Evaluation of Polymeric Micro/Nanofibrous Hybrid Scaffolds Prepared via Centrifugal Nozzleless Spinning for Tissue Engineering Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-08-00208
The Ministry of Health of the Czech Republic
PubMed
39940588
PubMed Central
PMC11820018
DOI
10.3390/polym17030386
PII: polym17030386
Knihovny.cz E-zdroje
- Klíčová slova
- PBS, PCL, PHB, PLA, bioartificial adipose tissue, centrifugal spinning technology, hierarchical inner porosity of fibers, mesenchymal stem cells, micro/nanofibrous scaffolds, tissue engineering,
- Publikační typ
- časopisecké články MeSH
We compared the applicability of 3D fibrous scaffolds, produced by our patented centrifugal spinning technology, in soft tissue engineering. The scaffolds were prepared from four different biocompatible and biodegradable thermoplastics, namely, polylactide (PLA), polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and poly(1,4-butylene succinate) (PBS) and their blends. The combined results of SEM and BET analyses revealed an internal hierarchically organized porosity of the polymeric micro/nanofibers. Both nanoporosity and capillary effect are crucial for the water retention capacity of scaffolds designed for tissue engineering. The increased surface area provided by nanoporosity enhances water retention, while the capillary effect facilitates the movement of water and nutrients within the scaffolds. When the scaffolds were seeded with adipose-derived stem cells (ASCs), the ingrowth of these cells was the deepest in the PLA/PCL 13.5/4 (w/w) composite scaffolds. This result is consistent with the relatively large pore size in the fibrous networks, the high internal porosity, and the large specific surface area found in these scaffolds, which may therefore be best suited as a component of adipose tissue substitutes that could reduce postoperative tissue atrophy. Adipose tissue constructs produced in this way could be used in the future instead of conventional fat grafts, for example, in breast reconstruction following cancer ablation.
Czech Agrifood Research Center Drnovská 73 161 00 Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Videnska 1083 142 00 Prague Czech Republic
J E Purkyne University in Usti nad Labem Pasteurova 3544 1 400 96 Usti nad Labem Czech Republic
Zobrazit více v PubMed
Bacakova L., Bacakova M., Pajorova J., Kudlackova R., Stankova L., Filova E., Musilkova J., Potocky S., Kromka A. Nanofibrous scaffolds as promising cell carriers for tissue engineering. In: Rahman M.M., Asiri A.M., editors. Nanofiber Research: Reaching New Heights. Intechopen Limited; London, UK: 2016. pp. 29–54.
Malik S., Sundarrajan S., Hussain T., Nazir A., Ayyoob M., Berto F., Ramakrishna S. Sustainable nanofibers in tissue engineering and biomedical applications. Mat. Design Process Comm. 2021;3:e202. doi: 10.1002/mdp2.202. DOI
Younes H.M., Kadavil H., Ismail H.M., Adib S.A., Zamani S., Alany R.G., Al-Kinani A.A. Overview of Tissue Engineering and Drug Delivery Applications of Reactive Electrospinning and Crosslinking Techniques of Polymeric Nanofibers with Highlights on Their Biocompatibility Testing and Regulatory Aspects. Pharmaceutics. 2024;16:32. doi: 10.3390/pharmaceutics16010032. PubMed DOI PMC
Vasita R., Katti D.S. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 2006;1:15–30. doi: 10.2147/nano.2006.1.1.15. PubMed DOI PMC
Kumar V., Naqvi S., Gopinath P. Chapter 7—Applications of Nanofibers in Tissue Engineering. In: Bhagyaraj S.M., Oluwafemi O.S., Kalarikkal N., Thomas S., editors. Micro and Nano Technologies, Applications of Nanomaterials. Woodhead Publishing; Sawston, UK: 2018. pp. 179–203.
