna K., Kromka A., Brady M.A., Renzing A., Voss E., Jarosova M., Palatinus L., Tesarek P., et al. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering. Int. J. Nanomed. 2012;7:1931–1951. doi: 10.2147/IJN.S26665. PubMed DOI PMC

Novotna K., Zajdlova M., Suchy T., Hadraba D., Lopot F., Zaloudkova M., Douglas T.E., Munzarova M., Juklickova M., Stranska D., et al. Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells. J. Biomed. Mater. Res. A. 2014;102:3918–3930. doi: 10.1002/jbm.a.35061. PubMed DOI

Suchý T., Bartoš M., Sedláček R., Šupová M., Žaloudková M., Martynková G.S., Foltán R. Various simulated body fluids lead to significant differences in collagen tissue engineering scaffolds. Materials. 2021;14:4388. doi: 10.3390/ma14164388. PubMed DOI PMC

Jiang W., Griffanti G., Tamimi F., McKee M.D., Nazhat S.N. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels. J. Struct. Biol. 2020;212:107592. doi: 10.1016/j.jsb.2020.107592. PubMed DOI

Song Q., Jiao K., Tonggu L., Wang L.G., Zhang S.L., Yang Y.D., Zhang L., Bian J.H., Hao D.X., Wang C.Y., et al. Contribution of biomimetic collagen-ligand interaction to intrafibrillar mineralization. Sci. Adv. 2019;5:eaav9075. doi: 10.1126/sciadv.aav9075. PubMed DOI PMC

Nesseri E., Boyatzis S.C., Boukos N., Panagiaris G. Optimizing the biomimetic synthesis of hydroxyapatite for the consolidation of bone using diammonium phosphate, simulated body fluid, and gelatin. SN Appl. Sci. 2020;2:1892. doi: 10.1007/s42452-020-03547-8. DOI

Vallecillo C., Toledano-Osorio M., Vallecillo-Rivas M., Toledano M., Osorio R. In vitro biodegradation pattern of collagen matrices for soft tissue augmentation. Polymers. 2021;13:2633. doi: 10.3390/polym13162633. PubMed DOI PMC

Doktor T., Valach J., Kytyr D., Jirousek O. Pore size distribution of human trabecular bone—Comparison of intrusion measurements with image analysis; Proceedings of the 17th International Conference Engineering Mechanics; Svratka, Czech Republic. 9–12 May 2011.

Pamula E., Filova E., Bacakova L., Lisa V., Adamczyk D. Resorbable polymeric scaffolds for bone tissue engineering: The influence of their microstructure on the growth of human osteoblast-like MG 63 cells. J. Biomed. Mater. Res. A. 2009;89:432–443. doi: 10.1002/jbm.a.31977. PubMed DOI

Stankova L., Fraczek-Szczypta A., Blazewicz M., Filova E., Blazewicz S., Lisa V., Bacakova L. Human osteoblast-like MG 63 cells on polysulfone modified with carbon nanotubes or carbon nanohorns. Carbon. 2014;67:578–591. doi: 10.1016/j.carbon.2013.10.031. DOI

Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–689. doi: 10.1016/j.cell.2006.06.044. PubMed DOI

Gopal S., Multhaupt H.A.B., Couchman J.R. Calcium in Cell-Extracellular Matrix Interactions. Adv. Exp. Med. Biol. 2020;1131:1079–1102. doi: 10.1007/978-3-030-12457-1_43. PubMed DOI

Lee M.N., Hwang H.S., Oh S.H., Roshanzadeh A., Kim J.W., Song J.H., Kim E.S., Koh J.T. Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp. Mol. Med. 2018;50:1–16. doi: 10.1038/s12276-018-0170-6. PubMed DOI PMC

Resende R.R., Andrade L.M., Oliveira A.G., Guimarães E.S., Guatimosim S., Leite M.F. Nucleoplasmic calcium signaling and cell proliferation: Calcium signaling in the nucleus. Cell Commun. Signal. 2013;11:14. doi: 10.1186/1478-811X-11-14. PubMed DOI PMC

Patergnani S., Danese A., Bouhamida E., Aguiari G., Previati M., Pinton P., Giorgi C. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int. J. Mol. Sci. 2020;21:8323. doi: 10.3390/ijms21218323. PubMed DOI PMC

Obata A., Ogasawara T., Kasuga T. Combinatorial effects of inorganic ions on adhesion and proliferation of osteoblast-like cells. J. Biomed. Mater. Res. A. 2019;107:1042–1051. doi: 10.1002/jbm.a.36623. PubMed DOI

Camalier C.E., Yi M., Yu L.R., Hood B.L., Conrads K.A., Lee Y.J., Lin Y., Garneys L.M., Bouloux G.F., Young M.R., et al. An integrated understanding of the physiological response to elevated extracellular phosphate. J. Cell Physiol. 2013;228:1536–1550. doi: 10.1002/jcp.24312. PubMed DOI PMC

Jeong J., Kim J.H., Shim J.H., Hwang N.S., Heo C.Y. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 2019;23:4. doi: 10.1186/s40824-018-0149-3. PubMed DOI PMC

Wang S., Xu C., Yu S., Wu X., Jie Z., Dai H. Citric acid enhances the physical properties, cytocompatibility and osteogenesis of magnesium calcium phosphate cement. J. Mech. Behav. Biomed. Mater. 2019;94:42–50. doi: 10.1016/j.jmbbm.2019.02.026. PubMed DOI

Song W., Wang Q., Wan C., Shi T., Markel D., Blaiser R., Ren W. A novel alkali metals/strontium co-substituted calcium polyphosphate scaffolds in bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2011;98:255–262. doi: 10.1002/jbm.b.31847. PubMed DOI

