BioHastalex modified with silver nanolayers and heat treatment for antibacterial properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39834419
PubMed Central
PMC11742824
DOI
10.1016/j.heliyon.2024.e41467
PII: S2405-8440(24)17498-1
Knihovny.cz E-zdroje
- Klíčová slova
- BioHastalex, Cytocompatibility, Graphene composite, Morphology, Nanostructure, Polymer stability, Surface chemistry, Surface modification,
- Publikační typ
- časopisecké články MeSH
Here, we present surface analysis and biocompatibility evaluation of novel composite material based on graphene oxide traded as BioHastalex. The pristine material's surface morphology and surface chemistry were examined by various analytical methods. The BioHastalex with a thin silver layer was subsequently heat treated and characterized, the impact on the material surface wettability and morphology was evaluated. Significant surface roughness and morphology changes were detected at the nanometer scale after heat treatment of Ag-sputtered BioHastalex. The deposition of a thin silver nanolayer had an outstanding effect on BioHastalex's antibacterial properties while still maintaining cell viability (MRC-5, HaCaT). The heat treatment of BioHastalex-Ag led to the formation of regular nanocluster arrays while affecting the Ag concentration on the very surface. The decrease in silver concentration was connected with the length of heat treatment; cells growing on such samples exhibited good viability, and the antibacterial properties were weaker than simply sputtered BioHastalex.
Zobrazit více v PubMed
Shalan A.E., Makhlouf A.S.H., Lanceros-Méndez S. In: Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Shalan A.E., Hamdy Makhlouf A.S., Lanceros‐Méndez S., editors. Springer International Publishing; Cham: 2022. Nanocomposites materials and their applications: current and future trends; pp. 3–14.
Ibrahim A., Klopocinska A., Horvat K., Abdel Hamid Z. Graphene-based nanocomposites: synthesis, mechanical properties, and characterizations. Polym. 2021;13(17):2869. PubMed PMC
Wang Y.T., Di S.H., Yu J.H., Wang L., Li Z. Recent advances of graphene-biomacromolecule nanocomposites in medical applications. J. Mater. Chem. B. 2023;11(3):500–518. PubMed
D'Amora U., Dacrory S., Hasanin M.S., Longo A., Soriente A., Kamel S., Raucci M.G., Ambrosio L., Scialla S. Advances in the physico-chemical, antimicrobial and angiogenic properties of graphene-oxide/cellulose nanocomposites for wound healing. Pharm. Times. 2023;15(2):338. PubMed PMC
Kamzin A.S., Obaidat I.M., Kozlov V.S., Voronina E.V., Narayanaswamy V., Al-Omari I.A. Graphene oxide/iron oxide (gro/feox) nanocomposites for biomedicine: synthesis and study. Phy Solid State. 2021;63(6):856–865.
Koutsioukis A., Georgakilas V., Belessi V., Zboril R. Highly conductive water-based polymer/graphene nanocomposites for printed electronics. Chem. Eur J. 2017;23(34):8268–8274. PubMed
KardanMoghaddam H., Maraki M., Rajaei A. Graphene-reinforced polymeric nanocomposites in computer and electronics industries. Facta universitatis - series: Electron and Energ. 2020;33(3):351–378.
Nazir M.A., Javed M.S., Islam M., Assiri M.A., Hassan A.M., Jamshaid M., Najam T., Shah S.S.A., Rehman A.U. Mof@graphene nanocomposites for energy and environment applications. Compos. Commun. 2024;45
Chaudhuri A., Chaudhuri A., Joydhar A. Graphene nanocomposites and applications in electrochemical energy storage materials. Mater Today: Proceedings. 2022;64:1569–1581.
Ouyang G., Hussain A., Li J.B., Li D.X. Remarkable permeability enhancement of polyethersulfone (pes) ultrafiltration membrane by blending cobalt oxide/graphene oxide nanocomposites. RSC Adv. 2015;5(86):70448–70460.
Yang Z., Yuan Z., Shang Z., Ye S. Multi-functional membrane based on montmorillonite/graphene oxide nanocomposites with high actuating performance and wastewater purification. Appl. Clay Sci. 2020;197
Kandasamy R. Graphene-based nanocomposites for automotive and off-highway vehicle applications: a review. Curr Mech Adv Mater. 2022;2(1):43–76.
