Composite Polylactide/Polycaprolactone Foams with Hierarchical Porous Structure for Pre-Vascularized Tissue Engineering
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-08-00208
Ministry of Health of the Czech Republic
LM2018100
Ministry of Education, Youth and Sports
Cooperatio 207030 Dental Medicine/LF1
Charles University
CZ.02.01.01/00/22_008/0004562
Ministry of Education, Youth and Sports, co-funded by the European Union
Praemium Academiae AP2202
Czech Academy of Sciences
NW24-02-00206
Ministry of Health of the Czech Republic
PubMed
40243624
PubMed Central
PMC11988939
DOI
10.3390/ijms26072974
PII: ijms26072974
Knihovny.cz E-zdroje
- Klíčová slova
- compression stress and strain, degradable polyesters, dynamic cultivation, endothelial cells, macroporosity, mesenchymal stem cells, mineralization, nanoporosity, pre-vascularization, three-dimensional scaffolds,
- MeSH
- biokompatibilní materiály chemie MeSH
- kmenové buňky cytologie MeSH
- lidé MeSH
- polyestery * chemie MeSH
- poréznost MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury * chemie MeSH
- tuková tkáň cytologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- poly(lactide) MeSH Prohlížeč
- polycaprolactone MeSH Prohlížeč
- polyestery * MeSH
Modern tissue engineering requires not only degradable materials promoting cell growth and differentiation, but also vascularization of the engineered tissue. Porous polylactide/polycaprolactone (PLA/PCL, ratio 3/5) foam scaffolds were prepared by a combined porogen leaching and freeze-drying technique using NaCl (crystal size 250-500 µm) and a water-soluble cellulose derivative (KlucelTM E; 10-100% w/w relative to the total PLA/PCL concentration) as porogens. Scanning electron microscopy, micro-CT, and Brunauer-Emmett-Teller analysis showed that all scaffolds contained a trimodal range of pore sizes, i.e., macropores (average diameter 298-539 μm), micropores (100 nm to 10 μm), and nanopores (mostly around 3.0 nm). All scaffolds had an open porosity of about 90%, and the pores were interconnected. The size of the macropores and the nanoporosity were higher in the scaffolds prepared with Klucel. Nanoporosity increased water uptake by the scaffolds, while macroporosity promoted cell ingrowth, which was most evident in scaffolds prepared with 25% Klucel. Human adipose-derived stem cells co-cultured with endothelial cells formed pre-vascular structures in the scaffolds, which was further enhanced in a dynamic cell culture system. The scaffolds are promising for the engineering of pre-vascularized soft tissues (relatively pliable 10% Klucel scaffolds) and hard tissues (mechanically stronger 25% and 50% Klucel scaffolds).
Czech Agrifood Research Center Drnovská 507 73 161 01 Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Videnska 1083 142 00 Prague Czech Republic
Zobrazit více v PubMed
Bersini S., Gilardi M., Arrigoni C., Talo G., Zamai M., Zagra L., Caiolfa V., Moretti M. Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach. Biomaterials. 2016;76:157–172. doi: 10.1016/j.biomaterials.2015.10.057. PubMed DOI
Liu J., Chen G., Xu H., Hu K., Sun J.F., Liu M., Zhang F.M., Gu N. Pre-vascularization in fibrin Gel/PLGA microsphere scaffolds designed for bone regeneration. NPG Asia Mater. 2018;10:827–839. doi: 10.1038/s41427-018-0076-8. DOI
