Nonfouling poly(ethylene oxide) layers end-tethered to polydopamine
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P41 EB002027
NIBIB NIH HHS - United States
EB-002027
NIBIB NIH HHS - United States
PubMed
22989020
PubMed Central
PMC3489920
DOI
10.1021/la3029935
Knihovny.cz E-zdroje
- MeSH
- adsorpce MeSH
- bioznečištění prevence a kontrola MeSH
- indoly chemie MeSH
- lidé MeSH
- muramidasa chemie MeSH
- polyethylenglykoly chemie MeSH
- polymery chemie MeSH
- sérový albumin chemie MeSH
- voda chemie MeSH
- vzduch MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- indoly MeSH
- muramidasa MeSH
- polydopamine MeSH Prohlížeč
- polyethylenglykoly MeSH
- polymery MeSH
- sérový albumin MeSH
- voda MeSH
- zlato MeSH
Nonfouling surfaces capable of reducing protein adsorption are highly desirable in a wide range of applications. Coating of surfaces with poly(ethylene oxide) (PEO), a water-soluble, nontoxic, and nonimmunogenic polymer, is most frequently used to reduce nonspecific protein adsorption. Here we show how to prepare dense PEO brushes on virtually any substrate by tethering PEO to polydopamine (PDA)-modified surfaces. The chain lengths of hetero-bifunctional PEOs were varied in the range of 45-500 oxyethylene units (M(n) = 2000-20,000). End-tethering of PEO chains was performed through amine and thiol headgroups from reactive polymer melts to minimize excluded volume effects. Surface plasmon resonance (SPR) was applied to investigate the adsorption of model protein solutions and complex biologic medium (human blood plasma) to the densely packed PEO brushes. The level of protein adsorption of human serum albumin and fibrinogen solutions was below the detection limit of the SPR measurements for all PEO chains end-tethered to PDA, thus exceeding the protein resistance of PEO layers tethered directly on gold. It was found that the surface resistance to adsorption of lysozyme and human blood plasma increased with increasing length and brush character of the PEO chains end-tethered to PDA with a similar or better resistance in comparison to PEO layers on gold. Furthermore, the chain density, thickness, swelling, and conformation of PEO layers were determined using spectroscopic ellipsometry (SE), dynamic water contact angle (DCA) measurements, infrared reflection-absorption spectroscopy (IRRAS), and vibrational sum-frequency-generation (VSFG) spectroscopy, the latter in air and water.
Zobrazit více v PubMed
Castner D, Ratner B. Biomedical surface science: Foundations to frontiers. Surf Sci. 2002;500:28–60.
Hasirci V, Hasirci N. In: Surfaces and Interfaces for Biomaterials. Vadgama P, editor. Wood-head Publishing Limited; Cambridge, UK: 2005. pp. 29–59. Chapter Control of Polymeric Material Surfaces.
Ladd J, Boozer C, Yu QM, Chen SF, Homola J, Jiang S. DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge. Langmuir. 2004;20:8090–8095. PubMed
Vaisocherova H, Yang W, Zhang Z, Cao ZQ, Cheng G, Piliarik M, Homola J, Jiang SY. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem. 2008;80:7894–7901. PubMed
Harris J. Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications. Plenum Press; New York: 1992.
Unsworth LD, Sheardown H, Brash JL. Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold: Effect of surface chain density. Langmuir. 2005;21:1036–1041. PubMed
Unsworth LD, Sheardown H, Brash JL. Protein-resistant poly(ethylene oxide)-grafted surfaces: Chain density-dependent multiple mechanisms of action. Langmuir. 2008;24:1924–1929. PubMed
Du YJ, Cornelius RM, Brash JL. Measurement of protein adsorption to gold surface by radioiodination methods: Suppression of free iodide sorption. Colloids Surf, B. 2000;17:59–67.
Unsworth LD, Tun Z, Sheardown H, Brash JL. Chemisorption of thiolated poly(ethylene oxide) to gold: Surface chain densities measured by ellipsometry and neutron reflectometry. J Colloid Interface Sci. 2005;281:112–121. PubMed
Unsworth LD, Sheardown H, Brash JL. Polyethylene oxide surfaces of variable chain density by chemisorption of PEO-thiol on gold: Adsorption of proteins from plasma studied by radiolabelling and immunoblotting. Biomaterials. 2005;26:5927–5933. PubMed
Unsworth LD, Tun Z, Sheardown H, Brash JL. In situ neutron reflectometry investigation of gold-chemisorbed PEO layers of varying chain density: Relationship of layer structure to protein resistance. J Colloid Interface Sci. 2006;296:520–526. PubMed
Pasche S, De Paul SM, Vörös J, Spencer ND, Textor M. Poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide surfaces: A quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS. Langmuir. 2003;19:9216–9225.