Dahlin R.L., Kasper F.K., Mikos A.G. Polymeric nanofibers in tissue engineering. Tissue Eng. B Rev. 2011;17:349–364. doi: 10.1089/ten.teb.2011.0238. PubMed DOI PMC
Balusamy B., Senthamizhan A., Uyar T. Electrospun Nanofibers for Wound Dressing and Tissue Engineering Applications. Hacet. J. Biol. Chem. 2020;48:459–481. doi: 10.15671/hjbc.789186. DOI
Kharaghani D., Kaffashsaei E., Md K.H., Kim I.S. The effect of polymeric nanofibers used for 3D-printed scaffolds on cellular activity in tissue engineering: A review. Int. J. Mol. Sci. 2023;24:9464. doi: 10.3390/ijms24119464. PubMed DOI PMC
Ogueri K.S., Laurencin C.T. Nanofiber Technology for Regenerative Engineering. ACS Nano. 2020;14:9347–9363. doi: 10.1021/acsnano.0c03981. PubMed DOI PMC
Anjum S., Rahman F., Pandey P., Arya D.K., Alam M., Rajinikanth P.S., Ao Q. Electrospun biomimetic nanofibrous scaffolds: A promising prospect for bone tissue engineering and regenerative medicine. Int. J. Mol. Sci. 2022;23:9206. doi: 10.3390/ijms23169206. PubMed DOI PMC
Nemati S., Kim S., Shin Y.M. Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg. 2019;6:36. doi: 10.1186/s40580-019-0209-y. PubMed DOI PMC
Zulkifli M.Z.A., Nordin D., Shaari N., Kamarudin S.K. Overview of Electrospinning for Tissue Engineering Applications. Polymers. 2023;15:2418. doi: 10.3390/polym15112418. PubMed DOI PMC
Udomluck N., Koh W.G., Lim D.J., Park H. Recent developments in nanofiber fabrication and modification for bone tissue engineering. Int. J. Mol. Sci. 2020;21:99. doi: 10.3390/ijms21010099. PubMed DOI PMC
Yan X., Yao H., Luo J., Li Z., Wei J. Functionalization of Electrospun Nanofiber for Bone Tissue Engineering. Polymers. 2022;14:2940. doi: 10.3390/polym14142940. PubMed DOI PMC
Dong X., Zhang J., Pang L., Chen J., Qi M., You S., Ren N. An anisotropic three-dimensional electrospun micro/nanofibrous hybrid PLA/PCL scaffold. RSC Adv. 2019;9:9838–9844. doi: 10.1039/C9RA00846B. PubMed DOI PMC
Liu S., Wang Z., Chen X., Han M., Xu J., Li T., Yu L., Qin M.L., Li M., Zhang H., et al. Multiscale anisotropic scaffold integrating 3D printing and electrospinning techniques as a heart-on-a-chip platform for evaluating drug-induced cardiotoxicity. Adv. Healthc. Mater. 2023;12:2300719. doi: 10.1002/adhm.202300719. PubMed DOI
Reid J., Dwyer K.D., Schmitt P.R., Soepriatna A.H., Coulombe K.L.K., Callanan A. Architected fibrous scaffolds for engineering anisotropic tissues. Biofabrication. 2021;13:045007. doi: 10.1088/1758-5090/ac0fc9. PubMed DOI PMC
Mondésert H., Bossard F., Favier D. Anisotropic electrospun honeycomb polycaprolactone scaffolds: Elaboration, morphological and mechanical properties. J. Mech. Behav. Biomed. Mater. 2021;113:104124. doi: 10.1016/j.jmbbm.2020.104124. PubMed DOI
Erickson A.E., Edmondson D., Chang F.C., Wood D., Gong A., Levengood S.L., Zhang M. High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning. Carbohydr. Polym. 2015;134:467–474. doi: 10.1016/j.carbpol.2015.07.097. PubMed DOI PMC
