Evaluation of Polymeric Micro/Nanofibrous Hybrid Scaffolds Prepared via Centrifugal Nozzleless Spinning for Tissue Engineering Applications

. 2025 Jan 31 ; 17 (3) : . [epub] 20250131

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39940588

Grantová podpora
NU20-08-00208 The Ministry of Health of the Czech Republic

We compared the applicability of 3D fibrous scaffolds, produced by our patented centrifugal spinning technology, in soft tissue engineering. The scaffolds were prepared from four different biocompatible and biodegradable thermoplastics, namely, polylactide (PLA), polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and poly(1,4-butylene succinate) (PBS) and their blends. The combined results of SEM and BET analyses revealed an internal hierarchically organized porosity of the polymeric micro/nanofibers. Both nanoporosity and capillary effect are crucial for the water retention capacity of scaffolds designed for tissue engineering. The increased surface area provided by nanoporosity enhances water retention, while the capillary effect facilitates the movement of water and nutrients within the scaffolds. When the scaffolds were seeded with adipose-derived stem cells (ASCs), the ingrowth of these cells was the deepest in the PLA/PCL 13.5/4 (w/w) composite scaffolds. This result is consistent with the relatively large pore size in the fibrous networks, the high internal porosity, and the large specific surface area found in these scaffolds, which may therefore be best suited as a component of adipose tissue substitutes that could reduce postoperative tissue atrophy. Adipose tissue constructs produced in this way could be used in the future instead of conventional fat grafts, for example, in breast reconstruction following cancer ablation.

Zobrazit více v PubMed

Bacakova L., Bacakova M., Pajorova J., Kudlackova R., Stankova L., Filova E., Musilkova J., Potocky S., Kromka A. Nanofibrous scaffolds as promising cell carriers for tissue engineering. In: Rahman M.M., Asiri A.M., editors. Nanofiber Research: Reaching New Heights. Intechopen Limited; London, UK: 2016. pp. 29–54.

Malik S., Sundarrajan S., Hussain T., Nazir A., Ayyoob M., Berto F., Ramakrishna S. Sustainable nanofibers in tissue engineering and biomedical applications. Mat. Design Process Comm. 2021;3:e202. doi: 10.1002/mdp2.202. DOI

Younes H.M., Kadavil H., Ismail H.M., Adib S.A., Zamani S., Alany R.G., Al-Kinani A.A. Overview of Tissue Engineering and Drug Delivery Applications of Reactive Electrospinning and Crosslinking Techniques of Polymeric Nanofibers with Highlights on Their Biocompatibility Testing and Regulatory Aspects. Pharmaceutics. 2024;16:32. doi: 10.3390/pharmaceutics16010032. PubMed DOI PMC

Vasita R., Katti D.S. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 2006;1:15–30. doi: 10.2147/nano.2006.1.1.15. PubMed DOI PMC

Kumar V., Naqvi S., Gopinath P. Chapter 7—Applications of Nanofibers in Tissue Engineering. In: Bhagyaraj S.M., Oluwafemi O.S., Kalarikkal N., Thomas S., editors. Micro and Nano Technologies, Applications of Nanomaterials. Woodhead Publishing; Sawston, UK: 2018. pp. 179–203.

Dahlin R.L., Kasper F.K., Mikos A.G. Polymeric nanofibers in tissue engineering. Tissue Eng. B Rev. 2011;17:349–364. doi: 10.1089/ten.teb.2011.0238. PubMed DOI PMC

Balusamy B., Senthamizhan A., Uyar T. Electrospun Nanofibers for Wound Dressing and Tissue Engineering Applications. Hacet. J. Biol. Chem. 2020;48:459–481. doi: 10.15671/hjbc.789186. DOI

Kharaghani D., Kaffashsaei E., Md K.H., Kim I.S. The effect of polymeric nanofibers used for 3D-printed scaffolds on cellular activity in tissue engineering: A review. Int. J. Mol. Sci. 2023;24:9464. doi: 10.3390/ijms24119464. PubMed DOI PMC

Ogueri K.S., Laurencin C.T. Nanofiber Technology for Regenerative Engineering. ACS Nano. 2020;14:9347–9363. doi: 10.1021/acsnano.0c03981. PubMed DOI PMC

Anjum S., Rahman F., Pandey P., Arya D.K., Alam M., Rajinikanth P.S., Ao Q. Electrospun biomimetic nanofibrous scaffolds: A promising prospect for bone tissue engineering and regenerative medicine. Int. J. Mol. Sci. 2022;23:9206. doi: 10.3390/ijms23169206. PubMed DOI PMC

