Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-08-00208
Ministry of Health of the Czech Republic
LM2018129
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/18_046/0016045
European Regional Development Fund
PubMed
35160591
PubMed Central
PMC8838484
DOI
10.3390/polym14030602
PII: polym14030602
Knihovny.cz E-zdroje
- Klíčová slova
- biopolymers, cell adhesion, cell differentiation, cell growth, elemental composition, inflammatory activation, mechanical properties, nature-derived polymers, porous scaffolds, regenerative medicine,
- Publikační typ
- časopisecké články MeSH
Collagen, as the main component of connective tissue, is frequently used in various tissue engineering applications. In this study, porous sponge-like collagen scaffolds were prepared by freeze-drying and were then mineralized in a simulated body fluid. The mechanical stability was similar in both types of scaffolds, but the mineralized scaffolds (MCS) contained significantly more calcium, magnesium and phosphorus than the unmineralized scaffolds (UCS). Although the MCS contained a lower percentage (~32.5%) of pores suitable for cell ingrowth (113-357 μm in diameter) than the UCS (~70%), the number of human-osteoblast-like MG-63 cells on days 1, 3 and 7 after seeding was higher on MCS than on UCS, and the cells penetrated deeper into the MCS. The cell growth in extracts prepared by eluting the scaffolds for 7 days in a cell culture medium was also markedly higher in the MCS extracts, as indicated by real-time monitoring in the sensory xCELLigence system for 7 days. From this point of view, MCS are more promising for bone tissue engineering than UCS. However, MCS evoked a more pronounced inflammatory response than UCS, as indicated by the production of tumor necrosis factor-alpha (TNF-α) in macrophage-like RAW 264.7 cells in cultures on these scaffolds.
Zobrazit více v PubMed
Mallis P., Kostakis A., Stavropoulos-Giokas. Michalopoulos E. Future perspectives in small-diameter vascular graft engineering. Bioengineering. 2020;7:160. doi: 10.3390/bioengineering7040160. PubMed DOI PMC
Naung N., Shehata E., Van Sickels J.E. Resorbable versus nonresorbable membranes: When and why? Dent. Clin. N. Am. 2019;63:419–431. doi: 10.1016/j.cden.2019.02.008. PubMed DOI
Imoto K., Yamauchi K., Odashima K., Nogami S., Shimizu Y., Kessler P., Lethaus B., Unuma H., Takahashi T. Periosteal expansion osteogenesis using an innovative, shape-memory polyethylene terephthalate membrane: An experimental study in rabbits. J. Biomed. Mater. Res. B Appl. Biomater. 2021;109:1327–1333. doi: 10.1002/jbm.b.34793. PubMed DOI
Bharadwaz A., Jayasuriya A.C. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;110:110698. doi: 10.1016/j.msec.2020.110698. PubMed DOI PMC
Bačáková L., Pajorová J., Zikmundová M., Filová E., Mikeš P., Jenčová V., Kuželová Košťáková E., Sinica A. Nanofibrous scaffolds for skin tissue engineering and wound healing based on nature-derived polymers. In: Khalil I., editor. Current and Future Aspects of Nanomedicine. IntechOpen; London, UK: 2020. pp. 1–30. DOI
Frosch K.H., Barvencik F., Lohmann C.H., Viereck V., Siggelkow H., Breme J., Dresing K., Stürmer K.M. Migration, matrix production and lamellar bone formation of human osteoblast-like cells in porous titanium implants. Cells Tissues Organs. 2002;170:214–227. doi: 10.1159/000047925. PubMed DOI
Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002. PubMed DOI