Xie M., Zhang F., Peng H., Zhang Y., Li Y., Xu Y., Xie J. Layer-by-layer modification of magnetic graphene oxide by chitosan and sodium alginate with enhanced dispersibility for targeted drug delivery and photothermal therapy. Colloids Surf. B. Biointerf. 2019;176:462–470. PubMed
Fang H., Geng Z., Guan N., Zhou L., Zhang L., Hu J. Controllable generation of interfacial gas structures on the graphite surface by substrate hydrophobicity and gas oversaturation in water. Soft Matter. 2022;18(43):8251–8261. PubMed
Slepičková Kasálková N., Slepička P., Švorčík V. Carbon nanostructures, nanolayers, and their composites. Nanomaterials. 2021;11(2368):1–23. PubMed PMC
Zaaba N.I., Foo K.L., Hashim U., Tan S.J., Liu W.-W., Voon C.H. Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 2017;184:469–477.
Cao N., Zhang Y. Study of reduced graphene oxide preparation by hummers' method and related characterization. J. Nanomater. 2015;2015(1)
Alam S.N., Sharma N., Kumar L. Synthesis of graphene oxide (go) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rgo) Graphene. 2017;6(1):1–18.
Ovcharenko E.A., Seifalian A., Rezvova M.A., Klyshnikov K.Y., Glushkova Tatiana V., Akenteva T.N., Antonova Larisa V., Velikanova E.A., Chernonosova V.S., Shevelev G.Y., Shishkova D.K., Krivkina E.O., Kudryavceva Y.A., Seifalian A.M., Barbarash L.S. A new nanocomposite copolymer based on functionalised graphene oxide for development of heart valves. Sci. Rep. 2020;10(1):5271. PubMed PMC
Seifalian A., Basma Z., Digesu A., Khullar V. Polypropylene pelvic mesh: what went wrong and what will be of the future? Biomedicines. 2023;11(741):1–19. PubMed PMC
Slepičková Kasálková N., Rimpelová S., Vacek C., et al. Surface activation of hastalex by vacuum argon plasma for cytocompatibility enhancement. Heliyon. 2024;10(6) PubMed PMC
Ltd N. 2023. Development of Biofunctionalised Graphene Nerve Conduits (Nervegraft) for Nerve Regeneration. Innovate UK, Grant Number 10072550.
Ltd N. 2023. Development of a Novel Surgical Implant to Treat Pelvic Organ Prolapse Using Advanced Materials. Innovate UK, Grant Number 10072069.
Limited N. 2023. Biodegradable and Recyclable Graphene-Based Clothing. Innovate UK, Grant Number 10044108.
Limited N. 2021. Graphene-based Fibre and Fabric for Fashion: Performance-Wear. Innovate UK, Grant Number 10009308.
Farag M.M. Recent trends on biomaterials for tissue regeneration applications: review. J. Mater. Sci. 2023;58(2):527–558.
Cai J., Liu R. Introduction to antibacterial biomaterials. Biomater. Sci. 2020;8(24):6812–6813. PubMed
Anil S., Vishnupriya K.S., Biba V., Betsy J. In: Cytotoxicity and Cell Viability Assessment of Biomaterials. Anil S., Mahmoud Ahmed M., editors. IntechOpen; Rijeka: 2023. in Cytotoxicity.
Cao D., Ding J. Recent advances in regenerative biomaterials. Regen Biomater. 2022;9 PubMed PMC
Li M., Xia W., Khoong Y.M., Huang L., Huang X., Liang H., Zhao Y., Mao J., Yu H., Zan T. Smart and versatile biomaterials for cutaneous wound healing. Biomater. Res. 2023;27(1):87. PubMed PMC
N. Slepičková Kasálková, P. Slepička, B. Ivanovská, M. Trávníčková, P. Malinský, A. Macková, L. Bačáková, and V. Švorčík, "Plasma-activated polyvinyl alcohol foils for cell growth, "Plasma-activated polyvinyl alcohol foils for cell growth," Coatings, vol. 10, no. 11, doi: 10.3390/coatings10111083.