Nemati S., Kim S., Shin Y.M. Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg. 2019;6:36. doi: 10.1186/s40580-019-0209-y. PubMed DOI PMC

Zulkifli M.Z.A., Nordin D., Shaari N., Kamarudin S.K. Overview of Electrospinning for Tissue Engineering Applications. Polymers. 2023;15:2418. doi: 10.3390/polym15112418. PubMed DOI PMC

Udomluck N., Koh W.G., Lim D.J., Park H. Recent developments in nanofiber fabrication and modification for bone tissue engineering. Int. J. Mol. Sci. 2020;21:99. doi: 10.3390/ijms21010099. PubMed DOI PMC

Yan X., Yao H., Luo J., Li Z., Wei J. Functionalization of Electrospun Nanofiber for Bone Tissue Engineering. Polymers. 2022;14:2940. doi: 10.3390/polym14142940. PubMed DOI PMC

Dong X., Zhang J., Pang L., Chen J., Qi M., You S., Ren N. An anisotropic three-dimensional electrospun micro/nanofibrous hybrid PLA/PCL scaffold. RSC Adv. 2019;9:9838–9844. doi: 10.1039/C9RA00846B. PubMed DOI PMC

Liu S., Wang Z., Chen X., Han M., Xu J., Li T., Yu L., Qin M.L., Li M., Zhang H., et al. Multiscale anisotropic scaffold integrating 3D printing and electrospinning techniques as a heart-on-a-chip platform for evaluating drug-induced cardiotoxicity. Adv. Healthc. Mater. 2023;12:2300719. doi: 10.1002/adhm.202300719. PubMed DOI

Reid J., Dwyer K.D., Schmitt P.R., Soepriatna A.H., Coulombe K.L.K., Callanan A. Architected fibrous scaffolds for engineering anisotropic tissues. Biofabrication. 2021;13:045007. doi: 10.1088/1758-5090/ac0fc9. PubMed DOI PMC

Mondésert H., Bossard F., Favier D. Anisotropic electrospun honeycomb polycaprolactone scaffolds: Elaboration, morphological and mechanical properties. J. Mech. Behav. Biomed. Mater. 2021;113:104124. doi: 10.1016/j.jmbbm.2020.104124. PubMed DOI

Erickson A.E., Edmondson D., Chang F.C., Wood D., Gong A., Levengood S.L., Zhang M. High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning. Carbohydr. Polym. 2015;134:467–474. doi: 10.1016/j.carbpol.2015.07.097. PubMed DOI PMC

Weitz R.T., Harnau L., Rauschenbach S., Burghard M., Kern K. Polymer Nanofibers via Nozzle-Free Centrifugal Spinning. Nano Lett. 2008;8:1187–1191. doi: 10.1021/nl080124q. PubMed DOI

Zhang X., Lu Y. Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost. Polym. Rev. 2014;54:677–701. doi: 10.1080/15583724.2014.935858. DOI

Zhang Z.-M., Duan Y.-S., Xu Q., Zhang B. A review on nanofiber fabrication with the effect of high-speed centrifugal force field. J. Eng. Fiber Fabr. 2019;14:1–11. doi: 10.1177/1558925019867517. DOI

Ren L., Pandit V., Elkin J., Denman T., Cooper J.A., Kotha S.P. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Nanoscale. 2013;5:2337–2345. doi: 10.1039/c3nr33423f. PubMed DOI

Loordhuswamy A.M., Krishnaswamy V.R., Korrapati P.S., Thinakaran S., Rengaswami G.D. Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;42:799–807. doi: 10.1016/j.msec.2014.06.011. PubMed DOI

Li X., Chen H., Yang B. Centrifugally spun starch-based fibers from amylopectin rich starches. Carbohydr. Polym. 2016;137:459–465. doi: 10.1016/j.carbpol.2015.10.079. PubMed DOI

Ren L., Kotha S.P. Centrifugal jet spinning for highly efficient and large-scale fabrication of barium titanate nanofibers. Mater. Lett. 2014;117:153–157. doi: 10.1016/j.matlet.2013.11.103. PubMed DOI PMC

Mahalingam S., Edirisinghe M. Forming of Polymer Nanofibers by a Pressurised Gyration Process. Macromol. Rapid Commun. 2013;34:1134–1139. doi: 10.1002/marc.201300339. PubMed DOI

Zannini Luz H., dos Santos L.A.L. Centrifugal spinning for biomedical use: A review. Rev. Solid. State Mater. Sci. 2023;48:519–534. doi: 10.1080/10408436.2022.2080640. DOI

Marjuban S.M.H., Rahman M., Duza S.S., Ahmed M.B., Patel D.K., Rahman M.S., Lozano K. Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering. Polymers. 2023;15:1253. doi: 10.3390/polym15051253. PubMed DOI PMC

Gholipour-Kanani A., Daneshi P. A Review on Centrifugal and Electro-Centrifugal Spinning as New Methods of Nanofibers Fabrication. J. Text. Polym. 2022;10:41–55.