Murphy C.M., O’Brien F.J. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes. Migr. 2010;4:377–381. doi: 10.4161/cam.4.3.11747. PubMed DOI PMC
Xia Z., Yu X., Jiang X., Brody H.D., Rowe D.W., Wei M. Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomater. 2013;9:7308–7319. doi: 10.1016/j.actbio.2013.03.038. PubMed DOI PMC
Maher M., Castilho M., Yue Z., Glattauer V., Hughes T.C., Ramshaw J.A.M., Wallace G.G. Shaping collagen for engineering hard tissues: Towards a printomics approach. Acta Biomater. 2021;131:41–61. doi: 10.1016/j.actbio.2021.06.035. PubMed DOI
Yu L., Wei M. Biomineralization of collagen-based materials for hard tissue repair. Int. J. Mol. Sci. 2021;22:944. doi: 10.3390/ijms22020944. PubMed DOI PMC
Knight C.G., Morton L.F., Peachey A.R., Tuckwell D.S., Farndale R.W., Barnes M.J. The collagen-binding A-domains of integrins α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 2000;275:35–40. doi: 10.1074/jbc.275.1.35. PubMed DOI
Yamamoto M., Yamato M., Aoyagi M., Yamamoto K. Identification of integrins involved in cell adhesion to native and denatured type I collagens and the phenotypic transition of rabbit arterial smooth muscle cells. Exp. Cell Res. 1995;219:249–256. doi: 10.1006/excr.1995.1225. PubMed DOI
Wu D., Isaksson P., Ferguson S.J., Persson C. Young’s modulus of trabecular bone at the tissue level: A review. Acta Biomater. 2018;78:1–12. doi: 10.1016/j.actbio.2018.08.001. PubMed DOI
Yang L., van der Werf K.O., Fitié C.F., Bennink M.L., Dijkstra P.J., Feijen J. Mechanical properties of native and cross-linked type I collagen fibrils. Biophys. J. 2008;94:2204–2211. doi: 10.1529/biophysj.107.111013. PubMed DOI PMC
Wenger M.P., Bozec L., Horton M.A., Mesquida P. Mechanical properties of collagen fibrils. Biophys. J. 2007;93:1255–1263. doi: 10.1529/biophysj.106.103192. PubMed DOI PMC
Varley M.C., Neelakantan S., Clyne T.W., Dean J., Brooks R.A., Markaki A.E. Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states. Acta Biomater. 2016;33:166–175. doi: 10.1016/j.actbio.2016.01.041. PubMed DOI
Ma X., He Z., Han F., Zhong Z., Chen L., Li B. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids Surf. B Biointerfaces. 2016;143:81–87. doi: 10.1016/j.colsurfb.2016.03.025. PubMed DOI
Schuster L., Ardjomandi N., Munz M., Umrath F., Klein C., Rupp F., Reinert S., Alexander D. Establishment of collagen: Hydroxyapatite/BMP-2 mimetic peptide composites. Materials. 2020;13:1203. doi: 10.3390/ma13051203. PubMed DOI PMC
Piard C., Luthcke R., Kamalitdinov T., Fisher J. Sustained delivery of vascular endothelial growth factor from mesoporous calcium-deficient hydroxyapatite microparticles promotes in vitro angiogenesis and osteogenesis. J. Biomed. Mater. Res. A. 2021;109:1080–1087. doi: 10.1002/jbm.a.37100. PubMed DOI PMC
Sen K.S., Duarte Campos D.F., Köpf M., Blaeser A., Fischer H. The Effect of addition of calcium phosphate particles to hydrogel-based composite materials on stiffness and differentiation of mesenchymal stromal cells toward osteogenesis. Adv. Health Mater. 2018;7:e1800343. doi: 10.1002/adhm.201800343. PubMed DOI
Ferreira S.A., Young G., Jones J.R., Rankin S. Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;118:111393. doi: 10.1016/j.msec.2020.111393. PubMed DOI
Al-Munajjed A.A., Plunkett N.A., Gleeson J.P., Weber T., Jungreuthmayer C., Levingstone T., Hammer J., O’Brien F.J. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. J. Biomed. Mater. Res. B Appl. Biomater. 2009;90:584–591. doi: 10.1002/jbm.b.31320. PubMed DOI
