Carbon Nanostructures, Nanolayers, and Their Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34578684
PubMed Central
PMC8466887
DOI
10.3390/nano11092368
PII: nano11092368
Knihovny.cz E-zdroje
- Klíčová slova
- DLC layers, Q-carbon, application, carbon, composites, graphene, modification, nanoparticles, nanostructures, thin layers,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The versatility of the arrangement of C atoms with the formation of different allotropes and phases has led to the discovery of several new structures with unique properties. Carbon nanomaterials are currently very attractive nanomaterials due to their unique physical, chemical, and biological properties. One of these is the development of superconductivity, for example, in graphite intercalated superconductors, single-walled carbon nanotubes, B-doped diamond, etc. Not only various forms of carbon materials but also carbon-related materials have aroused extraordinary theoretical and experimental interest. Hybrid carbon materials are good candidates for high current densities at low applied electric fields due to their negative electron affinity. The right combination of two different nanostructures, CNF or carbon nanotubes and nanoparticles, has led to some very interesting sensors with applications in electrochemical biosensors, biomolecules, and pharmaceutical compounds. Carbon materials have a number of unique properties. In order to increase their potential application and applicability in different industries and under different conditions, they are often combined with other types of material (most often polymers or metals). The resulting composite materials have significantly improved properties.
Zobrazit více v PubMed
Hirsch A. The era of carbon allotropes. Nat. Mater. 2010;9:868–871. doi: 10.1038/nmat2885. PubMed DOI
Skoda M., Dudek I., Jarosz A., Szukiewicz D. Graphene: One Material, Many Possibilities-Application Difficulties in Biological Systems. J. Nanomater. 2014;2014:190. doi: 10.1155/2014/890246. DOI
Harris P.J.F. New Perspectives on the Structure of Graphitic Carbons. Crit. Rev. Solid. 2005;30:235–253. doi: 10.1080/10408430500406265. DOI
Torres L.E.F., Roche S., Charlier J.-C. Introduction to Carbon-Based Nanostructures. 2nd ed. Cambridge University Press; Cambridge, UK: 2020. pp. 1–10.
Khalaj Z., Monajjemi M., Diudea M.V. Main Allotropes of Carbon: A Brief Review. In: Putz M.V., Mirica M.C., editors. Sustainable Nanosystems Development, Properties, and Applications. IGI Global; Hershey, PA, USA: 2017. pp. 185–213.
Slepicka P., Slepickova Kasalkova N., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI
Grausova L., Vacik J., Vorlicek V., Svorcik V., Slepicka P., Bilkova P., Vandrovcova M., Lisa V., Bacakova L. Fullerene C(60) films of continuous and micropatterned mophology as substrates for adhesion and growth of bone cells. Diam. Relat. Mater. 2009;2009:578–586. doi: 10.1016/j.diamond.2008.10.024. DOI
Stankova L., Fraczek-Szczypta A., Blazewicz M., Filova E., Blazewicz S., Lisa V., Bacakova L. Human osteoblast-like MG 63 cells on polysulfone modified with carbon nanotubes or carbon nanohorns. Carbon. 2014;67:578–591. doi: 10.1016/j.carbon.2013.10.031. DOI
Verdanova M., Rezek B., Broz A., Ukraintsev E., Babchenko O., Artemenko A., Izak T., Kromka A., Kalbac M., Hubalek Kalbacova M. Nanocarbon allotropes-graphene and nanocrystalline diamond-promote cell proliferation. Small. 2016;12:2499–2509. doi: 10.1002/smll.201503749. PubMed DOI
Krueger A. Carbon Materials and Nanotechnology. 1st ed. WILEY-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2010. pp. 1–32.
Falcao E.H., Wudl F. Carbon allotropes: Beyond graphite and diamond. J. Chem. Technol. Biot. 2007;82:524–531. doi: 10.1002/jctb.1693. DOI
Pisarciuc C. Structure, Material Properties and Applications of Diamond-Like Materials. Nonconv. Technol. Rev. 2012;XVI:13–18.
