Mammalian Cell Interaction with Periodic Surface Nanostructures

. 2022 Apr 23 ; 23 (9) : . [epub] 20220423

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35563068

Here, we report on the nanopatterning of different aromatic polymer substrates achieved by KrF excimer laser treatment. The conditions for the construction of the laser-induced periodic surface structures, the so-called LIPSS pattern, were established by optimized laser fluence and a number of pulses. The polymer substrates were polyethylene naphthalate (PEN), polyethersulfone (PES), and polystyrene (PS), which were chosen since they are thermally, chemically, and mechanically resistant polymers with high absorption coefficients at the excimer laser wavelength. The surface morphology of the treated substrates was investigated by atomic force microscopy and scanning electron microscopy, and the roughness and effective surface area on the modified samples were determined. Elemental concentration was characterized by energy-dispersive (EDX) analysis, surface chemistry was determined with X-ray photoelectron spectroscopy (XPS). The samples with the formation of LIPSS induced by 10 mJ·cm-2 with 1000, 3000, and 6000 pulses were used for subsequent in vitro cytocompatibility tests using human cells from osteosarcoma (U-2 OS). The LIPSS pattern and its ability of significant cell guidance were confirmed for some of the studied samples. Cell morphology, adhesion, and proliferation were evaluated. The results strongly contribute to the development of novel applications using nanopatterned polymers, e.g., in tissue engineering, cell analysis or in combination with metallization for sensor construction.

Zobrazit více v PubMed

Ruiz A., Zychowicz M., Ceriotti L., Mehn D., Sirghi L., Rauscher H., Mannelli I., Colpo P., Buzanska L., Rossi F. Microcontact printing and micro spotting as methods for direct protein patterning on plasma deposited polyethylene oxide: Application to stem cell patterning. Biomed. Microdevices. 2013;15:495–507. doi: 10.1007/s10544-013-9749-9. PubMed DOI

Priest D.G., Tanaka N., Tanaka Y., Taniguch Y. Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells. Sci. Rep. 2017;7:17750. doi: 10.1038/s41598-017-17544-2. PubMed DOI PMC

Karimi M., Yazdi F.T., Mortazavi S.A., Shahabi-Ghahfarrokhi I., Chamani J. Development of active antimicrobial poly (l-glutamic) acid-poly (l-lysine) packaging material to protect probiotic bacterium. Polym. Test. 2020;83:106338. doi: 10.1016/j.polymertesting.2020.106338. DOI

Ren D., Xia Y., Wang J., You Z. Micropatterning of single-cell arrays using the PEG-Silane and biotin–(strept)avidin system with photolithography and chemical vapor deposition. Sens. Actuators B Chem. 2013;188:340–346. doi: 10.1016/j.snb.2013.07.037. DOI

Wang Z., Zhang P., Kirkland B., Liu Y., Guan J. Microcontact printing of polyelectrolytes on PEG using an unmodified PDMS stamp for micropatterning nanoparticles, DNA, proteins, and cells. Soft Matter. 2012;8:7630. doi: 10.1039/c2sm25835h. DOI

Beckwith K.M., Sikorski P. Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels. Biofabrication. 2013;5:045009. doi: 10.1088/1758-5082/5/4/045009. PubMed DOI

Chen Z., Li Y., Liu W., Zhang D., Zhao Y., Yuan B., Jiang X. Patterning mammalian cells for modeling three types of naturally occurring cell-cell interactions. Angew. Chem. Int. Ed. Engl. 2009;48:8303–8305. doi: 10.1002/anie.200902708. PubMed DOI

Yang T., Gao D., Jin F., Jiang Y., Liu H. Surface-printed microdot array chips coupled with matrix-assisted laser desorption/ionization mass spectrometry for high-throughput single-cell patterning and phospholipid analysis. Rapid Commun. Mass Spectrom. 2016;30:73–79. doi: 10.1002/rcm.7628. PubMed DOI

Korenaga A., Chen F., Li H., Uchiyama K., Lin J.M. Inkjet automated single cells and matrices printing system for matrix-assisted laser desorption/ionization mass spectrometry. Talanta. 2017;162:474–478. doi: 10.1016/j.talanta.2016.10.055. PubMed DOI

Custodio C.A., Miguel-Arranz V.S., Gropeanu R.A., Gropeanu M., Wirkner M., Reis R.L., Mano J.F., del Campo A. Photopatterned antibodies for selective cell attachment. Langmuir. 2014;30:10066–10071. doi: 10.1021/la502688h. PubMed DOI