Sang Cho J., Um S.H., Su Yoo D., Chung Y.C., Hye Chung S., Lee J.C., Rhee S.H. Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability. J. Biomed. Mater. Res. B Appl. Biomater. 2014;102:1046–1062. doi: 10.1002/jbm.b.33087. PubMed DOI

Klimek K., Belcarz A., Pazik R., Sobierajska P., Han T., Wiglusz R.J., Ginalska G. “False” cytotoxicity of ions-adsorbing hydroxyapatite—Corrected method of cytotoxicity evaluation for ceramics of high specific surface area. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;65:70–79. doi: 10.1016/j.msec.2016.03.105. PubMed DOI

Mestres G., Le Van C., Ginebra M.P. Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: Characterization and cell response. Acta Biomater. 2012;8:1169–1179. doi: 10.1016/j.actbio.2011.11.021. PubMed DOI

Isom L.L. The role of sodium channels in cell adhesion. Front. Biosci. 2002;7:12–23. doi: 10.2741/isom. PubMed DOI

Brackenbury W.J., Djamgoz M.B., Isom L.L. An emerging role for voltage-gated Na+ channels in cellular migration: Regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist. 2008;14:571–583. doi: 10.1177/1073858408320293. PubMed DOI PMC

Griffanti G., Jiang W., Nazhat S.N. Bioinspired mineralization of a functionalized injectable dense collagen hydrogel through silk sericin incorporation. Biomater. Sci. 2019;7:1064–1077. doi: 10.1039/C8BM01060A. PubMed DOI

Janeway C.A., Jr., Travers P., Walport M., Shlomchik M.J. Immunobiology. 5th ed. Garland Science; New York, NY, USA: 2001. The Immune System in Health and Disease.

Velard F., Braux J., Amedee J., Laquerriere P. Inflammatory cell response to calcium phosphate biomaterial particles: An overview. Acta Biomater. 2013;9:4956–4963. doi: 10.1016/j.actbio.2012.09.035. PubMed DOI

Wang M., Chen F., Wang J., Chen X., Liang J., Yang X., Zhu X., Fan Y., Zhang X. Calcium phosphate altered the cytokine secretion of macrophages and influenced the homing of mesenchymal stem cells. J. Mater. Chem. B. 2018;6:4765–4774. doi: 10.1039/C8TB01201F. PubMed DOI

Matesanz M.C., Feito M.J., Oñaderra M., Ramírez-Santillán C., da Casa C., Arcos D., Vallet-Regí M., Rojo J.M., Portolés M.T. Early in vitro response of macrophages and T lymphocytes to nanocrystalline hydroxyapatites. J. Colloid Interface Sci. 2014;416:59–66. doi: 10.1016/j.jcis.2013.10.045. PubMed DOI

Curran J.M., Gallagher J.A., Hunt J.A. The inflammatory potential of biphasic calcium phosphate granules in osteoblast/macrophage co-culture. Biomaterials. 2005;26:5313–5320. doi: 10.1016/j.biomaterials.2005.01.065. PubMed DOI

Branch D.R., Guilbert L.J. Autocrine regulation of macrophage proliferation by tumor necrosis factor-alpha. Exp. Hematol. 1996;24:675–681. PubMed

Witzel A.L., Schook L.B. Tumor necrosis factor alpha is an autocrine growth regulator during macrophage differentiation. Proc. Natl. Acad. Sci. USA. 1992;89:4754–4758. doi: 10.1073/pnas.89.10.4754. PubMed DOI PMC

Leung K.N., Mak N.K., Fung M.C., Hapel A.J. Synergistic effect of IL-4 and TNF-alpha in the induction of monocytic differentiation of a mouse myeloid leukaemic cell line (WEHI-3B JCS) Immunology. 1994;81:65–72. PubMed PMC

Xie B., Laouar A., Huberman E. Autocrine regulation of macrophage differentiation and 92-kDa gelatinase production by tumor necrosis factor-α via α5β1 integrin in HL-60 cells. J. Biol. Chem. 1998;273:11583–11588. doi: 10.1074/jbc.273.19.11583. PubMed DOI

Raschke W.C., Baird S., Ralph P., Nakoinz I. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell. 1978;15:261–267. doi: 10.1016/0092-8674(78)90101-0. PubMed DOI

Introna M., Hamilton T.A., Kaufman R.E., Adams D.O., Bast R.C., Jr. Treatment of murine peritoneal macrophages with bacterial lipopolysaccharide alters expression of c-fos and c-myc oncogenes. J. Immunol. 1986;137:2711–2715. PubMed

Cooper P.H., Mayer P., Baggiolini M. Stimulation of phagocytosis in bone marrow-derived mouse macrophages by bacterial lipopolysaccharide: Correlation with biochemical and functional parameters. J. Immunol. 1984;133:913–922. PubMed

Sánchez-Tilló E., Comalada M., Farrera C., Valledor A.F., Lloberas J., Celada A. Macrophage-colony-stimulating factor-induced proliferation and lipo-polysaccharide-dependent activation of macrophages requires Raf-1 phosphorylation to induce mitogen kinase phosphatase-1 expression. J. Immunol. 2006;176:6594–6602. doi: 10.4049/jimmunol.176.11.6594. PubMed DOI

Islam S., Hassan F., Tumurkhuu G., Dagvadorj J., Koide N., Naiki Y., Mori I., Yoshida T., Yokochi T. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells. Biochem. Biophys. Res. Commun. 2007;360:346–351. doi: 10.1016/j.bbrc.2007.06.023. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...