Mammalian Cell Interaction with Periodic Surface Nanostructures
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35563068
PubMed Central
PMC9100987
DOI
10.3390/ijms23094676
PII: ijms23094676
Knihovny.cz E-zdroje
- Klíčová slova
- LIPSS, cell guidance, cytocompatibility, elemental analysis, excimer laser, human cells, periodic pattern, polymer,
- MeSH
- lasery MeSH
- lidé MeSH
- mezibuněčná komunikace MeSH
- nanostruktury * chemie MeSH
- polymery chemie MeSH
- povrchové vlastnosti MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polymery MeSH
Here, we report on the nanopatterning of different aromatic polymer substrates achieved by KrF excimer laser treatment. The conditions for the construction of the laser-induced periodic surface structures, the so-called LIPSS pattern, were established by optimized laser fluence and a number of pulses. The polymer substrates were polyethylene naphthalate (PEN), polyethersulfone (PES), and polystyrene (PS), which were chosen since they are thermally, chemically, and mechanically resistant polymers with high absorption coefficients at the excimer laser wavelength. The surface morphology of the treated substrates was investigated by atomic force microscopy and scanning electron microscopy, and the roughness and effective surface area on the modified samples were determined. Elemental concentration was characterized by energy-dispersive (EDX) analysis, surface chemistry was determined with X-ray photoelectron spectroscopy (XPS). The samples with the formation of LIPSS induced by 10 mJ·cm-2 with 1000, 3000, and 6000 pulses were used for subsequent in vitro cytocompatibility tests using human cells from osteosarcoma (U-2 OS). The LIPSS pattern and its ability of significant cell guidance were confirmed for some of the studied samples. Cell morphology, adhesion, and proliferation were evaluated. The results strongly contribute to the development of novel applications using nanopatterned polymers, e.g., in tissue engineering, cell analysis or in combination with metallization for sensor construction.
Zobrazit více v PubMed
Ruiz A., Zychowicz M., Ceriotti L., Mehn D., Sirghi L., Rauscher H., Mannelli I., Colpo P., Buzanska L., Rossi F. Microcontact printing and micro spotting as methods for direct protein patterning on plasma deposited polyethylene oxide: Application to stem cell patterning. Biomed. Microdevices. 2013;15:495–507. doi: 10.1007/s10544-013-9749-9. PubMed DOI
Priest D.G., Tanaka N., Tanaka Y., Taniguch Y. Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells. Sci. Rep. 2017;7:17750. doi: 10.1038/s41598-017-17544-2. PubMed DOI PMC
Karimi M., Yazdi F.T., Mortazavi S.A., Shahabi-Ghahfarrokhi I., Chamani J. Development of active antimicrobial poly (l-glutamic) acid-poly (l-lysine) packaging material to protect probiotic bacterium. Polym. Test. 2020;83:106338. doi: 10.1016/j.polymertesting.2020.106338. DOI
Ren D., Xia Y., Wang J., You Z. Micropatterning of single-cell arrays using the PEG-Silane and biotin–(strept)avidin system with photolithography and chemical vapor deposition. Sens. Actuators B Chem. 2013;188:340–346. doi: 10.1016/j.snb.2013.07.037. DOI
Wang Z., Zhang P., Kirkland B., Liu Y., Guan J. Microcontact printing of polyelectrolytes on PEG using an unmodified PDMS stamp for micropatterning nanoparticles, DNA, proteins, and cells. Soft Matter. 2012;8:7630. doi: 10.1039/c2sm25835h. DOI
Beckwith K.M., Sikorski P. Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels. Biofabrication. 2013;5:045009. doi: 10.1088/1758-5082/5/4/045009. PubMed DOI
Chen Z., Li Y., Liu W., Zhang D., Zhao Y., Yuan B., Jiang X. Patterning mammalian cells for modeling three types of naturally occurring cell-cell interactions. Angew. Chem. Int. Ed. Engl. 2009;48:8303–8305. doi: 10.1002/anie.200902708. PubMed DOI