Tosatti S, De Paul SM, Askendal A, VandeVondele S, Hubbell JA, Tengvall P, Textor M. Peptide functionalized poly(L-lysine)-g-poly(ethylene glycol) on titanium: resistance to protein adsorption in full heparinized human blood plasma. Biomaterials. 2002;24:4949–4958. PubMed
Zoulalian V, Zurcher S, Tosatti S, Textor M, Monge S, Robin JJ. Self-assembly of poly(ethylene glycol)-poly(alkyl phosphonate) terpolymers on titanium oxide surfaces: Synthesis, interface characterization, investigation of nonfouling properties, and long-term stability. Langmuir. 2010;26:74–82. PubMed
Dalsin JL, Lin LJ, Tosatti S, Vörös J, Textor M, Messersmith PB. Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir. 2003;21:640–646. PubMed
Malisova B, Tosatti S, Textor M, Gademann K, Zurcher S. Poly(ethylene glycol) adlayers immobilized to metal oxide substrates through catechol derivatives: Influence of assembly conditions on formation and stability. Langmuir. 2010;26:4018–4026. PubMed
Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–430. PubMed PMC
d’Ischia M, Napolitano M, Pezzella A, Meredith P, Sarna A, Sarna T. Chemical and structural diversity in eumelanins: Unexplored bio-optoelectronic materials. Angew Chem–Int Edit. 2009;48:3914–3921. PubMed PMC
Pop-Georgievski O, Popelka S, Houska M, Chvostova D, Proks V, Rypáček F. Poly(ethylene oxide) layers grafted to dopamine-melanin anchoring layer: Stability and resistance to protein adsorption. Biomacromolecules. 2011;12:3232–3242. PubMed
Binns F, King JAG, Mishra SN, Percival A, Robson NC, Swan GA, Waggott A. Studies related to chemistry of melanins. 13. Studies on structure od dooamine-melanin. J Chem Soc C. 1970;15:2063–2070. PubMed
Nicolaus RA. In: Melanins. Lederer E, editor. Herman; 1968.
Watt AAR, Bothma JP, Meredith P. The supramolecular structure of melanin. Soft Matter. 2009;5:3754–3760.
Proks V, Jaroš J, Pop-Georgievski O, Kučka J, Popelka S, Dvořák P, Hampl A, Rypáček F. “Click & Seed” approach to the biomimetic modification of material surfaces. Macromol Biosci. 2012;12:1232–1242. PubMed
Zdyrko B, Klep V, Luzinov I. Synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers. Langmuir. 2003;19:10179–10187. PubMed
Zdyrko B, Varshney SK, Luzinov I. Effect of molecular weight on synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers. Langmuir. 2004;20:6727–6735. PubMed
Zhu XY, Jun Y, Staarup DR, Major RC, Danielson S, Boiadjiev V, Gladfelter WL, Bunker BC, Guo A. Grafting of high-density poly(ethylene glycol) monolayers on Si(111) Langmuir. 2001;17:7798–7803.
Popelka S, Machova L, Rypáček F. Adsorption of poly(ethylene oxide)-block-polylactide copolymers on polylactide as studied by ATR-FTIR spectroscopy. J Colloid Interface Sci. 2007;308:291–299. PubMed
Schwendel D, Dahint R, Herrwerth S, Schloerholz M, Eck W, Grunze M. Temperature dependence of the protein resistance of poly- and oligo(ethylene glycol)-terminated alkanethiolate monolayers. Langmuir. 2001;17:5717–5720.
Sofia SJ, Premnath V, Merrill EW. Poly(ethylene oxide) grafted to silicon surfaces: Grafting density and protein adsorption. Macromolecules. 1998;31:5059–5070. PubMed
Emmenegger CR, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB. Interaction of blood plasma with antifouling surfaces. Langmuir. 2009;25:6328–6333. PubMed
Azzam RMA, Bashara NM. Ellipsometry and Polarized Light. Elsevier; 2003.
Hilfiker JN, Singh N, Tiwald T, Convey D, Smith SM, Baker JH, Tompkins HG. Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry. Thin Solid Films. 2008;516:7979–7989.
Herzinger CM, Johs B, McGahan WA, Woollam JA, Paulson W. Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. J Appl Phys. 1998;83:3323–3336.