Kapat K., Kumbhakarn S., Sable R., Gondane P., Takle S., Maity P. Peptide-based biomaterials for bone and cartilage regeneration. Biomedicines. 2024;12(313):1–28. PubMed PMC
Corral-Nájera K., Chauhan G., Serna-Saldívar S.O., Martínez-Chapa S.O., Aeinehvand M.M. Polymeric and biological membranes for organ-on-a-chip devices. Microsyst Nanoeng. 2023;9(1):107. PubMed PMC
Wu L., Gao H., Han Q., Guan W., Sun S., Zheng T., Liu Y., Wang X., Huang R., Li G. Piezoelectric materials for neuroregeneration: a review. Biomater. Sci. 2023;11(22):7296–7310. PubMed
Venkatraman S., Yingying H., Wong Y.S. Bio-absorbable cardiovascular implants: status and prognosis. JOM. 2020;72(5):1833–1844.
Dhaliwal J.S., Abd Rahman N.A., Ming L.C., Dhaliwal S.K.S., Knights J., Albuquerque Junior R.F. Microbial biofilm decontamination on dental implant surfaces: a mini review. Front. Cell. Infect. Microbiol. 2021;11:1–19. PubMed PMC
Nuzzi A., Pozzo Giuffrida F., Luccarelli S., Nucci P. Corneal epithelial regeneration: old and new perspectives. Int. J. Mol. Sci. 2022;23(13114):1–16. PubMed PMC
Chytrosz-Wrobel P., Golda-Cepa M., Stodolak-Zych E., Rysz J., Kotarba A. Effect of oxygen plasma-treatment on surface functional groups, wettability, and nanotopography features of medically relevant polymers with various crystallinities. Appl. Surf. Sci. Advances. 2023;18
Liu R., Sun Y., Sun Y., Li H., Chen M., Long L., Gong J., Lv B., Ni Y. Biomimetic design of micro- and nano-wrinkle wood surface via coating reinforced with hyperbranched polymer grafted cellulose nanofibers for skin-tactile performance. Carbohydrate Polym. 2024;334 PubMed
Beucher L., Schlebrowski T., Rohe K., Wehner S., Fischer C.B. Surface treatment of biopolymer films Polylactic acid and Polyhydroxybutyrat with angular changing oxygen plasma ‒ More than just gradual purification. Surf. Interfaces. 2022;30
Bhatt P., Kumar V., Subramaniyan V., Nagarajan K., Sekar M., Chinni S.V., Ramachawolran G. Plasma modification techniques for natural polymer-based drug delivery systems. Pharmaceutics. 2023;15:2066. PubMed PMC
Mahanta U., Khandelwal M., Deshpande A.S. Antimicrobial surfaces: a review of synthetic approaches, applicability and outlook. J. Mater. Sci. 2021;56(32):17915–17941. PubMed PMC
Pathak R., Punetha V.D., Bhatt S., Punetha M. Carbon nanotube-based biocompatible polymer nanocomposites as an emerging tool for biomedical applications. European Polym. J. 2023;196
Frey H. In: Handbook of Thin-Film Technology. Frey H., Khan H.R., editors. Springer Berlin Heidelberg; Berlin, Heidelberg: 2015. Cathode sputtering; pp. 133–165.
Depla D. Chemical stability of sputter deposited silver thin films. Coatings. 2022;12:1–14.
Chauhan A.K., Tiwari S., Singh S., Singh J., Wadhwa M. Experimental study of thermal annealing effects on evaporated platinum thin film with various substrate configurations. Microsyst. Technol. 2023;29(1):107–114.
Garg R., Gonuguntla S., Sk S., Saqlain Iqbal M., Oluwasogo Dada A., Pal U., Ahmadipour M. Sputtering thin films: materials, applications, challenges and future directions. Advances Colloid Interf. Sci. 2024;330 PubMed
Barman B., Dhasmana H., Verma A., Kumar A., Singh D.N., Jain V.K. Fabrication of silver nanoparticles on glass substrate using low-temperature rapid thermal annealing. Energy Environ. 2018;29(3):358–371.
Abd-Elnaiem A.M., Hakamy A. Influence of annealing temperature on structural, electrical, and optical properties of 80 nm thick indium-doped tin oxide on borofloat glass. J. Mater. Sci. Mater. Electron. 2022;33(30):23293–23305.