Forget A., Gianni-Barrera R., Uccelli A., Sarem M., Kohler E., Fogli B., Muraro M.G., Bichet S., Aumann K., Banfi A., et al. Mechanically Defined Microenvironment Promotes Stabilization of Microvasculature, Which Correlates with the Enrichment of a Novel Piezo-1+ Population of Circulating CD11b+/CD115+ Monocytes. Adv. Mater. 2019;31:e1808050. doi: 10.1002/adma.201808050. PubMed DOI
Schott N.G., Vu H., Stegemann J.P. Multimodular vascularized bone construct comprised of vasculogenic and osteogenic microtissues. Biotechnol. Bioeng. 2022;119:3284–3296. doi: 10.1002/bit.28201. PubMed DOI PMC
Lee A., Hudson A.R., Shiwarski D.J., Tashman J.W., Hinton T.J., Yerneni S., Bliley J.M., Campbell P.G., Feinberg A.W. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365:482–487. doi: 10.1126/science.aav9051. PubMed DOI
Kolesky D.B., Homan K.A., Skylar-Scott M.A., Lewis J.A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA. 2016;113:3179–3184. doi: 10.1073/pnas.1521342113. PubMed DOI PMC
Bacakova L., Zarubova J., Travnickova M., Musilkova J., Pajorova J., Slepicka P., Kasalkova N.S., Svorcik V., Kolska Z., Motarjemi H., et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI
Phua Q.H., Han H.A., Soh B.S. Translational stem cell therapy: Vascularized skin grafts in skin repair and regeneration. J. Transl. Med. 2021;19:83. doi: 10.1186/s12967-021-02752-2. PubMed DOI PMC
Gunatillake P.A., Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 2003;5:1–16. doi: 10.22203/eCM.v005a01. discussion 16. PubMed DOI
Pamula E., Filová E., Bacáková L., Lisá V., Adamczyk D. Resorbable polymeric scaffolds for bone tissue engineering: The influence of their microstructure on the growth of human osteoblast-like MG 63 cells. J. Biomed. Mater. Res. A. 2009;89:432–443. doi: 10.1002/jbm.a.31977. PubMed DOI
Beran M., Musilkova J., Sedlar A., Slepicka P., Vesely M., Kolska Z., Vltavsky O., Molitor M., Bacakova L. Evaluation of Polymeric Micro/Nanofibrous Hybrid Scaffolds Prepared via Centrifugal Nozzleless Spinning for Tissue Engineering Applications. Polymers. 2025;17:386. doi: 10.3390/polym17030386. PubMed DOI PMC
Maimouni I., Cejas C.M., Cossy J., Tabeling P., Russo M. Microfluidics Mediated Production of Foams for Biomedical Applications. Micromachines. 2020;11:83. doi: 10.3390/mi11010083. PubMed DOI PMC
Socci M.C., Rodríguez G., Oliva E., Fushimi S., Takabatake K., Nagatsuka H., Felice C.J., Rodríguez A.P. Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering. 2023;10:218. doi: 10.3390/bioengineering10020218. PubMed DOI PMC
Novotna K., Zajdlova M., Suchy T., Hadraba D., Lopot F., Zaloudkova M., Douglas T.E.L., Munzarova M., Juklickova M., Stranska D., et al. Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells. J. Biomed. Mater. Res. A. 2014;102:3918–3930. doi: 10.1002/jbm.a.35061. PubMed DOI
Ren L., Pandit V., Elkin J., Denman T., Cooper J.A., Kotha S.P. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Nanoscale. 2013;5:2337–2345. doi: 10.1039/c3nr33423f. PubMed DOI
Bacakova L., Novotna K., Hadraba D., Musilkova J., Slepicka P., Beran M. Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation. Polymers. 2022;14:602. doi: 10.3390/polym14030602. PubMed DOI PMC
Kramschuster A., Turng L.S. An Injection Molding Process for Manufacturing Highly Porous and Interconnected Biodegradable Polymer Matrices for Use as Tissue Engineering Scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 2010;92:366–376. doi: 10.1002/jbm.b.31523. PubMed DOI
Bruzauskaite I., Bironaite D., Bagdonas E., Bernotiene E. Scaffolds and cells for tissue regeneration: Different scaffold pore sizes-different cell effects. Cytotechnology. 2016;68:355–369. doi: 10.1007/s10616-015-9895-4. PubMed DOI PMC