Weitz R.T., Harnau L., Rauschenbach S., Burghard M., Kern K. Polymer Nanofibers via Nozzle-Free Centrifugal Spinning. Nano Lett. 2008;8:1187–1191. doi: 10.1021/nl080124q. PubMed DOI
Zhang X., Lu Y. Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost. Polym. Rev. 2014;54:677–701. doi: 10.1080/15583724.2014.935858. DOI
Zhang Z.-M., Duan Y.-S., Xu Q., Zhang B. A review on nanofiber fabrication with the effect of high-speed centrifugal force field. J. Eng. Fiber Fabr. 2019;14:1–11. doi: 10.1177/1558925019867517. DOI
Ren L., Pandit V., Elkin J., Denman T., Cooper J.A., Kotha S.P. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Nanoscale. 2013;5:2337–2345. doi: 10.1039/c3nr33423f. PubMed DOI
Loordhuswamy A.M., Krishnaswamy V.R., Korrapati P.S., Thinakaran S., Rengaswami G.D. Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;42:799–807. doi: 10.1016/j.msec.2014.06.011. PubMed DOI
Li X., Chen H., Yang B. Centrifugally spun starch-based fibers from amylopectin rich starches. Carbohydr. Polym. 2016;137:459–465. doi: 10.1016/j.carbpol.2015.10.079. PubMed DOI
Ren L., Kotha S.P. Centrifugal jet spinning for highly efficient and large-scale fabrication of barium titanate nanofibers. Mater. Lett. 2014;117:153–157. doi: 10.1016/j.matlet.2013.11.103. PubMed DOI PMC
Mahalingam S., Edirisinghe M. Forming of Polymer Nanofibers by a Pressurised Gyration Process. Macromol. Rapid Commun. 2013;34:1134–1139. doi: 10.1002/marc.201300339. PubMed DOI
Zannini Luz H., dos Santos L.A.L. Centrifugal spinning for biomedical use: A review. Rev. Solid. State Mater. Sci. 2023;48:519–534. doi: 10.1080/10408436.2022.2080640. DOI
Marjuban S.M.H., Rahman M., Duza S.S., Ahmed M.B., Patel D.K., Rahman M.S., Lozano K. Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering. Polymers. 2023;15:1253. doi: 10.3390/polym15051253. PubMed DOI PMC
Gholipour-Kanani A., Daneshi P. A Review on Centrifugal and Electro-Centrifugal Spinning as New Methods of Nanofibers Fabrication. J. Text. Polym. 2022;10:41–55.
Ayati S.S., Karevan M., Stefanek E., Bhia M., Akbari M. Nanofibers Fabrication by Blown-Centrifugal Spinning. Macromol. Mater. Eng. 2022;307:2100368. doi: 10.1002/mame.202100368. DOI
Shanmugasundaram S., Chaudhry H., Livingston Arinzeh T. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng. A. 2011;A17:831–840. doi: 10.1089/ten.tea.2010.0409. PubMed DOI
Beran M., Drahorád J., Hušek Z., Toman F. A Device for the Production of Nanofibres or Microfibres from Solutions, Emulsions, Liquid Suspensions or Melts Containing a Spinning Substance. Czech Utility Model 30609 Patent 30609, 2017, Industrial Property Office of Czech Republic, Prague, Czech Republic. [(accessed on 21 December 2024)]; Available online: https://isdv.upv.gov.cz/webapp/!resdb.pta.frm.
Beran M., Toman F., Drahorad J., Hovorka J., Husek Z. A Device for Producing Fibers or Microfibers. US2017233896A1. [(accessed on 21 December 2024)];U.S. Patent. 2017 August 17; Available online: https://worldwide.espacenet.com/patent/search/family/053491243/publication/US2017233896A1?q=US2017233896A1.