Siegismund D., Undisz A., Germerodt S., Schuster S., Rettenmayr M. Quantification of the interaction between biomaterial surfaces and bacteria by 3-D modeling. Acta Biomater. 2014;10:267–275. PubMed
Ageev E.I., Aminov I.R., Baranov M.A., Golubev Y.D., Odintsova G.V., Varlamov P.V. Evolution of thin silver films under exposure to laser pulses in the air. Opt. Quant. Electron. 2017;49(2):56.
Lee S.H., Jun B.-H. Silver nanoparticles: synthesis and application for nanomedicine. Int J Molecul Sci. 2019;20(4):1–24. PubMed PMC
Sunil T.G., Aditya S.H., Shradhey V.D., Omkar R.M., Pranav S.K., Supriya V.N., Suresh G.K. In: Silver Micro-nanoparticles. Samir K., Prabhat K., Chandra Shakher P., editors. IntechOpen; Rijeka: 2021. Silver nanoparticles: properties, synthesis, characterization, applications and future trends. Ch. 4.
Xie Y.-P., Shen Y.-L., Duan G.-X., Han J., Zhang L.-P., Lu X. Silver nanoclusters: synthesis, structures and photoluminescence. Mater. Chem. Front. 2020;4(8):2205–2222.
Rossi A., Zannotti M., Cuccioloni M., Minicucci M., Petetta L., Angeletti M., Giovannetti R. Silver nanoparticle-based sensor for the selective detection of nickel ions. Nanomaterials. 2021;11(1733):1–16. PubMed PMC
Beck F., Loessl M., Baeumner A.J. Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care. Microchim. Acta. 2023;190(3):91. PubMed PMC
Rivero P.J., Goicoechea J., Urrutia A., Matias I.R., Arregui F.J. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles. Nanoscale Res. Lett. 2013;8:438. PubMed PMC
Bai Y., Yan L., Wang J., Yin Z., Chen N., Wang F., Tan Z. Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology. Mater. Des. 2016;103:315–320.
Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. PubMed
Shao J., Liang X., Lin Y., Shen Q., Ren J., Han J. Excimer laser marking − A precise patterning technique for material surfaces. Optics & Laser Technol. 2024;176
Slepičková Kasálková N., Slepička P., Kolská Z., Hodačová P., Kučková Š., Švorčík V. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res. Lett. 2014;9:161–167. PubMed PMC
Frýdlová B., Fajstavr D., Slepičková Kasálková N., Rimpelová S., Svobodová Pavlíčková V., Švorčík V., Slepička P. Replicated biopolymer pattern on PLLA-Ag basis with an excellent antibacterial response. Heliyon. 2023;9 PubMed PMC
Ghosal K., Mondal P., Bera S., Ghos S. Graphene family nanomaterials- opportunities and challenges in tissue engineering applications. FlatChem. 2021;30
Lišková J., Slepičková Kasálková N., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. PubMed
Slepičková Kasálková N., Juřicová V., Rimpelová S., Fajstavr D., Frýdlová B., Kolská Z., Švorčík V., Slepička P. LIPSS pattern induced by polymer surface instability for myoblast cell guidance. Polym. Deg. Stab. 2024;221
More P.R., Pandit S., Filippis A., Franci G., Mijakovic I., Galdiero M. Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms. 2023;11:1–27. PubMed PMC
Bellisario D., Santo L., Quadrini F., Hassiba M., Bader N., Chowdhury S.H., Hassan M.K., Zughaier S.M. Cytotoxicity and antibiofilm activity of silver- polypropylene nanocomposites. Antibiotics. 2023;12:924. PubMed PMC
Gil-Korilis A., Cojocaru M., Berzosa M., Gamazo C., Andrade N.J., Ciuffi K.J. Comparison of antibacterial activity and cytotoxicity of silver nanoparticles and silver-loaded montmorillonite and saponite. Appli. Clay Sci. 2023;240
Duval R.E., Gouyau J., Lamouroux E. Limitations of recent studies dealing with the antibacterial properties of silver nanoparticles: fact and opinion. Nanomaterials. 2019;9:1775. PubMed PMC