Ayati S.S., Karevan M., Stefanek E., Bhia M., Akbari M. Nanofibers Fabrication by Blown-Centrifugal Spinning. Macromol. Mater. Eng. 2022;307:2100368. doi: 10.1002/mame.202100368. DOI

Shanmugasundaram S., Chaudhry H., Livingston Arinzeh T. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng. A. 2011;A17:831–840. doi: 10.1089/ten.tea.2010.0409. PubMed DOI

Beran M., Drahorád J., Hušek Z., Toman F. A Device for the Production of Nanofibres or Microfibres from Solutions, Emulsions, Liquid Suspensions or Melts Containing a Spinning Substance. Czech Utility Model 30609 Patent 30609, 2017, Industrial Property Office of Czech Republic, Prague, Czech Republic. [(accessed on 21 December 2024)]; Available online: https://isdv.upv.gov.cz/webapp/!resdb.pta.frm.

Beran M., Toman F., Drahorad J., Hovorka J., Husek Z. A Device for Producing Fibers or Microfibers. US2017233896A1. [(accessed on 21 December 2024)];U.S. Patent. 2017 August 17; Available online: https://worldwide.espacenet.com/patent/search/family/053491243/publication/US2017233896A1?q=US2017233896A1.

Nie K., Han S., Yang J., Sun Q., Wang X., Li Y., Li Q. Enzyme-crosslinked electrospun fibrous gelatin hydrogel for potential soft tissue engineering. Polymers. 2020;12:1977. doi: 10.3390/polym12091977. PubMed DOI PMC

Estes B.T., Diekman B.O., Gimble J.M., Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 2010;5:1294–1311. doi: 10.1038/nprot.2010.81. PubMed DOI PMC

Travnickova M., Kasalkova N.S., Sedlar A., Molitor M., Musilkova J., Slepicka P., Svorcik V., Bacakova L. Differentiation of adipose tissue-derived stem cells towards vascular smooth muscle cells on modified poly(L-lactide) foils. Biomed. Mater. 2021;16:025016. doi: 10.1088/1748-605X/abaf97. PubMed DOI

Bacakova L., Zarubova J., Travnickova M., Musilkova J., Pajorova J., Slepicka P., Kasalkova N.S., Svorcik V., Kolska Z., Motarjemi H., et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI

Bacakova L., Novotna K., Hadraba D., Musilkova J., Slepicka P., Beran M. Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation. Polymers. 2022;14:602. doi: 10.3390/polym14030602. PubMed DOI PMC

Liao G.-Y., Zhou X.-P., Chen L., Zeng X.-Y., Xie X.-L., Mai Y.-W. Electrospun aligned PLLA/PCL/functionalized multiwalled carbon nanotube composite fibrous membranes and their bio/mechanical properties. Compos. Sci. Technol. 2012;72:248–255. doi: 10.1016/j.compscitech.2011.11.009. DOI

Xu T., Miszuk J.M., Zhao Y., Sun H., Fong H. Electrospun polycaprolactone 3d nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv. Healthc. Mater. 2015;4:2238–2246. doi: 10.1002/adhm.201500345. PubMed DOI

Hairaldin S.Z., Wan Yunus W.M.Z., Ibrahim N.A. Effect Addition of Octadecylamine Modified Clay (ODA-MMT) to Polylactide/Polycaprolactone (PLA/PCL) Blend AMR. 2011;364:317–321. doi: 10.4028/www.scientific.net/AMR.364.317. DOI

Pisani S., Dorati R., Conti B., Modena T., Bruni G., Genta I. Design of copolymer PLA-PCL electrospun matrix for biomedical applications. React. Funct. Polym. 2018;124:77–89. doi: 10.1016/j.reactfunctpolym.2018.01.011. DOI