Nie K., Han S., Yang J., Sun Q., Wang X., Li Y., Li Q. Enzyme-crosslinked electrospun fibrous gelatin hydrogel for potential soft tissue engineering. Polymers. 2020;12:1977. doi: 10.3390/polym12091977. PubMed DOI PMC
Estes B.T., Diekman B.O., Gimble J.M., Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 2010;5:1294–1311. doi: 10.1038/nprot.2010.81. PubMed DOI PMC
Travnickova M., Kasalkova N.S., Sedlar A., Molitor M., Musilkova J., Slepicka P., Svorcik V., Bacakova L. Differentiation of adipose tissue-derived stem cells towards vascular smooth muscle cells on modified poly(L-lactide) foils. Biomed. Mater. 2021;16:025016. doi: 10.1088/1748-605X/abaf97. PubMed DOI
Bacakova L., Zarubova J., Travnickova M., Musilkova J., Pajorova J., Slepicka P., Kasalkova N.S., Svorcik V., Kolska Z., Motarjemi H., et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI
Bacakova L., Novotna K., Hadraba D., Musilkova J., Slepicka P., Beran M. Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation. Polymers. 2022;14:602. doi: 10.3390/polym14030602. PubMed DOI PMC
Liao G.-Y., Zhou X.-P., Chen L., Zeng X.-Y., Xie X.-L., Mai Y.-W. Electrospun aligned PLLA/PCL/functionalized multiwalled carbon nanotube composite fibrous membranes and their bio/mechanical properties. Compos. Sci. Technol. 2012;72:248–255. doi: 10.1016/j.compscitech.2011.11.009. DOI
Xu T., Miszuk J.M., Zhao Y., Sun H., Fong H. Electrospun polycaprolactone 3d nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv. Healthc. Mater. 2015;4:2238–2246. doi: 10.1002/adhm.201500345. PubMed DOI
Hairaldin S.Z., Wan Yunus W.M.Z., Ibrahim N.A. Effect Addition of Octadecylamine Modified Clay (ODA-MMT) to Polylactide/Polycaprolactone (PLA/PCL) Blend AMR. 2011;364:317–321. doi: 10.4028/www.scientific.net/AMR.364.317. DOI
Pisani S., Dorati R., Conti B., Modena T., Bruni G., Genta I. Design of copolymer PLA-PCL electrospun matrix for biomedical applications. React. Funct. Polym. 2018;124:77–89. doi: 10.1016/j.reactfunctpolym.2018.01.011. DOI
Aminatun Huriah R., Hikmawati D., Hadi S., Amrillah T., Abdullah C.A.C. Nanofiber Scaffold Based on Polylactic Acid-Polycaprolactone for Anterior Cruciate Ligament Injury. Polymers. 2022;14:2983. doi: 10.3390/polym14152983. PubMed DOI PMC
Xu T., Yao Q., Miszuk J.M., Sanyour H.J., Hong Z., Sun H., Fong H. Tailoring weight ratio of PCL/PLA in electrospun three-dimensional nanofibrous scaffolds and the effect on osteogenic differentiation of stem cells. Colloids Surf. B Biointerfaces. 2018;171:31–39. doi: 10.1016/j.colsurfb.2018.07.004. PubMed DOI PMC
Marei N.H., El-Sherbiny I.M., Lotfy A., El-Badawy A., El-Badri N. Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds. Int. J. Biol. Macromol. A. 2016;93:9–19. doi: 10.1016/j.ijbiomac.2016.08.053. PubMed DOI
Wang L., Wang C., Zhou L., Bi Z., Shi M., Wang D., Li Q. Fabrication of a novel Three-Dimensional porous PCL/PLA tissue engineering scaffold with high connectivity for endothelial cell migration. Eur. Polym. J. 2021;161:110834. doi: 10.1016/j.eurpolymj.2021.110834. DOI
Herrero-Herrero M., Gómez-Tejedor J.A., Vallés-Lluch A. PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. Eur. Polym. J. 2018;99:445–455. doi: 10.1016/j.eurpolymj.2017.12.045. DOI
Tambrchi P., Mahdavi A.H., DaliriJoupari M., Soltani L. Polycaprolactone-co-polylactic acid nanofiber scaffold in combination with 5-azacytidine and transforming growth factor-β to induce cardiomyocyte differentiation of adipose-derived mesenchymal stem cells. Cell Biochem. Funct. 2022;40:668–682. doi: 10.1002/cbf.3728. PubMed DOI
Beran M., Drahorád J., Vltavský O. Centrifugal Nozzleless Spinning—Alternative Technology to Produce Nanofiber Constructs. Adv. Mater. Vid. Proc. Adv. Mater. 2021;2:210160.