Chen X.N., Fan H.Y., Deng X.W., Wu L.N., Yi T., Gu L.X., Zhou C.C., Fan Y.J., Zhang X.D. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. Nanomaterials. 2018;8:960. doi: 10.3390/nano8110960. PubMed DOI PMC
Iviglia G., Kargozar S., Baino F. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. J. Funct. Biomater. 2019;10:3. doi: 10.3390/jfb10010003. PubMed DOI PMC
Bianco S., Mancardi D., Merlino A., Bussolati B., Munaron L. Hypoxia and hydrogen sulfide differentially affect normal and tumor-derived vascular endothelium. Redox. Biol. 2017;12:499–504. doi: 10.1016/j.redox.2017.03.015. PubMed DOI PMC
Im G.I., Ko J.Y., Lee J.H. Chondrogenesis of Adipose Stem Cells in a Porous Polymer Scaffold: Influence of the Pore Size. Cell Transplant. 2012;21:2397–2405. doi: 10.3727/096368912X638865. PubMed DOI
Han Y., Lian M.F., Wu Q., Qiao Z.G., Sun B.B., Dai K.R. Effect of Pore Size on Cell Behavior Using Melt Electrowritten Scaffolds. Front. Bioeng. Biotechnol. 2021;9:629270. doi: 10.3389/fbioe.2021.629270. PubMed DOI PMC
Cheng M.Q., Wahafu T.E.H.J., Jiang G.F., Liu W., Qiao Y.Q., Peng X.C., Cheng T., Zhang X.L., He G., Liu X.Y. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci. Rep. 2016;6:24134. doi: 10.1038/srep24134. PubMed DOI PMC
Abbasi N., Hamlet S., Love R.M., Nguyen N.T. Porous scaffolds for bone regeneration. J. Sci. Adv. Mater. Devices. 2020;5:1–9. doi: 10.1016/j.jsamd.2020.01.007. DOI
Wu G.J., Xie P.C., Yang H.G., Dang K.F., Xu Y.X., Sain M., Turng L.S., Yang W.M. A review of thermoplastic polymer foams for functional applications. J. Mater. Sci. 2021;56:11579–11604. doi: 10.1007/s10853-021-06034-6. DOI
Torres E., Dominguez-Candela I., Castello-Palacios S., Vallés-Lluch A., Fombuena V. Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications. Polymers. 2020;12:1703. doi: 10.3390/polym12081703. PubMed DOI PMC
Broz M.E., VanderHart D.L., Washburn N.R. Structure and mechanical properties of poly(D,L-lactic acid)/poly(ε-caprolactone) blends. Biomaterials. 2003;24:4181–4190. doi: 10.1016/S0142-9612(03)00314-4. PubMed DOI
Chen Y., Lu T.T., Li L.Y., Zhang H.Y., Wang H.P., Ke F.Y. Fully biodegradable PLA composite with improved mechanical properties via 3D printing. Mater. Lett. 2023;331:133543. doi: 10.1016/j.matlet.2022.133543. DOI
Tabriz A.G., Fullbrook D.H.G., Vilain L., Derrar Y., Nandi U., Grau C., Morales A., Hooper G., Hiezl Z., Douroumis D. Personalised Tasted Masked Chewable 3D Printed Fruit-Chews for Paediatric Patients. Pharmaceutics. 2021;13:1301. doi: 10.3390/pharmaceutics13081301. PubMed DOI PMC
Lima S.G.B., Pinho L.A.G., Pereira M.N., Gratieri T., Sa-Barreto L.L., Gelfuso G.M., Cunha M. Preformulation studies of finasteride to design matrix systems for topical delivery. J. Pharm. Biomed. Anal. 2018;161:273–279. doi: 10.1016/j.jpba.2018.08.056. PubMed DOI
Jo S., Kang S.M., Park S.A., Kim W.D., Kwak J., Lee H. Enhanced Adhesion of Preosteoblasts inside 3D PCL Scaffolds by Polydopamine Coating and Mineralization. Macromol. Biosci. 2013;13:1389–1395. doi: 10.1002/mabi.201300203. PubMed DOI
Thomas M., Arora A., Katti D.S. Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;45:320–332. doi: 10.1016/j.msec.2014.08.074. PubMed DOI
Ebrahimi Z., Irani S., Ardeshirylajimi A., Seyedjafari E. Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite. Sci. Rep. 2022;12:12359. doi: 10.1038/s41598-022-15602-y. PubMed DOI PMC