Aminatun Huriah R., Hikmawati D., Hadi S., Amrillah T., Abdullah C.A.C. Nanofiber Scaffold Based on Polylactic Acid-Polycaprolactone for Anterior Cruciate Ligament Injury. Polymers. 2022;14:2983. doi: 10.3390/polym14152983. PubMed DOI PMC

Xu T., Yao Q., Miszuk J.M., Sanyour H.J., Hong Z., Sun H., Fong H. Tailoring weight ratio of PCL/PLA in electrospun three-dimensional nanofibrous scaffolds and the effect on osteogenic differentiation of stem cells. Colloids Surf. B Biointerfaces. 2018;171:31–39. doi: 10.1016/j.colsurfb.2018.07.004. PubMed DOI PMC

Marei N.H., El-Sherbiny I.M., Lotfy A., El-Badawy A., El-Badri N. Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds. Int. J. Biol. Macromol. A. 2016;93:9–19. doi: 10.1016/j.ijbiomac.2016.08.053. PubMed DOI

Wang L., Wang C., Zhou L., Bi Z., Shi M., Wang D., Li Q. Fabrication of a novel Three-Dimensional porous PCL/PLA tissue engineering scaffold with high connectivity for endothelial cell migration. Eur. Polym. J. 2021;161:110834. doi: 10.1016/j.eurpolymj.2021.110834. DOI

Herrero-Herrero M., Gómez-Tejedor J.A., Vallés-Lluch A. PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. Eur. Polym. J. 2018;99:445–455. doi: 10.1016/j.eurpolymj.2017.12.045. DOI

Tambrchi P., Mahdavi A.H., DaliriJoupari M., Soltani L. Polycaprolactone-co-polylactic acid nanofiber scaffold in combination with 5-azacytidine and transforming growth factor-β to induce cardiomyocyte differentiation of adipose-derived mesenchymal stem cells. Cell Biochem. Funct. 2022;40:668–682. doi: 10.1002/cbf.3728. PubMed DOI

Beran M., Drahorád J., Vltavský O. Centrifugal Nozzleless Spinning—Alternative Technology to Produce Nanofiber Constructs. Adv. Mater. Vid. Proc. Adv. Mater. 2021;2:210160.

Guneta V., Loh Q.L., Choong C. Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties. J. Biomed. Mater. Res. A. 2016;104:1090–1101. doi: 10.1002/jbm.a.35644. PubMed DOI

Rad Z.P., Mokhtari J., Abbasi M. Biopolymer based three-dimensional biomimetic micro/nanofibers scaffolds with porous structures via tailored charge repulsions for skin tissue regeneration. Polym. Adv. Technol. 2021;32:3535–3548.

Kim B.S., Park K.E., Kim M.H., You H.K., Lee J., Park W.H., Kim Y.J. Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds. Int. J. Nanomed. 2015;10:485–502. PubMed PMC

Hsia H.C., Nair M.R., Mintz R.C., Corbett S.A. The fiber diameter of synthetic bioresorbable extracellular matrix influences human fibroblast morphology and fibronectin matrix assembly. Plast. Reconstr. Surg. 2011;127:2312–2320. doi: 10.1097/PRS.0b013e3182139fa4. PubMed DOI PMC

Samie M., Khan A.F., Hardy J.G., Yameen M.A. Electrospun antibacterial composites for cartilage tissue engineering. Macromol. Biosci. 2022;22:2200219. doi: 10.1002/mabi.202200219. PubMed DOI

Lembach A., Tan H., Roisman I.V., Gambaryan-Roisman T., Zhang Y., Tropea C., Yarin A.L. Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. Langmuir. 2010;26:9516–9523. doi: 10.1021/la100031d. PubMed DOI

Wulkersdorfer B., Kao K.K., Agopian V.G., Ahn A., Dunn J.C., Wu B.M., Stelzner M. Bimodal porous scaffolds by sequential electrospinning of poly(glycolic acid) with sucrose particles. Int. J. Polym. Sci. 2010:1–9. doi: 10.1155/2010/436178. DOI

Jeong H., Kim S., Gil M., Song S., Kim S.W., Lee K.J. Preparation of poly-1-butene nanofiber mat and its application as shutdown layer of next generation lithium ion battery. Polymers. 2020;12:2267. doi: 10.3390/polym12102267. PubMed DOI PMC

Nam J., Huang Y., Agarwal S., Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007;13:2249–2257. doi: 10.1089/ten.2006.0306. PubMed DOI PMC

Simonet M., Schneider O., Neuenschwander P., Stark W. Ultraporous 3d polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. Polym. Eng. Sci. 2007;47:2020–2026. doi: 10.1002/pen.20914. DOI