Quan B.D., Wojtas M., Sone E.D. Polyaminoacids in biomimetic collagen mineralization: Roles of isomerization and disorder in polyaspartic and polyglutamic acids. Biomacromolecules. 2021;22:2996–3004. doi: 10.1021/acs.biomac.1c00402. PubMed DOI
Gkioni K., Leeuwenburgh S.C.G., Douglas T.E.L., Mikos A.G., Jansen J.A. Mineralization of hydrogels for bone regeneration. Tissue Eng. Part B Rev. 2010;16:577–585. doi: 10.1089/ten.teb.2010.0462. PubMed DOI
Coyac B.R., Chicatun F., Hoac B., Nelea V., Chaussain C., Nazhat S.N., McKee M.D. Mineralization of dense collagen hydrogel scaffolds by human pulp cells. J. Dent. Res. 2013;92:648–654. doi: 10.1177/0022034513488599. PubMed DOI
Liu G., Pastakia M., Fenn M.B., Kishore V. Saos-2 cell-mediated mineralization on collagen gels: Effect of densification and bioglass incorporation. J. Biomed. Mater. Res. A. 2016;104:1121–1134. doi: 10.1002/jbm.a.35651. PubMed DOI
Liskova J., Douglas T.E.L., Wijnants R., Samal S.K., Mendes A.C., Chronakis I., Bacakova L., Skirtach A.G. Phytase-mediated enzymatic mineralization of chitosan-enriched hydrogels. Mater. Lett. 2018;214:186–189. doi: 10.1016/j.matlet.2017.12.004. DOI
Antebi B., Cheng X., Harris J.N., Gower L.B., Chen X.D., Ling J. Biomimetic collagen-hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique. Tissue Eng. Part C Methods. 2013;19:487–496. doi: 10.1089/ten.tec.2012.0452. PubMed DOI PMC
Wang Y., Van Manh N., Wang H., Zhong X., Zhang X., Li C. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects. Int. J. Nanomed. 2016;11:2053–2067. doi: 10.2147/IJN.S102844. PubMed DOI PMC
Diogo G.S., Marques C.F., Sotelo C.G., Pérez-Martín R.I., Pirraco R.P., Reis R.L., Silva T.H. Cell-laden biomimetically mineralized shark-skin-collagen-based 3D printed hydrogels for the engineering of hard tissues. ACS Biomater. Sci. Eng. 2020;6:3664–3672. doi: 10.1021/acsbiomaterials.0c00436. PubMed DOI
Acri T.M., Laird N.Z., Jaidev L.R., Meyerholz D.K., Salem A.K., Shin K. Nonviral gene delivery embedded in biomimetically mineralized matrices for bone tissue engineering. Tissue Eng. Part A. 2021;27:1074–1083. doi: 10.1089/ten.tea.2020.0206. PubMed DOI PMC
Chen L., Wu C., Wei D., Chen S., Xiao Z., Zhu H., Luo H., Sun J., Fan H. Biomimetic mineralized microenvironment stiffness regulated BMSCs osteogenic differentiation through cytoskeleton mediated mechanical signaling transduction. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;119:111613. doi: 10.1016/j.msec.2020.111613. PubMed DOI
Alijotas-Reig J., Fernández-Figueras M.T., Puig L. Inflammatory, immune-mediated adverse reactions related to soft tissue dermal fillers. Semin. Arthritis Rheum. 2013;43:241–258. doi: 10.1016/j.semarthrit.2013.02.001. PubMed DOI
Rücker M., Laschke M.W., Junker D., Carvalho C., Schramm A., Mülhaupt R., Gellrich N.C., Menger M.D. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials. 2006;27:5027–5038. doi: 10.1016/j.biomaterials.2006.05.033. PubMed DOI
Panda N.N., Jonnalagadda S., Pramanik K. Development and evaluation of cross-linked collagen-hydroxyapatite scaffolds for tissue engineering. J. Biomater. Sci. Polym. Ed. 2013;24:2031–2044. doi: 10.1080/09205063.2013.822247. PubMed DOI
Nishimoto S., Goto Y., Morishige H., Shiraishi R., Doi M., Akiyama K., Yamauchi S., Sugahara T. Mode of action of the immunostimulatory effect of collagen from jellyfish. Biosci. Biotechnol. Biochem. 2008;72:2806–2814. doi: 10.1271/bbb.80154. PubMed DOI