Webster T.J., Ergun C., Doremus R.H., Siegel R.W., Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res. 2000;51:475–483. doi: 10.1002/1097-4636(20000905)51:3<475::aid-jbm23>3.0.co;2-9. PubMed DOI
Musilkova J., Kotelnikov I., Novotna K., Pop-Georgievski O., Rypacek F., Bacakova L., Proks V. Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly(ethylene oxide) protein repulsive surface. J. Mater. Sci. Mater. Med. 2015;26:253. doi: 10.1007/s10856-015-5583-3. PubMed DOI PMC
Zhao L.Z., Mei S.L., Chu P.K., Zhang Y.M., Wu Z.F. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31:5072–5082. doi: 10.1016/j.biomaterials.2010.03.014. PubMed DOI
Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Ghayor C., Weber F.E. Osteoconductive Microarchitecture of Bone Substitutes for Bone Regeneration Revisited. Front. Physiol. 2018;9:960. doi: 10.3389/fphys.2018.00960. PubMed DOI PMC
Yamahara S., Raudales J.L.M., Akiyama Y., Ito M., Chimedtseren I., Arai Y., Wakita T., Hiratsuka T., Miyazawa K., Goto S., et al. Appropriate pore size for bone formation potential of porous collagen type I-based recombinant peptide. Regen Ther. 2022;21:294–306. doi: 10.1016/j.reth.2022.08.001. PubMed DOI PMC
Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002. PubMed DOI
Mays T.J. A new classification of pore sizes. Stud. Surf. Sci. Catal. 2006;160:57–62. doi: 10.1016/S0167-2991(07)80009-7. DOI
Chanes-Cuevas O.A., Perez-Soria A., Cruz-Maya I., Guarino V., Alvarez-Perez M.A. Macro-, micro- and mesoporous materials for tissue engineering applications. AIMS Mater. Sci. 2018;5:1124–1140. doi: 10.3934/matersci.2018.6.1124. DOI
Li J., Zhang M. Biporous nanocarbon foams and the effect of the structure on the capillary performance. Prog. Nat. Sci. Mater. Int. 2020;30:360–365. doi: 10.1016/j.pnsc.2020.05.006. DOI
Zhou J.Y., Xiong S.L., Liu M., Yang H., Wei P., Yi F., Ouyang M., Xi H.R., Long Z.S., Liu Y.Y., et al. Study on the influence of scaffold morphology and structure on osteogenic performance. Front. Bioeng. Biotechnol. 2023;11:1127162. doi: 10.3389/fbioe.2023.1127162. PubMed DOI PMC
Basta A.H., Lotfy V.F., Micky J.A., Salem A.M. Hydroxypropylcellulose-based liquid crystal materials. Carbohydr. Polym. Technol. Appl. 2021;2:100103. doi: 10.1016/j.carpta.2021.100103. DOI
Tran T.H.H., Luu C.H., Nguyen K.T.T., Hoang M.A.L., Pham Q.K., Phan C.M., Thai N.K.L., Nguyen H.T., Thambi T., Phan V.H.G. Mineralized Biopolymers-Based Scaffold Encapsulating with Dual Drugs for Alveolar Ridge Preservation. Macromol. Biosci. 2024;25:e2400351. doi: 10.1002/mabi.202400351. PubMed DOI
Liu J., Zheng H.Y., Poh P.S.P., Machens H.G., Schilling A.F. Hydrogels for Engineering of Perfusable Vascular Networks. Int. J. Mol. Sci. 2015;16:15997–16016. doi: 10.3390/ijms160715997. PubMed DOI PMC
Arevalo S., Arthurs C., Molina M.I.E., Pruitt L., Roy A. An overview of the tribological and mechanical properties of PEEK and CFR-PEEK for use in total joint replacements. J. Mech. Behav. Biomed. Mater. 2023;145:105974. doi: 10.1016/j.jmbbm.2023.105974. PubMed DOI
Klimek K., Benko A., Vandrovcova M., Travnickova M., Douglas T.E.L., Tarczynska M., Broz A., Gaweda K., Ginalska G., Bacakova L. Biomimetic biphasic curdlan-based scaffold for osteochondral tissue engineering applications—Characterization and preliminary evaluation of mesenchymal stem cell response. Biomater. Adv. 2022;135:212724. doi: 10.1016/j.bioadv.2022.212724. PubMed DOI