Baker B., Gee A., Metter R., Nathan A., Marklein R., Burdick J., Mauck R. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials. 2008;29:2348–2358. doi: 10.1016/j.biomaterials.2008.01.032. PubMed DOI PMC

Blakeney B.A., Tambralli A., Anderson J.M., Andukuri A., Lim D.J., Dean D.R., Jun H.W. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials. 2011;32:1583–1590. doi: 10.1016/j.biomaterials.2010.10.056. PubMed DOI PMC

Pham Q.P., Sharma U., Mikos A.G. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7:2796–2805. doi: 10.1021/bm060680j. PubMed DOI

Mahjour S.B., Sefat F., Polunin Y., Wang L., Wang H. Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs. J. Biomed. Mater. Res. A. 2016;104:1479–1488. doi: 10.1002/jbm.a.35676. PubMed DOI

Lee J.B., Jeong S., Bae M.S., Yang D.H., Heo D.N., Kim C.H., Alsberg E., Kwon I.K. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng. A. 2011;17:2695–2702. doi: 10.1089/ten.tea.2010.0709. PubMed DOI

Zhang X., Meng S., Huang Y., Xu M., He Y., Lin H., Han J., Chai Y., Wei Y., Deng X. Electrospun gelatin/β-tcp composite nanofibers enhance osteogenic differentiation of bmscs andin vivobone formation by activating Ca2+-sensing receptor signaling. Stem Cells Int. 2015;2015:507154. doi: 10.1155/2015/507154. PubMed DOI PMC

Sequeira S.J., Soscia D.A., Oztan B., Mosier A.P., Jean-Gilles R., Gadre A., Cady N.C., Yener B., Castracane J., Larsen M. The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous plga scaffolds. Biomaterials. 2012;33:3175–3186. doi: 10.1016/j.biomaterials.2012.01.010. PubMed DOI PMC

Liu R., Zhang S., Zhao C., Yang D., Cui T., Liu Y., Min Y. Regulated Surface Morphology of Polyaniline/Polylactic Acid Composite Nanofibers via Various Inorganic Acids Doping for Enhancing Biocompatibility in Tissue Engineering. Nanoscale Res. Lett. 2021;16:1–13. doi: 10.1186/s11671-020-03457-z. PubMed DOI PMC

Gittens R.A., McLachlan T., Olivares-Navarrete R., Cai Y., Berner S., Tannenbaum R., Schwartz Z., Sandhage K.H., Boyan B.D. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. 2011;32:3395–3403. doi: 10.1016/j.biomaterials.2011.01.029. PubMed DOI PMC

Díaz-Gómez L., Ballarin F.M., Abraham G.A., Concheiro A. Random and aligned PLLA: PRGF electrospun scaffolds for regenerative medicine. J. Appl. Polym. Sci. 2014;132:41372. doi: 10.1002/app.41372. DOI

Oktay B., Kayaman-Apohan N., Erdem-Kuruca S., Süleymanoğlu M. Fabrication of collagen immobilized electrospun poly (vinyl alcohol) scaffolds. Polym. Adv. Technol. 2015;26:978–987. doi: 10.1002/pat.3512. DOI

Dubey P., Bhushan B., Sachdev A., Matai I., Kumar S., Gopinath P. Silver-nanoparticle-incorporated composite nanofibers for potential wound-dressing applications. J. Appl. Polym. Sci. 2015;132:42473. doi: 10.1002/app.42473. DOI

Gugulothu D., Barhoum A., Afzal S.M., Venkateshwarlu B., Uludag H. Structural Multifunctional Nanofibers and Their Emerging Applications. In: Barhoum A., Bechelany M., Makhlouf A., editors. Handbook of Nanofibers. Springer; Berlin/Heidelberg, Germany: 2019. pp. 693–732.