Lambert L., Novakova M., Lukac P., Cechova D., Sukenikova L., Hrdy J., Mlcek M., Chlup H., Suchy T., Grus T. Evaluation of the immunogenicity of a vascular graft covered with collagen derived from the European carp (Cyprinus carpio) and bovine collagen. Biomed. Res. Int. 2019;2019:5301405. doi: 10.1155/2019/5301405. PubMed DOI PMC
Sun Y., Liu S., Fu Y., Kou X.X., He D.Q., Wang G.N., Fu C.C., Liu Y., Zhou Y.H. Mineralized collagen regulates macrophage polarization during bone regeneration. J. Biomed. Nanotechnol. 2016;12:2029–2040. doi: 10.1166/jbn.2016.2296. PubMed DOI
Shi X.D., Chen L.W., Li S.W., Sun X.D., Cui F.Z., Ma H.M. The observed difference of RAW264.7 macrophage phenotype on mineralized collagen and hydroxyapatite. Biomed. Mater. 2018;13:041001. doi: 10.1088/1748-605X/aab523. PubMed DOI
Oyane A., Kim H.M., Furuya T., Kokubo T., Miyazaki T., Nakamura T. Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. A. 2003;65:188–195. doi: 10.1002/jbm.a.10482. PubMed DOI
Clover J., Gowen M. Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone. 1994;15:585–591. doi: 10.1016/8756-3282(94)90305-0. PubMed DOI
Hoberg M., Gratz H.H., Noll M., Jones D.B. Mechanosensitivity of human osteosarcoma cells and phospholipase C β2 expression. Biochem. Biophys. Res. Commun. 2005;333:142–149. doi: 10.1016/j.bbrc.2005.05.088. PubMed DOI
Parizek M., Douglas T.E.L., Novotna K., Kromka A., Brady M.A., Renzing A., Voss E., Jarosova M., Palatinus L., Tesarek P., et al. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering. Int. J. Nanomed. 2012;7:1931–1951. doi: 10.2147/IJN.S26665. PubMed DOI PMC
Novotna K., Zajdlova M., Suchy T., Hadraba D., Lopot F., Zaloudkova M., Douglas T.E., Munzarova M., Juklickova M., Stranska D., et al. Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells. J. Biomed. Mater. Res. A. 2014;102:3918–3930. doi: 10.1002/jbm.a.35061. PubMed DOI
Suchý T., Bartoš M., Sedláček R., Šupová M., Žaloudková M., Martynková G.S., Foltán R. Various simulated body fluids lead to significant differences in collagen tissue engineering scaffolds. Materials. 2021;14:4388. doi: 10.3390/ma14164388. PubMed DOI PMC
Jiang W., Griffanti G., Tamimi F., McKee M.D., Nazhat S.N. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels. J. Struct. Biol. 2020;212:107592. doi: 10.1016/j.jsb.2020.107592. PubMed DOI
Song Q., Jiao K., Tonggu L., Wang L.G., Zhang S.L., Yang Y.D., Zhang L., Bian J.H., Hao D.X., Wang C.Y., et al. Contribution of biomimetic collagen-ligand interaction to intrafibrillar mineralization. Sci. Adv. 2019;5:eaav9075. doi: 10.1126/sciadv.aav9075. PubMed DOI PMC
Nesseri E., Boyatzis S.C., Boukos N., Panagiaris G. Optimizing the biomimetic synthesis of hydroxyapatite for the consolidation of bone using diammonium phosphate, simulated body fluid, and gelatin. SN Appl. Sci. 2020;2:1892. doi: 10.1007/s42452-020-03547-8. DOI
Vallecillo C., Toledano-Osorio M., Vallecillo-Rivas M., Toledano M., Osorio R. In vitro biodegradation pattern of collagen matrices for soft tissue augmentation. Polymers. 2021;13:2633. doi: 10.3390/polym13162633. PubMed DOI PMC
Doktor T., Valach J., Kytyr D., Jirousek O. Pore size distribution of human trabecular bone—Comparison of intrusion measurements with image analysis; Proceedings of the 17th International Conference Engineering Mechanics; Svratka, Czech Republic. 9–12 May 2011.
