Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly(ethylene oxide) protein repulsive surface

. 2015 Nov ; 26 (11) : 253. [epub] 20151008

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26449443
Odkazy

PubMed 26449443
PubMed Central PMC4598348
DOI 10.1007/s10856-015-5583-3
PII: 10.1007/s10856-015-5583-3
Knihovny.cz E-zdroje

Protein-repulsive surfaces modified with ligands for cell adhesion receptors have been widely developed for controlling the cell adhesion and growth in tissue engineering. However, the question of matrix production and deposition by cells on these surfaces has rarely been addressed. In this study, protein-repulsive polydopamine-poly(ethylene oxide) (PDA-PEO) surfaces were functionalized with an RGD-containing peptide (RGD), with a collagen-derived peptide binding fibronectin (Col), or by a combination of these peptides (RGD + Col, ratio 1:1) in concentrations of 90 fmol/cm(2) and 700 fmol/cm(2) for each peptide type. When seeded with vascular endothelial CPAE cells, the PDA-PEO surfaces proved to be completely non-adhesive for cells. On surfaces with lower peptide concentrations and from days 1 to 3 after seeding, cell adhesion and growth was restored practically only on the RGD-modified surface. However, from days 3 to 7, cell adhesion and growth was improved on surfaces modified with Col and with RGD + Col. At higher peptide concentrations, the cell adhesion and growth was markedly improved on all peptide-modified surfaces in both culture intervals. However, the collagen-derived peptide did not increase the expression of fibronectin in the cells. The deposition of fibronectin on the material surface was generally very low and similar on all peptide-modified surfaces. Nevertheless, the RGD + Col surfaces exhibited the highest cell adhesion stability under a dynamic load, which correlated with the highest expression of talin and vinculin in the cells on these surfaces. A combination of RGD + Col therefore seems to be the most promising for surface modification of biomaterials, e.g. vascular prostheses.

Zobrazit více v PubMed

Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI

Bacakova L, Filova E, Rypacek F, Svorcik V, Stary V. Cell adhesion on artificial materials for tissue engineering. Physiol Res. 2004;53:S35–S45. PubMed

Prime KL, Whitesides GM. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide)—a model system using self-assembled monolayers. J Am Chem Soc. 1993;115:10714–10721. doi: 10.1021/ja00076a032. DOI

Statz AR, Meagher RJ, Barron AE, Messersmith PB. New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc. 2005;127:7972–7973. doi: 10.1021/ja0522534. PubMed DOI

Li G, Cheng G, Xue H, Chen S, Zhang F, Jiang S. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials. 2008;29:4592–4597. doi: 10.1016/j.biomaterials.2008.08.021. PubMed DOI

Pop-Georgievski O, Rodriguez-Emmenegger C, de los Santos PA, Proks V, Brynda E, Rypacek F. Biomimetic non-fouling surfaces: extending the concepts. J Mater Chem B. 2013;1:2859–2867. doi: 10.1039/c3tb20346h. PubMed DOI

Pierschbacher MD, Ruoslahti E. Cell attachement activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984;309:30–33. doi: 10.1038/309030a0. PubMed DOI

Lowe AB. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem. 2010;1:17–36. doi: 10.1039/B9PY00216B. DOI

Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed. 2002;41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. PubMed DOI

Dawson P, Muir T, Clark-Lewis I, Kent S. Synthesis of proteins by native chemical ligation. Science. 1994;266:776–779. doi: 10.1126/science.7973629. PubMed DOI

Mann BK, Tsai AT, Scott-Burden T, West JL. Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition. Biomaterials. 1999;20:2281–2286. doi: 10.1016/S0142-9612(99)00158-1. PubMed DOI

Mann BK, Schmedlen RH, West JL. Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials. 2001;22:439–444. doi: 10.1016/S0142-9612(00)00196-4. PubMed DOI

Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–430. doi: 10.1126/science.1147241. PubMed DOI PMC