Guneta V., Loh Q.L., Choong C. Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties. J. Biomed. Mater. Res. A. 2016;104:1090–1101. doi: 10.1002/jbm.a.35644. PubMed DOI
Rad Z.P., Mokhtari J., Abbasi M. Biopolymer based three-dimensional biomimetic micro/nanofibers scaffolds with porous structures via tailored charge repulsions for skin tissue regeneration. Polym. Adv. Technol. 2021;32:3535–3548.
Kim B.S., Park K.E., Kim M.H., You H.K., Lee J., Park W.H., Kim Y.J. Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds. Int. J. Nanomed. 2015;10:485–502. PubMed PMC
Hsia H.C., Nair M.R., Mintz R.C., Corbett S.A. The fiber diameter of synthetic bioresorbable extracellular matrix influences human fibroblast morphology and fibronectin matrix assembly. Plast. Reconstr. Surg. 2011;127:2312–2320. doi: 10.1097/PRS.0b013e3182139fa4. PubMed DOI PMC
Samie M., Khan A.F., Hardy J.G., Yameen M.A. Electrospun antibacterial composites for cartilage tissue engineering. Macromol. Biosci. 2022;22:2200219. doi: 10.1002/mabi.202200219. PubMed DOI
Lembach A., Tan H., Roisman I.V., Gambaryan-Roisman T., Zhang Y., Tropea C., Yarin A.L. Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. Langmuir. 2010;26:9516–9523. doi: 10.1021/la100031d. PubMed DOI
Wulkersdorfer B., Kao K.K., Agopian V.G., Ahn A., Dunn J.C., Wu B.M., Stelzner M. Bimodal porous scaffolds by sequential electrospinning of poly(glycolic acid) with sucrose particles. Int. J. Polym. Sci. 2010:1–9. doi: 10.1155/2010/436178. DOI
Jeong H., Kim S., Gil M., Song S., Kim S.W., Lee K.J. Preparation of poly-1-butene nanofiber mat and its application as shutdown layer of next generation lithium ion battery. Polymers. 2020;12:2267. doi: 10.3390/polym12102267. PubMed DOI PMC
Nam J., Huang Y., Agarwal S., Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007;13:2249–2257. doi: 10.1089/ten.2006.0306. PubMed DOI PMC
Simonet M., Schneider O., Neuenschwander P., Stark W. Ultraporous 3d polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. Polym. Eng. Sci. 2007;47:2020–2026. doi: 10.1002/pen.20914. DOI
Baker B., Gee A., Metter R., Nathan A., Marklein R., Burdick J., Mauck R. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials. 2008;29:2348–2358. doi: 10.1016/j.biomaterials.2008.01.032. PubMed DOI PMC
Blakeney B.A., Tambralli A., Anderson J.M., Andukuri A., Lim D.J., Dean D.R., Jun H.W. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials. 2011;32:1583–1590. doi: 10.1016/j.biomaterials.2010.10.056. PubMed DOI PMC
Pham Q.P., Sharma U., Mikos A.G. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7:2796–2805. doi: 10.1021/bm060680j. PubMed DOI
Mahjour S.B., Sefat F., Polunin Y., Wang L., Wang H. Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs. J. Biomed. Mater. Res. A. 2016;104:1479–1488. doi: 10.1002/jbm.a.35676. PubMed DOI
Lee J.B., Jeong S., Bae M.S., Yang D.H., Heo D.N., Kim C.H., Alsberg E., Kwon I.K. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng. A. 2011;17:2695–2702. doi: 10.1089/ten.tea.2010.0709. PubMed DOI
