Cíl studie: Cílem studie bylo prostřednictvím prvkové analýzy konkrementů močového traktu stanovit obsahy minoritních prvků v nich, prokázat souvislosti mezi obsahem minerálů a minoritních prvků, a tím posoudit, za jakých okolností lze použít močové konkrementy k biomonitoringu toxických/esenciálních prvků. Typ studie: observační Materiál a metody: 489 vzorků močových konkrementů z ČR bylo podrobeno mineralogické analýze infračervenou spektrometrií a dále prvkové analýze s využitím hmotnostní spektrometrie s indukčně vázaným plazmatem (ICP-MS). Obsah prvků byl korelován s obsahem minerálů a dále byla provedena statistická analýza obsahů prvků u jednotlivých skupin minerálů. Výsledky: Metoda ICP-MS je vhodná jak pro stanovení obsahu minoritních prvků, tak pro stanovení obsahu majoritních prvků, na jejichž základě je možno dopočítat zastoupení minerálů. Byly zjištěny asociace prvků s fosforečnanem vápenatým (Na, Zn, Sr, Ba), struvitem (K, Rb) i rozdíly v obsahu prvků v konkrementech z whewellitu a kyseliny močové. Závěr: Močové konkrementy lze použít k monitoringu toxických/esenciálních prvků v organismu, nicméně pro spolehlivé hodnocení vlivu různých klinických faktorů (věk, pohlaví, stravovací návyky apod.) na obsah minoritních prvků je prvořadé stanovení mineralogického složení konkrementu.
Objective: Quantification of minor elements in urinary calculi by means of elemental analysis, demonstration of the relations between mineral and minor element contents and finally evaluation of applicability of urinary stones for biomonitoring of toxic/essential elements. Design: Observational Material and Methods: 489 samples of urinary calculi from the Czech Republic was analyzed for mineralogical composition using infrared spectrometry and further for content of elements using inductively coupled plasma – mass spectrometry (ICP-MS). Element content was statistically correlated to mineral content and differentiated according to mineral composition. Results: ICP-MS method is suitable for quantification of minor elements as well as for major elements, whose determination enables calculation of mineral content. Two groups of elements including (Na, Zn, Sr, Ba) and (K, Rb) associate with calcium phosphate and struvite minerals, respectively. Also different content of elements in whewellite and uric acid concrements was confirmed. Conclusion: Urinary stones can be used for monitoring of toxic/essential elements in the human body however mineralogical analysis is crucial for credible assessment of the effect of clinical factors (e.g. age, gender, eating habits, etc.) on minor element content.
- MeSH
- Chemistry Techniques, Analytical methods utilization MeSH
- Mass Spectrometry methods utilization MeSH
- Humans MeSH
- Minerals * analysis MeSH
- Urinary Calculi MeSH
- Urinary Tract * physiopathology MeSH
- Urolithiasis * pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
IDENTITY AND PHYSICAL/CHEMICAL PROPERTIES 5 -- 2.1 Elemental mercury .5 -- 2.2 Inorganic mercury compounds mercury and inorganic mercury compounds 10 -- 6.2.2 Elemental mercury in dental amalgam fillings .11 mercury 12 -- 7.1.2 Inorganic mercury compounds 13 -- 7.2 Distribution .13 -- 7.2.1 Elemental mercury EFFECTS ON LABORATORY MAMMALS AND IN VITRO TEST SYSTEMS .16 -- 8.1 Elemental mercury 16 -- 8.1.1 Single EFFECTS EVALUATION .29 -- 10.1 Hazard identification and dose-response assessment 29 -- 10.1.1 Elemental
Concise international chemical assessment document, ISSN 1020-6167 50
iv, 61 s. : tab. ; 30 cm
- MeSH
- Risk Assessment MeSH
- Mercury adverse effects toxicity MeSH
- Mercury Compounds adverse effects toxicity MeSH
- Environmental Exposure MeSH
- Health MeSH
- Conspectus
- Veřejné zdraví a hygiena
- NML Fields
- chemie, klinická chemie
- veřejné zdravotnictví
- environmentální vědy
- NML Publication type
- publikace WHO
Assessment of trace metal concentrations in plant oils has been considered a crucial quality control marker for potential health risks, oil flavour, and oxidative stability. A straightforward inductively coupled plasma mass spectrometry (ICP-MS) methodology was developed and validated through introduction of argon:oxygen gas mixture into plasma, allowing for a direct elemental analysis of organic matrices. This approach offers the advantage of a simple one-step preparation of plant oil samples with negligible contamination risks. The complete solubilization of the oil matrix enables the determination of total metal content from a single test tube with low dilution factor of 5. The modified plasma conditions resulted in the development of a robust and accurate ICP-MS method providing limits of detection at sub ng·g-1 levels. The ICP-MS method allowed the determination of trace levels of Ba, Cd, Cu, Fe, Mn, Pb, Sn, V, and Zn in olive, sunflower and rapeseed oils.
- MeSH
- Mass Spectrometry methods MeSH
- Metals MeSH
- Oxygen * analysis MeSH
- Plant Oils chemistry MeSH
- Trace Elements * analysis MeSH
- Publication type
- Journal Article MeSH
255 s.
- MeSH
- Trace Elements MeSH
- Conspectus
- Biochemie. Molekulární biologie. Biofyzika
- NML Fields
- chemie, klinická chemie
- biochemie
Cactaceae are mostly known as ornamental plants, though they can also be used as food (e. g. Epiphylli fructus, Hylocerei fructus – pitaya / pitahaya / dragon fruit, Opuntiae fructus – Opuntia fig / tuna / prickly pear). Main phytochemical constituents responsible for their pharmacological effects are betalains, terpenes and phenolics. The subject of our work was the identification and quantification of chemical elements in Epiphylli, Hylocerei and Opuntiae fructus (25 samples) by energy-dispersive X-ray fluorescence analysis. The plant material was obtained from a garden in Modra, Slovakia (Epiphyllum Haw.); Botanical Garden in Szeged, Hungary [Hylocereus (Berger) Britt.]; Comenius University Botanical Garden in Bratislava, Slovakia, and University of Pécs Botanical Garden, Hungary (Opuntia Mill.). Fruits were collected in September 2012–2018. We identified and quantified these elements in the respective samples: 11Na, 13Al, 15P, 19K, 20Ca, 26Fe, 27Co, and 30Zn. The presence of these elements showed considerable variations. Other identified elements (21Sc, 23V, 24Cr, 25Mn, 29Cu, 31Ga, 32Ge, 34Se, 35Br, 40Zr, 46Pd, 48Cd, 49In, 50Sn, 52Te, 53I, 54Xe, 56Ba, 58Ce, 60Nd, 61Pm, 62Sm, 63Eu, 64Gd, 65Tb, 66Dy, 67Ho, 68Er, 69Tm, 70Yb, 71Lu, 72Hf, 73Ta, 75Re, 76Os, 77Ir, 78Pt, 80Hg, and 81Tl) could not be quantified due to the lack of available salts suitable for calibration.