Bolivara J.M., Nidetzky B. On the relationship between structure and catalytic effectiveness in solid surface-immobilized enzymes: Advances in methodology and the quest for a single-molecule perspective. BBA-Proteins Proteom. 2020;1868:140333. doi: 10.1016/j.bbapap.2019.140333. PubMed DOI

Kasálková Slepičková N., Slepička P., Kolská Z., Hodačová P., Kučková Š., Švorčík V. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res. Lett. 2014;9:161–167. doi: 10.1186/1556-276X-9-161. PubMed DOI PMC

Mu J., He L., Huang P., Chen X. Engineering of nanoscale coordination polymers with biomolecules for advanced applications. Coord. Chem. Rev. 2019;399:213039. doi: 10.1016/j.ccr.2019.213039. PubMed DOI PMC

Ermis M., Antmena E., Hasirci V. Micro and Nanofabrication methods to control cell-substrate interaction and cell behavior: A review from the tissue engineering perspective. Bioact. Mater. 2018;3:355–369. doi: 10.1016/j.bioactmat.2018.05.005. PubMed DOI PMC

Zhang K., Yang Q., Fan Z., Zhao J., Li H. Platelet-driven formation of interface peptide nano-network biosensor enabling a non-invasive means for early detection of Alzheimer’s disease. Biosens. Bioelectron. 2019;145:111701. doi: 10.1016/j.bios.2019.111701. PubMed DOI

Zeng Y., Zhou J., Wang X., Cai Z., Shao Y. Wavelength-scanning surface plasmon resonance microscopy: A novel tool for real times sensing of cell-substrate interactions. Biosens. Bioelectron. 2019;1451:111717. doi: 10.1016/j.bios.2019.111717. PubMed DOI

Kaimlová M., Nemogová I., Kolářová K., Slepička P., Švorčík V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI

Lišková J., Kasálková Slepičková N., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. doi: 10.1016/j.msec.2019.02.105. PubMed DOI

Slepicka P., Kasalkova Slepickova N., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI

Su J., Satchell S.C., Wertheim J.A., Shah R.N. Poly(ethylene glycol)-crosslinked gelatin hydrogel substrates with conjugated bioactive peptides influence endothelial cell behavior. Biomaterials. 2019;201:99–112. doi: 10.1016/j.biomaterials.2019.02.001. PubMed DOI PMC

Friedmann A., Hoess A., Cismak A., Heilmann A. Investigation of cell-substrate interactions by focused ion beam preparation and scanning electron microscopy. Acta Biomater. 2011;7:2499–2507. doi: 10.1016/j.actbio.2011.02.024. PubMed DOI

Sazonova O.V., Lee K.L., Isenberg B.C., Rich C.B., Nugent M.A., Wong J.Y. Cell-Cell Interactions Mediate the Response of Vascular Smooth Muscle Cells to Substrate Stiffness. Biophys. J. 2011;101:622–630. doi: 10.1016/j.bpj.2011.06.051. PubMed DOI PMC

Schultz S., Smith D.R., Mock J.J., Schultz D.A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA. 2000;97:996. doi: 10.1073/pnas.97.3.996. PubMed DOI PMC

de Aberasturi D.J., Montenegro J.-M., de Larramendi I.R., Rojo T., Klar T.A., Alvarez-Puebla R.A., Liz-Marzan L.M., Parak W.J. Optical Sensing of Small Ions with Colloidal Nanoparticles. Chem. Mater. 2012;24:738. doi: 10.1021/cm202380r. DOI

Saha K., Agasti S.S., Kim C., Li X., Rotello V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012;112:2739. doi: 10.1021/cr2001178. PubMed DOI PMC

Castillejo M., Ezquerra T.A., Martin M., Oujja M., Perez S., Rebollar E. Laser Nanostructuring of Polymers: Ripples and Applications. AIP Conf. Proc. 2012;1464:372.