Zhang X., Meng S., Huang Y., Xu M., He Y., Lin H., Han J., Chai Y., Wei Y., Deng X. Electrospun gelatin/β-tcp composite nanofibers enhance osteogenic differentiation of bmscs andin vivobone formation by activating Ca2+-sensing receptor signaling. Stem Cells Int. 2015;2015:507154. doi: 10.1155/2015/507154. PubMed DOI PMC
Sequeira S.J., Soscia D.A., Oztan B., Mosier A.P., Jean-Gilles R., Gadre A., Cady N.C., Yener B., Castracane J., Larsen M. The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous plga scaffolds. Biomaterials. 2012;33:3175–3186. doi: 10.1016/j.biomaterials.2012.01.010. PubMed DOI PMC
Liu R., Zhang S., Zhao C., Yang D., Cui T., Liu Y., Min Y. Regulated Surface Morphology of Polyaniline/Polylactic Acid Composite Nanofibers via Various Inorganic Acids Doping for Enhancing Biocompatibility in Tissue Engineering. Nanoscale Res. Lett. 2021;16:1–13. doi: 10.1186/s11671-020-03457-z. PubMed DOI PMC
Gittens R.A., McLachlan T., Olivares-Navarrete R., Cai Y., Berner S., Tannenbaum R., Schwartz Z., Sandhage K.H., Boyan B.D. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. 2011;32:3395–3403. doi: 10.1016/j.biomaterials.2011.01.029. PubMed DOI PMC
Díaz-Gómez L., Ballarin F.M., Abraham G.A., Concheiro A. Random and aligned PLLA: PRGF electrospun scaffolds for regenerative medicine. J. Appl. Polym. Sci. 2014;132:41372. doi: 10.1002/app.41372. DOI
Oktay B., Kayaman-Apohan N., Erdem-Kuruca S., Süleymanoğlu M. Fabrication of collagen immobilized electrospun poly (vinyl alcohol) scaffolds. Polym. Adv. Technol. 2015;26:978–987. doi: 10.1002/pat.3512. DOI
Dubey P., Bhushan B., Sachdev A., Matai I., Kumar S., Gopinath P. Silver-nanoparticle-incorporated composite nanofibers for potential wound-dressing applications. J. Appl. Polym. Sci. 2015;132:42473. doi: 10.1002/app.42473. DOI
Gugulothu D., Barhoum A., Afzal S.M., Venkateshwarlu B., Uludag H. Structural Multifunctional Nanofibers and Their Emerging Applications. In: Barhoum A., Bechelany M., Makhlouf A., editors. Handbook of Nanofibers. Springer; Berlin/Heidelberg, Germany: 2019. pp. 693–732.
Salalha W., Dror Y., Khalfin R., Cohen Y., Yarin A.L., Zussman E. Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning. Langmuir. 2004;20:9852–9855. doi: 10.1021/la048536b. PubMed DOI
Chen X., Li H., Lu W., Guo Y. Antibacterial porous coaxial drug-carrying nanofibers for sustained drug-releasing applications. Nanomaterials. 2021;11:1316. doi: 10.3390/nano11051316. PubMed DOI PMC
Abolhasani M.M., Naebe M., Amiri M., Shirvanimoghaddam K., Anwar S., Michels J.J., Asadi K. Hierarchically structured porous piezoelectric polymer nanofibers for energy harvesting. Adv. Sci. 2020;7:2000517. doi: 10.1002/advs.202000517. PubMed DOI PMC
Gulfam M., Lee J.M., Kim J., Lim D.W., Lee E.K., Chung B.G. Highly porous core-shell polymeric fiber network. Langmuir. 2011;27:10993–10999. doi: 10.1021/la201253z. PubMed DOI
Serag E., El-Aziz A.M.A., El-Maghraby A., Nahla T. Electrospun non-wovens potential wound dressing material based on polyacrylonitrile/chicken feathers keratin nanofiber. Sci. Rep. 2022;12:15460. doi: 10.1038/s41598-022-19390-3. PubMed DOI PMC
