Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
24708858
PubMed Central
PMC3986457
DOI
10.1186/1556-276x-9-161
PII: 1556-276X-9-161
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this work, an influence of bovine serum albumin proteins grafting on the surface properties of plasma-treated polyethylene and poly-l-lactic acid was studied. The interaction of the vascular smooth muscle cells with the modified polymer surface was determined. The surface properties were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, nano-LC-ESI-Q-TOF mass spectrometry, electrokinetic analysis, and goniometry. One of the motivations for this work is the idea that by the interaction of the cell with substrate surface, the proteins will form an interlayer between the cell and the substrate. It was proven that when interacting with the plasma-treated high-density polyethylene and poly-l-lactic acid, the bovine serum albumin protein is grafted on the polymer surface. Since the proteins are bonded to the substrate surface, they can stimulate cell adhesion and proliferation.
Zobrazit více v PubMed
Rebollar E, Frischauf I, Olbrich M, Peterbauer T, Hering S, Preiner J, Hinterdorferb P, Romaninb C, Heitz J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials. 2008;9:1796–1806. doi: 10.1016/j.biomaterials.2007.12.039. PubMed DOI
Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010;9:403–440. doi: 10.1016/j.progpolymsci.2010.01.006. DOI
Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Therapeut. 2005;9:151–163. doi: 10.1016/j.pharmthera.2004.10.003. PubMed DOI
Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;9:487–492. doi: 10.1038/nature02388. PubMed DOI
Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;9:311–324. doi: 10.1098/rsif.2008.0448.focus. PubMed DOI PMC
Shen Q, Shi P, Gao M, Yu X, Liu Y, Luo L, Zhu Y. Progress on materials and scaffold fabrications applied to esophageal tissue engineering. Mater Sci Eng C. 2013;9:1860–1866. doi: 10.1016/j.msec.2013.01.064. PubMed DOI
Nair LS, Laurencin CT. Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng Biot. 2006;9:47–90. PubMed
Oehr C. Plasma surface modification of polymers for biomedical use. Nucl Instrum Meth B. 2003;9:40–47.
Gauvin R, Khademhosseini A, Guillemette M, Langer R. In: Comprehensive Biotechnology. 2. Moo-Young M, editor. Amsterdam: Elsevier B.V; 2011. Emerging trends in tissue engineering; pp. 251–263.
McKellop H, Shen FW, Lu B, Campbell P, Salovey R. Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements. J Orthop Res. 1999;9:157–167. doi: 10.1002/jor.1100170203. PubMed DOI
Kang ET, Zhang Y. Surface modification of fluoropolymers via molecular design. Adv Mater. 2000;9:1481–1494. doi: 10.1002/1521-4095(200010)12:20<1481::AID-ADMA1481>3.0.CO;2-Z. DOI
Lin YS, Wang SS, Chung TW, Wang YH, Chiou SH, Hsu JJ, Chou NK, Hsieh KH, Chu SH. Growth of endothelial cells on different concentrations of Gly-Arg-Gly-Asp photochemically grafted in polyethylene glycol modified polyurethane. Artif Organs. 2001;9:617–621. doi: 10.1046/j.1525-1594.2001.025008617.x. PubMed DOI
Švorčík V, Hnatowicz V, Stopka P, Bačáková L, Heitz J, Öchsner R, Ryssel H. Amino acids grafting of Ar+ ions modified PE. Radiat Phys Chem. 2001;9:89–93. doi: 10.1016/S0969-806X(00)00320-0. DOI
Rademacher A, Paulitschke M, Meyer R, Hetzer R. Endothelialization of PTFE vascular grafts under flow induces significant cell changes. Int J Artif Organs. 2001;9:235–242. PubMed
Ishii-Watabe A, Kanayasu-Toyoda T, Suzuki T, Kobayashi T, Yamaguchi T, Kawanishi T. Influences of the recombinant artificial cell adhesive proteins on the behavior of human umbilical vein endothelial cells in serum-free culture. Biologicals. 2007;9:247–257. doi: 10.1016/j.biologicals.2006.12.002. PubMed DOI
Yang J, Wan Y, Ch T, Cai Q, Bei J, Wang S. Enhancing the cell affinity of macroporous poly(L-lactide) cell scaffold by a convenient surface modification method. Polym Int. 2003;9:1892–1899. doi: 10.1002/pi.1272. DOI
Bačáková L, Filová E, Pařízek M, Ruml T, Švorčík V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;9:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Kolská Z, Řezníčková A, Švorčík V. Surface characterization of polymer foils. e-Polymers. 2012;9:1–13.
Švorčík V, Kolářová K, Slepička P, Macková A, Novotná M, Hnatowicz V. Modification of surface properties of high and low density PE by Ar plasma discharge. Polym Degrad Stab. 2006;9:1219–1225. doi: 10.1016/j.polymdegradstab.2005.09.007. DOI
Rezek B, Krátká M, Kromka A, Kalbáčová M. Effects of protein inter-layers on cell-diamond FET characteristics. Biosens Bioelectron. 2010;9(4):1307–1312. doi: 10.1016/j.bios.2010.07.027. PubMed DOI
Myers D. Surface, Interface and Colloids: Principles and Applications. New York: Wiley; 1999.
Kolská Z, Řezníčková A, Nagyová M, Slepičková Kasálková N, Sajdl P, Slepička P, Švorčík V. Plasma activated polymers grafted with cysteamine for bio-application. Polym Degrad Stab. 2014;9:1–9.
Sirmerova M, Prochazkova G, Siristova L, Kolska Z, Branyik T. Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. J Appl Phycol. 2013;9:1687–1695. doi: 10.1007/s10811-013-0015-6. DOI
Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;9:3074–3082. doi: 10.1016/j.biomaterials.2007.03.013. PubMed DOI
Faucheux N, Schweiss R, Lützow K, Werner C, Groth T. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials. 2004;9:2721–2730. doi: 10.1016/j.biomaterials.2003.09.069. PubMed DOI
Glukhova MA, Koteliansky VE. In: The Vascular Smooth Muscle Cell: Molecular and Biological Responses to the Extracellular Matrix. Schwartz SM, Mecham RP, editor. Waltham: Academic; 2005. Integrins, cytoskeletal and extracellular matrix proteins in developing smooth muscle cells of human aorta; pp. 37–79.
BioHastalex modified with silver nanolayers and heat treatment for antibacterial properties
Biopolymer Honeycomb Microstructures: A Review
Mammalian Cell Interaction with Periodic Surface Nanostructures
Antimicrobial and optical properties of PET chemically modified and grafted with borane compounds
Surface Modification of Polymer Substrates for Biomedical Applications