Yang X., Cai X., Wang J., Tang H., Yuan Q., Gong P., Lin Y. Mechanical stretch inhibits adipogenesis and stimulates osteogenesis of adipose stem cells. Cell Prolif. 2012;45:158–166. doi: 10.1111/j.1365-2184.2011.00802.x. PubMed DOI PMC
Paul N.E., Denecke B., Kim B.S., Dreser A., Bernhagen J., Pallua N. The effect of mechanical stress on the proliferation, adipogenic differentiation and gene expression of human adipose-derived stem cells. J. Tissue Eng. Regen. Med. 2018;12:276–284. doi: 10.1002/term.2411. PubMed DOI
Tirkkonen L., Halonen H., Hyttinen J., Kuokkanen H., Sievänen H., Koivisto A.M., Mannerström B., Sándor G.K.B., Suuronen R., Miettinen S., et al. The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells. J. R. Soc. Interface. 2011;8:1736–1747. doi: 10.1098/rsif.2011.0211. PubMed DOI PMC
Choi J., Lee S.Y., Yoo Y.M., Kim C.H. Maturation of Adipocytes is Suppressed by Fluid Shear Stress. Cell Biochem. Biophys. 2017;75:87–94. doi: 10.1007/s12013-016-0771-4. PubMed DOI
Baumgartner W., Schneider I., Hess S.C., Stark W.J., Märsmann S., Brunelli M., Calcagni M., Cinelli P., Buschmann J. Cyclic uniaxial compression of human stem cells seeded on a bone biomimetic nanocomposite decreases anti-osteogenic commitment evoked by shear stress. J. Mech. Behav. Biomed. Mater. 2018;83:84–93. doi: 10.1016/j.jmbbm.2018.04.002. PubMed DOI
Molitor M., Trávnícková M., Mesták O., Christodoulou P., Sedlár A., Bacáková L., Lucchina S. The Influence of High and Low Negative Pressure Liposuction and Various Harvesting Techniques on the Viability and Function of Harvested Cells-a Systematic Review of Animal and Human Studies. Aesthetic Plast. Surg. 2021;45:2379–2394. doi: 10.1007/s00266-021-02249-9. PubMed DOI
Tervaert J.W.C., Shoenfeld Y., Cruciani C., Scarpa C., Bassetto F. Breast implant illness: Is it causally related to breast implants? Autoimmun. Rev. 2024;23:103448. doi: 10.1016/j.autrev.2023.103448. PubMed DOI
Broz A., Jirka I., Matejka R., Stepanovská J., Doubková M., Sajdl P., Drahokoupil J., Volochanskyi O., Futóová T., Bacáková L. Surface modifications of a silicalite film designed for coating orthopaedic implants. Mater. Des. 2022;224:111373. doi: 10.1016/j.matdes.2022.111373. DOI
Bajek A., Gurtowska N., Gackowska L., Kubiszewska I., Bodnar M., Marszalek A., Januszewski R., Michalkiewicz J., Drewa T. Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells? Biosci. Rep. 2015;35:e00212. doi: 10.1042/BSR20150067. PubMed DOI PMC
Volz A.C., Hack L., Atzinger F.B., Kluger P.J. Completely Defined Co-Culture of Adipogenic Differentiated ASCs and Microvascular Endothelial Cells. ALTEX. 2018;35:464–476. doi: 10.14573/altex.1802191. PubMed DOI
Schott N.G., Stegemann J.P. Coculture of Endothelial and Stromal Cells to Promote Concurrent Osteogenesis and Vasculogenesis. Tissue Eng. Part A. 2021;27:1376–1386. doi: 10.1089/ten.tea.2020.0330. PubMed DOI PMC
Maisani M., Pezzoli D., Chassande O., Mantovani D. Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment? J. Tissue Eng. 2017;8:2041731417712073. doi: 10.1177/2041731417712073. PubMed DOI PMC
Kamat P., Frueh F.S., McLuckie M., Sanchez-Macedo N., Wolint P., Lindenblatt N., Plock J.A., Calcagni M., Buschmann J. Adipose tissue and the vascularization of biomaterials: Stem cells, microvascular fragments and nanofat-a review. Cytotherapy. 2020;22:400–411. doi: 10.1016/j.jcyt.2020.03.433. PubMed DOI
Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI
Estes B.T., Diekman B.O., Gimble J.M., Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 2010;5:1294–1311. doi: 10.1038/nprot.2010.81. PubMed DOI PMC