Yang T., Gao D., Jin F., Jiang Y., Liu H. Surface-printed microdot array chips coupled with matrix-assisted laser desorption/ionization mass spectrometry for high-throughput single-cell patterning and phospholipid analysis. Rapid Commun. Mass Spectrom. 2016;30:73–79. doi: 10.1002/rcm.7628. PubMed DOI
Korenaga A., Chen F., Li H., Uchiyama K., Lin J.M. Inkjet automated single cells and matrices printing system for matrix-assisted laser desorption/ionization mass spectrometry. Talanta. 2017;162:474–478. doi: 10.1016/j.talanta.2016.10.055. PubMed DOI
Custodio C.A., Miguel-Arranz V.S., Gropeanu R.A., Gropeanu M., Wirkner M., Reis R.L., Mano J.F., del Campo A. Photopatterned antibodies for selective cell attachment. Langmuir. 2014;30:10066–10071. doi: 10.1021/la502688h. PubMed DOI
Bolivara J.M., Nidetzky B. On the relationship between structure and catalytic effectiveness in solid surface-immobilized enzymes: Advances in methodology and the quest for a single-molecule perspective. BBA-Proteins Proteom. 2020;1868:140333. doi: 10.1016/j.bbapap.2019.140333. PubMed DOI
Kasálková Slepičková N., Slepička P., Kolská Z., Hodačová P., Kučková Š., Švorčík V. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res. Lett. 2014;9:161–167. doi: 10.1186/1556-276X-9-161. PubMed DOI PMC
Mu J., He L., Huang P., Chen X. Engineering of nanoscale coordination polymers with biomolecules for advanced applications. Coord. Chem. Rev. 2019;399:213039. doi: 10.1016/j.ccr.2019.213039. PubMed DOI PMC
Ermis M., Antmena E., Hasirci V. Micro and Nanofabrication methods to control cell-substrate interaction and cell behavior: A review from the tissue engineering perspective. Bioact. Mater. 2018;3:355–369. doi: 10.1016/j.bioactmat.2018.05.005. PubMed DOI PMC
Zhang K., Yang Q., Fan Z., Zhao J., Li H. Platelet-driven formation of interface peptide nano-network biosensor enabling a non-invasive means for early detection of Alzheimer’s disease. Biosens. Bioelectron. 2019;145:111701. doi: 10.1016/j.bios.2019.111701. PubMed DOI
Zeng Y., Zhou J., Wang X., Cai Z., Shao Y. Wavelength-scanning surface plasmon resonance microscopy: A novel tool for real times sensing of cell-substrate interactions. Biosens. Bioelectron. 2019;1451:111717. doi: 10.1016/j.bios.2019.111717. PubMed DOI
Kaimlová M., Nemogová I., Kolářová K., Slepička P., Švorčík V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI
Lišková J., Kasálková Slepičková N., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. doi: 10.1016/j.msec.2019.02.105. PubMed DOI
Slepicka P., Kasalkova Slepickova N., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI
Su J., Satchell S.C., Wertheim J.A., Shah R.N. Poly(ethylene glycol)-crosslinked gelatin hydrogel substrates with conjugated bioactive peptides influence endothelial cell behavior. Biomaterials. 2019;201:99–112. doi: 10.1016/j.biomaterials.2019.02.001. PubMed DOI PMC
Friedmann A., Hoess A., Cismak A., Heilmann A. Investigation of cell-substrate interactions by focused ion beam preparation and scanning electron microscopy. Acta Biomater. 2011;7:2499–2507. doi: 10.1016/j.actbio.2011.02.024. PubMed DOI
Sazonova O.V., Lee K.L., Isenberg B.C., Rich C.B., Nugent M.A., Wong J.Y. Cell-Cell Interactions Mediate the Response of Vascular Smooth Muscle Cells to Substrate Stiffness. Biophys. J. 2011;101:622–630. doi: 10.1016/j.bpj.2011.06.051. PubMed DOI PMC
Schultz S., Smith D.R., Mock J.J., Schultz D.A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA. 2000;97:996. doi: 10.1073/pnas.97.3.996. PubMed DOI PMC
de Aberasturi D.J., Montenegro J.-M., de Larramendi I.R., Rojo T., Klar T.A., Alvarez-Puebla R.A., Liz-Marzan L.M., Parak W.J. Optical Sensing of Small Ions with Colloidal Nanoparticles. Chem. Mater. 2012;24:738. doi: 10.1021/cm202380r. DOI
Saha K., Agasti S.S., Kim C., Li X., Rotello V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012;112:2739. doi: 10.1021/cr2001178. PubMed DOI PMC
Castillejo M., Ezquerra T.A., Martin M., Oujja M., Perez S., Rebollar E. Laser Nanostructuring of Polymers: Ripples and Applications. AIP Conf. Proc. 2012;1464:372.