Salalha W., Dror Y., Khalfin R., Cohen Y., Yarin A.L., Zussman E. Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning. Langmuir. 2004;20:9852–9855. doi: 10.1021/la048536b. PubMed DOI

Chen X., Li H., Lu W., Guo Y. Antibacterial porous coaxial drug-carrying nanofibers for sustained drug-releasing applications. Nanomaterials. 2021;11:1316. doi: 10.3390/nano11051316. PubMed DOI PMC

Abolhasani M.M., Naebe M., Amiri M., Shirvanimoghaddam K., Anwar S., Michels J.J., Asadi K. Hierarchically structured porous piezoelectric polymer nanofibers for energy harvesting. Adv. Sci. 2020;7:2000517. doi: 10.1002/advs.202000517. PubMed DOI PMC

Gulfam M., Lee J.M., Kim J., Lim D.W., Lee E.K., Chung B.G. Highly porous core-shell polymeric fiber network. Langmuir. 2011;27:10993–10999. doi: 10.1021/la201253z. PubMed DOI

Serag E., El-Aziz A.M.A., El-Maghraby A., Nahla T. Electrospun non-wovens potential wound dressing material based on polyacrylonitrile/chicken feathers keratin nanofiber. Sci. Rep. 2022;12:15460. doi: 10.1038/s41598-022-19390-3. PubMed DOI PMC

You J., Sheng W., Huang K., Hou C., Yue H., Hu B., Wang M., Wei D., Li Q., Zhao L., et al. Novel cigarlike TiO2 nanofibers: Fabrication, improved mechanical, and electrochemical performances. ACS Appl. Mater. Interfaces. 2013;5:2278–2282. doi: 10.1021/am4003099. PubMed DOI

Nathani A., Sharma C.S. Electrospun mesoporous poly(styrene-block-methyl- methacrylate) nanofibers as biosensing platform: Effect of fibers porosity on sensitivity. Electroanalysis. 2019;31:2138–2144. doi: 10.1002/elan.201800796. DOI

Kalaoglu-Altan O.I., Kirac-Aydin A., Sumer Bolu B., Sanyal R., Sanyal A. Diels-Alder “Clickable” Biodegradable Nanofibers: Benign Tailoring of Scaffolds for Biomolecular Immobilization and Cell Growth. Bioconjugate Chem. 2017;28:2420–2428. doi: 10.1021/acs.bioconjchem.7b00411. PubMed DOI

Linh N.T.B., Min Y.K., Song H., Lee B. Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties. J. Biomed. Mater. Res. B Appl. Biomater. 2010;95B:184–191. doi: 10.1002/jbm.b.31701. PubMed DOI

Wang X., Ding B., Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today. 2013;16:229–241. doi: 10.1016/j.mattod.2013.06.005. PubMed DOI PMC

Oliveira C., Costa-Pinto A.R., Reis R.L., Martins A., Neves N.M. Biofunctional nanofibrous substrate comprising immobilized antibodies and selective binding of autologous growth factors. Biomacromolecules. 2014;15:2196–2205. doi: 10.1021/bm500346s. PubMed DOI

Priyanto A., Hapidin D.A., Suciati T., Khairurrijal K. Current Developments on Rotary Forcespun Nanofibers and Prospects for Edible Applications. Food Eng. Rev. 2022;14:435–461. doi: 10.1007/s12393-021-09304-w. DOI

Depan D., Misra R. Processing–structure–functional property relationship in organic–inorganic nanostructured scaffolds for bone-tissue engineering: The response of preosteoblasts. J. Biomed. Mater. Res. A. 2012;100A:3080–3091. doi: 10.1002/jbm.a.34245. PubMed DOI

Ghalei S., Li J., Douglass M., Garren M., Handa H. Synergistic approach to develop antibacterial electrospun scaffolds using honey and s-nitroso-n-acetyl penicillamine. ACS Biomater. Sci. Eng. 2021;7:517–526. doi: 10.1021/acsbiomaterials.0c01411. PubMed DOI

Li Y., Wang H., Li J., Zhang N., Xu B., Li Y., Ding N., Ge B. Self-assembly and cross-linking preparation of tilapia-skin-derived collagen/alginate hydrogels for efficient wound repairing. Polym. Eng. Sci. 2024;64:2146–2156. doi: 10.1002/pen.26682. DOI

Zhao X., Sun X., Yildirimer L., Lang Q., Lin Z., Zheng R., Zhang Y., Cui W., Annabi N., Khademhosseini A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017;49:66–77. doi: 10.1016/j.actbio.2016.11.017. PubMed DOI PMC

Wang S.F., Wu Y., Cheng Y., Hu W. The development of polylactic acid/multi-wall carbon nanotubes/polyethylene glycol scaffolds for bone tissue regeneration application. Polymers. 2021;13:1740. doi: 10.3390/polym13111740. PubMed DOI PMC

Rostamabadi H., Assadpour E., Shahiri Tabarestani H., Falsafi S.R., Jafari S. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends Food Sci. Technol. 2020;100:190–209. doi: 10.1016/j.tifs.2020.04.012. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...