Pamula E., Filova E., Bacakova L., Lisa V., Adamczyk D. Resorbable polymeric scaffolds for bone tissue engineering: The influence of their microstructure on the growth of human osteoblast-like MG 63 cells. J. Biomed. Mater. Res. A. 2009;89:432–443. doi: 10.1002/jbm.a.31977. PubMed DOI
Stankova L., Fraczek-Szczypta A., Blazewicz M., Filova E., Blazewicz S., Lisa V., Bacakova L. Human osteoblast-like MG 63 cells on polysulfone modified with carbon nanotubes or carbon nanohorns. Carbon. 2014;67:578–591. doi: 10.1016/j.carbon.2013.10.031. DOI
Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–689. doi: 10.1016/j.cell.2006.06.044. PubMed DOI
Gopal S., Multhaupt H.A.B., Couchman J.R. Calcium in Cell-Extracellular Matrix Interactions. Adv. Exp. Med. Biol. 2020;1131:1079–1102. doi: 10.1007/978-3-030-12457-1_43. PubMed DOI
Lee M.N., Hwang H.S., Oh S.H., Roshanzadeh A., Kim J.W., Song J.H., Kim E.S., Koh J.T. Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp. Mol. Med. 2018;50:1–16. doi: 10.1038/s12276-018-0170-6. PubMed DOI PMC
Resende R.R., Andrade L.M., Oliveira A.G., Guimarães E.S., Guatimosim S., Leite M.F. Nucleoplasmic calcium signaling and cell proliferation: Calcium signaling in the nucleus. Cell Commun. Signal. 2013;11:14. doi: 10.1186/1478-811X-11-14. PubMed DOI PMC
Patergnani S., Danese A., Bouhamida E., Aguiari G., Previati M., Pinton P., Giorgi C. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int. J. Mol. Sci. 2020;21:8323. doi: 10.3390/ijms21218323. PubMed DOI PMC
Obata A., Ogasawara T., Kasuga T. Combinatorial effects of inorganic ions on adhesion and proliferation of osteoblast-like cells. J. Biomed. Mater. Res. A. 2019;107:1042–1051. doi: 10.1002/jbm.a.36623. PubMed DOI
Camalier C.E., Yi M., Yu L.R., Hood B.L., Conrads K.A., Lee Y.J., Lin Y., Garneys L.M., Bouloux G.F., Young M.R., et al. An integrated understanding of the physiological response to elevated extracellular phosphate. J. Cell Physiol. 2013;228:1536–1550. doi: 10.1002/jcp.24312. PubMed DOI PMC
Jeong J., Kim J.H., Shim J.H., Hwang N.S., Heo C.Y. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 2019;23:4. doi: 10.1186/s40824-018-0149-3. PubMed DOI PMC
Wang S., Xu C., Yu S., Wu X., Jie Z., Dai H. Citric acid enhances the physical properties, cytocompatibility and osteogenesis of magnesium calcium phosphate cement. J. Mech. Behav. Biomed. Mater. 2019;94:42–50. doi: 10.1016/j.jmbbm.2019.02.026. PubMed DOI
Song W., Wang Q., Wan C., Shi T., Markel D., Blaiser R., Ren W. A novel alkali metals/strontium co-substituted calcium polyphosphate scaffolds in bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2011;98:255–262. doi: 10.1002/jbm.b.31847. PubMed DOI
Sang Cho J., Um S.H., Su Yoo D., Chung Y.C., Hye Chung S., Lee J.C., Rhee S.H. Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability. J. Biomed. Mater. Res. B Appl. Biomater. 2014;102:1046–1062. doi: 10.1002/jbm.b.33087. PubMed DOI
Klimek K., Belcarz A., Pazik R., Sobierajska P., Han T., Wiglusz R.J., Ginalska G. “False” cytotoxicity of ions-adsorbing hydroxyapatite—Corrected method of cytotoxicity evaluation for ceramics of high specific surface area. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;65:70–79. doi: 10.1016/j.msec.2016.03.105. PubMed DOI
Mestres G., Le Van C., Ginebra M.P. Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: Characterization and cell response. Acta Biomater. 2012;8:1169–1179. doi: 10.1016/j.actbio.2011.11.021. PubMed DOI
Isom L.L. The role of sodium channels in cell adhesion. Front. Biosci. 2002;7:12–23. doi: 10.2741/isom. PubMed DOI
Brackenbury W.J., Djamgoz M.B., Isom L.L. An emerging role for voltage-gated Na+ channels in cellular migration: Regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist. 2008;14:571–583. doi: 10.1177/1073858408320293. PubMed DOI PMC
Griffanti G., Jiang W., Nazhat S.N. Bioinspired mineralization of a functionalized injectable dense collagen hydrogel through silk sericin incorporation. Biomater. Sci. 2019;7:1064–1077. doi: 10.1039/C8BM01060A. PubMed DOI
Janeway C.A., Jr., Travers P., Walport M., Shlomchik M.J. Immunobiology. 5th ed. Garland Science; New York, NY, USA: 2001. The Immune System in Health and Disease.