Huang X., Jain P.K., El-Sayed I.H., El-Sayed M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008;23:217. doi: 10.1007/s10103-007-0470-x. PubMed DOI
Michaljaničová I., Slepička P., Rimpelová S., Kasálková Slepičková N., Švorčík V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016;370:131–141. doi: 10.1016/j.apsusc.2016.02.160. DOI
Michaljaničová I., Slepička P., Veselý M., Kolská Z., Švorčík V. Nanowires and nanodots prepared with polarized KrF laser on polyethersulphone. Mater. Lett. 2015;144:15–18. doi: 10.1016/j.matlet.2015.01.007. DOI
Slepička P., Neznalová K., Fajstavr D., Kasálková Slepičková N., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Proc. Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI
Villanueva-Flores F., Castro-Lugo A., Ramírez O.T., Palomares L.A. Understanding cellular interactions with nanomaterials: Towards a rational design of medical nanodevices. Nanotechnology. 2020;31:132002. doi: 10.1088/1361-6528/ab5bc8. PubMed DOI PMC
Chung K., DeQuach J.A., Christman K.L. Nanopatterned interfaces for controlling cell behavior. Nano Life. 2010;1:63–77. doi: 10.1142/S1793984410000055. PubMed DOI PMC
Garoli D., Lovato L., della Giustina G., Oliverio M., Francardi M., Zanchetta E., Brusatin G., de Angelis F. Directly nanopatternable nanoporous titania—Application to cell growth engineering. Microelectron. Eng. 2016;155:102–106. doi: 10.1016/j.mee.2016.03.026. DOI
Bacakova L., Novotna K., Hadraba D., Musilkova J., Slepicka P., Beran M. Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation. Polymers. 2022;14:602–628. PubMed PMC
Yim E.K.F., Reano R.M., Pang S.W., Yee A.F., Chen C.S., Leong K.W. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 2005;26:5405–5413. doi: 10.1016/j.biomaterials.2005.01.058. PubMed DOI PMC
Han S.S., Cho M.O., Huh K.M., Kang S.W. Effects of nanopatterned-surface dishes on chondrocyte growth and cell cycle progression. RSC Adv. 2021;11:39–47. doi: 10.1039/D0RA08256B. PubMed DOI PMC
Sousa M.P., Caridade S.G., Mano J.F. Control of Cell Alignment and Morphology by Redesigning ECM-Mimetic Nanotopography on Multilayer Membranes. Adv. Healthc. Mater. 2017;6:1601462. doi: 10.1002/adhm.201601462. PubMed DOI PMC
Casanellas I., Lagunas A., Vida Y., Pérez-Inestrosa E., Andrades J.A., Becerra J., Samitier J. Matrix Nanopatterning Regulates Mesenchymal Differentiation through Focal Adhesion Size and Distribution According to Cell Fate. Biomimetics. 2019;4:43. doi: 10.3390/biomimetics4020043. PubMed DOI PMC
Bäuerle D. Laser Processing and Chemistry. 4th ed. Springer; Berlin/Heidelberg, Germany: 2011.
Slepička P., Chaloupka A., Sajdl P., Heitz J., Hnatowicz V., Švorčík V. Angle dependent laser nanopatterning of poly(ethylene terephthalate) surfaces. Appl. Surf. Sci. 2011;257:6021–6025. doi: 10.1016/j.apsusc.2011.01.107. DOI
Slepička P., Neděla O., Sajdl P., Kolská Z., Švorčík V. Polyethylene naphthalate as an excellent candidate for ripple nanopatterning. Appl. Surf. Sci. 2013;285:885–892. doi: 10.1016/j.apsusc.2013.09.007. DOI
Neděla O., Slepička P., Kasalkova Slepickova N., Sajdl P., Kolská Z., Rimpelová S., Švorčík V. Antibacterial properties of angle-dependent nanopatterns on polystyrene. React. Funct. Polym. 2019;136:173–180. doi: 10.1016/j.reactfunctpolym.2019.01.007. DOI
Slepicka P., Siegel J., Lyutakov O., Kasalkova Slepickova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Perez S., Rebollar E., Oujja M., Martin M., Castillejo M. Laser-induced periodicsurface structuring of biopolymers. Appl. Phys. A: Mater. Sci. Process. 2013;110:683–690. doi: 10.1007/s00339-012-7186-x. DOI
Bolle M., Lazare S. Submicron periodic structures produced on polymer surfaces with polarized excimer laser ultraviolet radiation. Appl. Surf. Sci. 1993;65:349–354. doi: 10.1016/0169-4332(93)90684-4. DOI
Rebollar E., Perez S., Hernandez M., Domingo C., Tiberio M., Ezquerra T.A., Garcia-Ruiz J.P., Castillejo M. Physicochemical modifications accompanying UV laser-induced surface structures on poly(ethylene terephthalate) and their effect on adhesion of mesenchymal cells. Phys. Chem. Chem. Phys. 2014;16:17551–17559. doi: 10.1039/C4CP02434F. PubMed DOI
Bauer S., Schmuki P., von der Mark K., Park J. Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Prog. Mater. Sci. 2013;58:261–326. doi: 10.1016/j.pmatsci.2012.09.001. DOI