Pop-Georgievski O, Neykova N, Proks V, Houdkova J, Ukraintsev E, Zemek J, Kromka A, Rypacek F. Polydopamine-modified nanocrystalline diamond thin films as a platform for bio-sensing applications. Thin Solid Films. 2013;543:180–186. doi: 10.1016/j.tsf.2012.11.128. DOI

Pop-Georgievski O, Verreault D, Diesner MO, Proks V, Heissler S, Rypacek F, Koelsch P. Nonfouling poly(ethylene oxide) layers end-tethered to polydopamine. Langmuir. 2012;28:14273–14283. doi: 10.1021/la3029935. PubMed DOI PMC

Pop-Georgievski O, Popelka S, Houska M, Chvostova D, Proks V, Rypacek F. Poly(ethylene oxide) layers grafted to dopamine-melanin anchoring layer: stability and resistance to protein adsorption. Biomacromolecules. 2011;12:3232–3242. doi: 10.1021/bm2007086. PubMed DOI

Pierschbacher MD, Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci USA. 1984;81:5985–5988. doi: 10.1073/pnas.81.19.5985. PubMed DOI PMC

Erat MC, Slatter DA, Lowe ED, Millard CJ, Farndale RW, Campbell ID, Vakonakis I. Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. Proc Natl Acad Sci. 2009;106:4195–4200. doi: 10.1073/pnas.0812516106. PubMed DOI PMC

Proks V, Jaros J, Pop-Georgievski O, Kucka J, Popelka S, Dvorak P, Hampl A, Rypacek F. “Click & seed” approach to the biomimetic modification of material surfaces. Macromol Biosci. 2012;12:1232–1242. doi: 10.1002/mabi.201200095. PubMed DOI

Macková H, Proks V, Horák D, Kučka J, Trchová M. Magnetic poly(N-propargylacrylamide) microspheres: preparation by precipitation polymerization and use in model click reactions. J Polym Sci Pol Chem. 2011;49:4820–4829. doi: 10.1002/pola.24930. DOI

Dalsin JL, Lin LJ, Tosatti S, Voros J, Textor M, Messersmith PB. Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir. 2005;21:640–646. doi: 10.1021/la048626g. PubMed DOI

Proks V, Brus J, Pop-Georgievski O, Vecernikova E, Wisniewski W, Kotek J, et al. Thermal-induced transformation of polydopamine structures: an efficient route for the stabilization of the polydopamine surfaces. Macromol Chem Phys. 2013;214:499–507. doi: 10.1002/macp.201200505. DOI

Popelka Š, Houska M, Havlíková J, Proks V, Kučka J, Šturcová A, et al. Poly(ethylene oxide) brushes prepared by the “grafting to” method as a platform for the assessment of cell receptor–ligand binding. Eur Polym J. 2014;58:11–22. doi: 10.1016/j.eurpolymj.2014.06.004. DOI

Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol. 2007;179:1043–1057. doi: 10.1083/jcb.200703036. PubMed DOI PMC

Bacakova L, Filova E, Kubies D, Machova L, Proks V, Malinova V, Lisa V, Rypacek F. Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides. J Mater Sci Mater Med. 2007;18:1317–1323. doi: 10.1007/s10856-006-0074-1. PubMed DOI

Homola J, Dostalek J, Chen SF, Rasooly A, Jiang SY, Yee SS. Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int J Food Microbiol. 2002;75:61–69. doi: 10.1016/S0168-1605(02)00010-7. PubMed DOI

Bouaidat S, Berendsen C, Thomsen P, Petersen SG, Wolff A, Jonsmann J. Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications. Lab Chip. 2004;4:632–637. doi: 10.1039/b406285j. PubMed DOI

Roosjen A, Kaper HJ, van der Mei HC, Norde W, Busscher HJ. Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology. 2003;149:3239–3246. doi: 10.1099/mic.0.26519-0. PubMed DOI

Hsiue GH, Lee SD, Chang PCT. Platelet adhesion and cellular interaction with poly(ethylene oxide) immobilized onto silicone rubber membrane surfaces. J Biomater Sci Polym Ed. 1996;7:839–855. doi: 10.1163/156856296X00020. PubMed DOI