Štěpánek P, Koňak v. Quasielastic light scattering from polymers, colloids and gels. Advances in Colloid and Interface Science. 1984;21:195–274.
Filippov SK, Konak C, Kopeckova P, Starovoytova L, Spirkova M, Stepanek P. Effect of Hydrophobic Interactions on Properties and Stability of DNA-Polyelectrolyte Complexes. Langmuir. 2010;26:4999–5006. PubMed
Burchard W. In: Laser Light Scattering in Biochemistry. Harding SE, Sattelle DB, Bloomfield VA, editors. Royal Society of Chemistry; 1992. pp. 3–22.
Henn G, Bucknall DG, Stamm M, Vanhoorne P, Jerome R. Chain end effects and dewetting in thin polymer films. Macromolecules. 1996;29:4305–4313.
Verreault D, Kurz V, Howell C, Koelsch P. Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy. Rev Sci Instrum. 1997;81:063111/1–063111/10. PubMed
Ward RN, Davies PB, Bain CD. Orientation of Surfactants Adsorbed on a Hydrophobic Surface. J Phys Chem. 1993;97:7141–4143.
Kett PJN, Casford MTL, Davies PB. Sum Frequency Generation (SFG) Vibrational Spectroscopy of Planar Phosphatidylethanolamine Hybrid Bilayer Membranes under Water. Langmuir. 2010;26:9710–9719. PubMed
Gao CL, Li GZ, Xue H, Yang W, Zhang FB, Jiang SY. Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials. 2010;31:1486–1492. PubMed
Chen SF, Zheng J, Li LY, Jiang SY. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. J Am Chem Soc. 2005;127:14473–14478. PubMed
Grunkemeier JM, Tsai WB, McFarland CD, Horbett TA. The effect of adsorbed fibrinogen, fibronectin, von Willebrand factor and vitronectin on the procoagulant state of adherent platelets. Biomaterials. 2000;21:2243–2252. PubMed
Tsai WB, Grunkemeier JM, McFarland CD, Horbett TA. Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand’s factor. J Biomed Mater Res. 2002;60:348–359. PubMed
Wu YG, Simonovsky FI, Ratner BD, Horbett TA. The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces: A comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. J Biomed Mater Res A. 2005;74A:722–738. PubMed
Yang W, Xue H, Li W, Zhang JL, Jiang SY. Pursuing “zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir. 2009;25:11911–11916. PubMed
Ball V. Impedance spectroscopy and zeta potential titration of dopa-melanin films produced by oxidation of dopamine. Colloids Surf, A. 2010;363:92–97.
Rodriguez-Emmenegger C, Kylian O, MH, Brynda E, Artemenko A, Kousal J, Alles AB, Biederman H. Substrate-Independent Approach for the Generation of Functional Protein Resistant Surfaces. Biomacromolecules. 2011;12:1058–1066. PubMed
Miyazawa T, Fukushima K, Ideguchi Y. Molecular Vibrations and structure of high polymers. III. Polarized infrared spectra, normal vibrations, and helical conformation of poly(ethylene glycol) J Chem Phys. 1962;37:2764–2776.
Matsuura H, Fukuhara K. Vibrational spectroscopic studies pf conformation of poly(oxyethylene).II. Conformation-spectrum correlations. J Polym Sci Polym Phys. 1986;24:1383–1400.
Tokumitsu S, Liebich A, Herrwerth S, Eck W, Himmelhaus M, Grunze M. Grafting of alkanethiol-terminated poly(ethylene glycol) on gold. Langmuir. 2002;18:8862–8870.
Chen Z, Ward R, Tian Y, Baldelli S, Opdahl A, Shen YR, Somorjai GA. Detection of hydrophobic end groups on polymer surfaces by sum-frequency generation vibrational spectroscopy. J Am Chem Soc. 2000;122:10615–10620.
Zolk M, Eisert F, Pipper J, Eck W, Buck M, Grunze M. Solvation of oligo(ethylene glycol)-terminated self-assembled monolayers studied by vibrational sum frequency spectroscopy. Langmuir. 2000;16:5849–5852.
Wang RY, Himmelhaus M, Fick J, Herrwerth S, Eck W, Grunze M. Interaction of self-assembled monolayers of oligo(ethylene glycol)-terminated alkanethiols with water studied by vibrational sum-frequency generation. J Chem Phys. 2005;122:164702/1–164702/6. PubMed
Buck M. Ab initio calculations of vibrational spectra of 2-methoxy ethanol in the C–H stretching range. Phys Chem Chem Phys. 2003;5:18–25.