You J., Sheng W., Huang K., Hou C., Yue H., Hu B., Wang M., Wei D., Li Q., Zhao L., et al. Novel cigarlike TiO2 nanofibers: Fabrication, improved mechanical, and electrochemical performances. ACS Appl. Mater. Interfaces. 2013;5:2278–2282. doi: 10.1021/am4003099. PubMed DOI
Nathani A., Sharma C.S. Electrospun mesoporous poly(styrene-block-methyl- methacrylate) nanofibers as biosensing platform: Effect of fibers porosity on sensitivity. Electroanalysis. 2019;31:2138–2144. doi: 10.1002/elan.201800796. DOI
Kalaoglu-Altan O.I., Kirac-Aydin A., Sumer Bolu B., Sanyal R., Sanyal A. Diels-Alder “Clickable” Biodegradable Nanofibers: Benign Tailoring of Scaffolds for Biomolecular Immobilization and Cell Growth. Bioconjugate Chem. 2017;28:2420–2428. doi: 10.1021/acs.bioconjchem.7b00411. PubMed DOI
Linh N.T.B., Min Y.K., Song H., Lee B. Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties. J. Biomed. Mater. Res. B Appl. Biomater. 2010;95B:184–191. doi: 10.1002/jbm.b.31701. PubMed DOI
Wang X., Ding B., Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today. 2013;16:229–241. doi: 10.1016/j.mattod.2013.06.005. PubMed DOI PMC
Oliveira C., Costa-Pinto A.R., Reis R.L., Martins A., Neves N.M. Biofunctional nanofibrous substrate comprising immobilized antibodies and selective binding of autologous growth factors. Biomacromolecules. 2014;15:2196–2205. doi: 10.1021/bm500346s. PubMed DOI
Priyanto A., Hapidin D.A., Suciati T., Khairurrijal K. Current Developments on Rotary Forcespun Nanofibers and Prospects for Edible Applications. Food Eng. Rev. 2022;14:435–461. doi: 10.1007/s12393-021-09304-w. DOI
Depan D., Misra R. Processing–structure–functional property relationship in organic–inorganic nanostructured scaffolds for bone-tissue engineering: The response of preosteoblasts. J. Biomed. Mater. Res. A. 2012;100A:3080–3091. doi: 10.1002/jbm.a.34245. PubMed DOI
Ghalei S., Li J., Douglass M., Garren M., Handa H. Synergistic approach to develop antibacterial electrospun scaffolds using honey and s-nitroso-n-acetyl penicillamine. ACS Biomater. Sci. Eng. 2021;7:517–526. doi: 10.1021/acsbiomaterials.0c01411. PubMed DOI
Li Y., Wang H., Li J., Zhang N., Xu B., Li Y., Ding N., Ge B. Self-assembly and cross-linking preparation of tilapia-skin-derived collagen/alginate hydrogels for efficient wound repairing. Polym. Eng. Sci. 2024;64:2146–2156. doi: 10.1002/pen.26682. DOI
Zhao X., Sun X., Yildirimer L., Lang Q., Lin Z., Zheng R., Zhang Y., Cui W., Annabi N., Khademhosseini A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017;49:66–77. doi: 10.1016/j.actbio.2016.11.017. PubMed DOI PMC
Wang S.F., Wu Y., Cheng Y., Hu W. The development of polylactic acid/multi-wall carbon nanotubes/polyethylene glycol scaffolds for bone tissue regeneration application. Polymers. 2021;13:1740. doi: 10.3390/polym13111740. PubMed DOI PMC
Rostamabadi H., Assadpour E., Shahiri Tabarestani H., Falsafi S.R., Jafari S. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends Food Sci. Technol. 2020;100:190–209. doi: 10.1016/j.tifs.2020.04.012. DOI