Klenkler BJ, Dwivedi D, West-Mays JA, Sheardown H. Corneal epithelial cell adhesion and growth on EGF-modified aminated PDMS. J Biomed Mater Res A. 2010;93A:1043–1049. PubMed

Shiels SM, Solomon KD, Pilia M, Appleford MR, Ong JL. BMP-2 tethered hydroxyapatite for bone tissue regeneration: coating chemistry and osteoblast attachment. J Biomed Mater Res A. 2012;100A:3117–3123. doi: 10.1002/jbm.a.34241. PubMed DOI

Frith JE, Mills RJ, Cooper-White JJ. Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour. J Cell Sci. 2012;125:317–327. doi: 10.1242/jcs.087916. PubMed DOI

Xiong JP, Stehle T, Zhang RG, Joachimiak A, Frech M, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin alpha V beta 3 in complex with an Arg-Gly-Asp ligand. Science. 2002;296:151–155. doi: 10.1126/science.1069040. PubMed DOI

Massia SP, Hubbell JA. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol. 1991;114:1089–1100. doi: 10.1083/jcb.114.5.1089. PubMed DOI PMC

Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J. 2007;92:2964–2974. doi: 10.1529/biophysj.106.089730. PubMed DOI PMC

Huang J, Grater SV, Corbellinl F, Rinck S, Bock E, Kemkemer R, Kessler H, Ding J, Spatz JP. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 2009;9:1111–1116. doi: 10.1021/nl803548b. PubMed DOI PMC

Wang X, Yan C, Ye K, He Y, Li Z, Ding J. Effect of RGD nanospacing on differentiation of stem cells. Biomaterials. 2013;34:2865–2874. doi: 10.1016/j.biomaterials.2013.01.021. PubMed DOI

Glukhova MA, Koteliansky VE. Integrins, cytoskeletal and extracellular matrix proteins in developing smooth muscle cells of human aorta. In: Mecham SM, Schwartz RP, editors. The vascular smooth muscle cell. San Diego: Academic Press; 1995. pp. 37–79.

Reinmuth N, Liu WB, Ahmad SA, Fan F, Stoeltzing O, Parikh AA, Bucana CD, Gallick GE, Nickols MA, Westlin WF, Ellis LM. Alpha(v)beta(3) Integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res. 2003;63:2079–2087. PubMed

Kokubo T, Uchida H, Choi ET. Integrin alpha(v)beta 3 as a target in the prevention of neointimal hyperplasia. J Vasc Surg. 2007;45:33A–38A. doi: 10.1016/j.jvs.2007.02.069. PubMed DOI PMC

Mizuno M, Kuboki Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem. 2001;129:133–138. doi: 10.1093/oxfordjournals.jbchem.a002824. PubMed DOI

Xiao Q, Zeng L, Zhang Z, Hu Y, Xu Q. Stem cell-derived Sca-1(+) progenitors differentiate into smooth muscle cells, which is mediated by collagen IV-integrin alpha(1)/beta(1)/alpha(v) and PDGF receptor pathways. Am J Physiol Cell Physiol. 2007;292:C342–C352. doi: 10.1152/ajpcell.00341.2006. PubMed DOI

Ginsberg MH, Partridge A, Shattil SJ. Integrin regulation. Curr Opin Cell Biol. 2005;17:509–516. doi: 10.1016/j.ceb.2005.08.010. PubMed DOI

Chen AK, Delrio FW, Peterson AW, Chung K-H, Bhadiraju K, Plant AL. Cell spreading and proliferation in response to the composition and mechanics of engineered fibrillar extracellular matrices. Biotechnol Bioeng. 2013;110:2731–2741. doi: 10.1002/bit.24921. PubMed DOI

Zimmermann L, Peterhans E, Frey J. RGD motif of lipoprotein T, involved in adhesion of Mycoplasma conjunctivae to lamb synovial tissue cells. J Bacteriol. 2010;192:3773–3779. doi: 10.1128/JB.00253-10. PubMed DOI PMC

Benoit DSW, Anseth KS. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials. 2005;26:5209–5220. doi: 10.1016/j.biomaterials.2005.01.045. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...