Velard F., Braux J., Amedee J., Laquerriere P. Inflammatory cell response to calcium phosphate biomaterial particles: An overview. Acta Biomater. 2013;9:4956–4963. doi: 10.1016/j.actbio.2012.09.035. PubMed DOI
Wang M., Chen F., Wang J., Chen X., Liang J., Yang X., Zhu X., Fan Y., Zhang X. Calcium phosphate altered the cytokine secretion of macrophages and influenced the homing of mesenchymal stem cells. J. Mater. Chem. B. 2018;6:4765–4774. doi: 10.1039/C8TB01201F. PubMed DOI
Matesanz M.C., Feito M.J., Oñaderra M., Ramírez-Santillán C., da Casa C., Arcos D., Vallet-Regí M., Rojo J.M., Portolés M.T. Early in vitro response of macrophages and T lymphocytes to nanocrystalline hydroxyapatites. J. Colloid Interface Sci. 2014;416:59–66. doi: 10.1016/j.jcis.2013.10.045. PubMed DOI
Curran J.M., Gallagher J.A., Hunt J.A. The inflammatory potential of biphasic calcium phosphate granules in osteoblast/macrophage co-culture. Biomaterials. 2005;26:5313–5320. doi: 10.1016/j.biomaterials.2005.01.065. PubMed DOI
Branch D.R., Guilbert L.J. Autocrine regulation of macrophage proliferation by tumor necrosis factor-alpha. Exp. Hematol. 1996;24:675–681. PubMed
Witzel A.L., Schook L.B. Tumor necrosis factor alpha is an autocrine growth regulator during macrophage differentiation. Proc. Natl. Acad. Sci. USA. 1992;89:4754–4758. doi: 10.1073/pnas.89.10.4754. PubMed DOI PMC
Leung K.N., Mak N.K., Fung M.C., Hapel A.J. Synergistic effect of IL-4 and TNF-alpha in the induction of monocytic differentiation of a mouse myeloid leukaemic cell line (WEHI-3B JCS) Immunology. 1994;81:65–72. PubMed PMC
Xie B., Laouar A., Huberman E. Autocrine regulation of macrophage differentiation and 92-kDa gelatinase production by tumor necrosis factor-α via α5β1 integrin in HL-60 cells. J. Biol. Chem. 1998;273:11583–11588. doi: 10.1074/jbc.273.19.11583. PubMed DOI
Raschke W.C., Baird S., Ralph P., Nakoinz I. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell. 1978;15:261–267. doi: 10.1016/0092-8674(78)90101-0. PubMed DOI
Introna M., Hamilton T.A., Kaufman R.E., Adams D.O., Bast R.C., Jr. Treatment of murine peritoneal macrophages with bacterial lipopolysaccharide alters expression of c-fos and c-myc oncogenes. J. Immunol. 1986;137:2711–2715. PubMed
Cooper P.H., Mayer P., Baggiolini M. Stimulation of phagocytosis in bone marrow-derived mouse macrophages by bacterial lipopolysaccharide: Correlation with biochemical and functional parameters. J. Immunol. 1984;133:913–922. PubMed
Sánchez-Tilló E., Comalada M., Farrera C., Valledor A.F., Lloberas J., Celada A. Macrophage-colony-stimulating factor-induced proliferation and lipo-polysaccharide-dependent activation of macrophages requires Raf-1 phosphorylation to induce mitogen kinase phosphatase-1 expression. J. Immunol. 2006;176:6594–6602. doi: 10.4049/jimmunol.176.11.6594. PubMed DOI
Islam S., Hassan F., Tumurkhuu G., Dagvadorj J., Koide N., Naiki Y., Mori I., Yoshida T., Yokochi T. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells. Biochem. Biophys. Res. Commun. 2007;360:346–351. doi: 10.1016/j.bbrc.2007.06.023. PubMed DOI
Mammalian Cell Interaction with Periodic Surface Nanostructures