Huang X., Jain P.K., El-Sayed I.H., El-Sayed M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008;23:217. doi: 10.1007/s10103-007-0470-x. PubMed DOI

Michaljaničová I., Slepička P., Rimpelová S., Kasálková Slepičková N., Švorčík V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016;370:131–141. doi: 10.1016/j.apsusc.2016.02.160. DOI

Michaljaničová I., Slepička P., Veselý M., Kolská Z., Švorčík V. Nanowires and nanodots prepared with polarized KrF laser on polyethersulphone. Mater. Lett. 2015;144:15–18. doi: 10.1016/j.matlet.2015.01.007. DOI

Slepička P., Neznalová K., Fajstavr D., Kasálková Slepičková N., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Proc. Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI

Villanueva-Flores F., Castro-Lugo A., Ramírez O.T., Palomares L.A. Understanding cellular interactions with nanomaterials: Towards a rational design of medical nanodevices. Nanotechnology. 2020;31:132002. doi: 10.1088/1361-6528/ab5bc8. PubMed DOI PMC

Chung K., DeQuach J.A., Christman K.L. Nanopatterned interfaces for controlling cell behavior. Nano Life. 2010;1:63–77. doi: 10.1142/S1793984410000055. PubMed DOI PMC

Garoli D., Lovato L., della Giustina G., Oliverio M., Francardi M., Zanchetta E., Brusatin G., de Angelis F. Directly nanopatternable nanoporous titania—Application to cell growth engineering. Microelectron. Eng. 2016;155:102–106. doi: 10.1016/j.mee.2016.03.026. DOI

Bacakova L., Novotna K., Hadraba D., Musilkova J., Slepicka P., Beran M. Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation. Polymers. 2022;14:602–628. PubMed PMC

Yim E.K.F., Reano R.M., Pang S.W., Yee A.F., Chen C.S., Leong K.W. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 2005;26:5405–5413. doi: 10.1016/j.biomaterials.2005.01.058. PubMed DOI PMC

Han S.S., Cho M.O., Huh K.M., Kang S.W. Effects of nanopatterned-surface dishes on chondrocyte growth and cell cycle progression. RSC Adv. 2021;11:39–47. doi: 10.1039/D0RA08256B. PubMed DOI PMC

Sousa M.P., Caridade S.G., Mano J.F. Control of Cell Alignment and Morphology by Redesigning ECM-Mimetic Nanotopography on Multilayer Membranes. Adv. Healthc. Mater. 2017;6:1601462. doi: 10.1002/adhm.201601462. PubMed DOI PMC

Casanellas I., Lagunas A., Vida Y., Pérez-Inestrosa E., Andrades J.A., Becerra J., Samitier J. Matrix Nanopatterning Regulates Mesenchymal Differentiation through Focal Adhesion Size and Distribution According to Cell Fate. Biomimetics. 2019;4:43. doi: 10.3390/biomimetics4020043. PubMed DOI PMC

Bäuerle D. Laser Processing and Chemistry. 4th ed. Springer; Berlin/Heidelberg, Germany: 2011.

Slepička P., Chaloupka A., Sajdl P., Heitz J., Hnatowicz V., Švorčík V. Angle dependent laser nanopatterning of poly(ethylene terephthalate) surfaces. Appl. Surf. Sci. 2011;257:6021–6025. doi: 10.1016/j.apsusc.2011.01.107. DOI

Slepička P., Neděla O., Sajdl P., Kolská Z., Švorčík V. Polyethylene naphthalate as an excellent candidate for ripple nanopatterning. Appl. Surf. Sci. 2013;285:885–892. doi: 10.1016/j.apsusc.2013.09.007. DOI

Neděla O., Slepička P., Kasalkova Slepickova N., Sajdl P., Kolská Z., Rimpelová S., Švorčík V. Antibacterial properties of angle-dependent nanopatterns on polystyrene. React. Funct. Polym. 2019;136:173–180. doi: 10.1016/j.reactfunctpolym.2019.01.007. DOI

Slepicka P., Siegel J., Lyutakov O., Kasalkova Slepickova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI

Perez S., Rebollar E., Oujja M., Martin M., Castillejo M. Laser-induced periodicsurface structuring of biopolymers. Appl. Phys. A: Mater. Sci. Process. 2013;110:683–690. doi: 10.1007/s00339-012-7186-x. DOI

Bolle M., Lazare S. Submicron periodic structures produced on polymer surfaces with polarized excimer laser ultraviolet radiation. Appl. Surf. Sci. 1993;65:349–354. doi: 10.1016/0169-4332(93)90684-4. DOI

Rebollar E., Perez S., Hernandez M., Domingo C., Tiberio M., Ezquerra T.A., Garcia-Ruiz J.P., Castillejo M. Physicochemical modifications accompanying UV laser-induced surface structures on poly(ethylene terephthalate) and their effect on adhesion of mesenchymal cells. Phys. Chem. Chem. Phys. 2014;16:17551–17559. doi: 10.1039/C4CP02434F. PubMed DOI

Bauer S., Schmuki P., von der Mark K., Park J. Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Prog. Mater. Sci. 2013;58:261–326. doi: 10.1016/j.pmatsci.2012.09.001. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...