Escudeiro A., Wimmer M.A., Polcar T., Cavaleiro A. Tribological behavior of uncoated and DLC-coated CoCr and Ti-alloys in contact with UHMWPE and PEEK counterbodies. Tribology Int. 2015;89:97–104. doi: 10.1016/j.triboint.2015.02.002. DOI
Mengesha A.E., Youan B.B.C. Nanodiamonds for drug delivery systems. In: Narayan R., editor. Diamond-Based Materials for Biomedical Applications. 1st ed. Woodhead Publishing; Cambridge, UK: 2013. pp. 186–205.
Karczemska A. Diamond materials for microfluidic devices. In: Narayan R., editor. Diamond-Based Materials for Biomedical Applications. 1st ed. Woodhead Publishing; Cambridge, UK: 2013. pp. 256–271.
Perez G., Maréchal A., Chicot G., Lefranc P., Jeannin P.O., Eon D., Rouger N. Diamond semiconductor performances in power electronics applications. Diamond Rel. Mater. 2020;110:108154. doi: 10.1016/j.diamond.2020.108154. DOI
Narayan J., Bhaumik A. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air. APL Mater. 2015;3:100702-1–100702-11. doi: 10.1063/1.4932622. DOI
Bhaumik A., Sachan R., Narayan J. High-Temperature Superconductivity in Boron-Doped Q-Carbon. ACS Nano. 2017;11:5351–5357. doi: 10.1021/acsnano.7b01294. PubMed DOI
Kopova I., Rezek B., Stehlik S., Ukraintsev E., Slepickova Kasalkova N., Slepicka P., Potocky S., Bacakova L. Growth of Primary Human Osteoblasts on Plasma-Treated and Nanodiamond-Coated PTFE Polymer Foils. Phys. Status Solidi B. 2018;255:1700595. doi: 10.1002/pssb.201700595. DOI
Naeayan R.J., Boehm R.D., Sumant A.V. Introduction to medical applications of diamond particles and surfaces. In: Narayan R., editor. Diamond-Based Materials for Biomedical Applications. 1st ed. Volume 1. Woodhead Publishing Limited; Cambridge, UK: 2013. pp. 3–24.
Catledge S.A., Thomas V., Vohra Y.K. Nanostructured diamond coatings for orthopaedic applications. In: Narayan R., editor. Diamond-Based Materials for Biomedical Applications. 1st ed. Volume 5. Woodhead Publishing Limited; Cambridge, UK: 2013. pp. 105–150. PubMed PMC
Stoller M.D., Park S., Zhu Y., An J., Ruoff R.S. Graphene-Based Ultracapacitors. Nano Lett. 2008;8:3498–3502. doi: 10.1021/nl802558y. PubMed DOI
Gómez-Navarro C., Weitz T.R., Bittner A.M., Scolari M., Mews A., Burghard M., Kern K. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Lett. 2007;7:3499–3503. doi: 10.1021/nl072090c. PubMed DOI
Geim A.K. Graphene: Status and Prospects. Science. 2009;324:1530–1534. doi: 10.1126/science.1158877. PubMed DOI
Allen M.J., Tung V.C., Kaner R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010;110:132–145. doi: 10.1021/cr900070d. PubMed DOI
Kiew S.F., Kiew L.F., Lee H.B., Imae T., Chung L.Y. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J. Control. Release. 2016;226:217–228. doi: 10.1016/j.jconrel.2016.02.015. PubMed DOI
Pacakova B., Verhagen T., Bousa M., Hübner U., Vejpravova J., Kalbac M., Frank O. Mastering the Wrinkling of Selfsupported Graphene. Sci. Rep. 2017;7:10003. doi: 10.1038/s41598-017-10153-z. PubMed DOI PMC
Akinwande D., Brennan C.J., Bunch J.S., Egberts P., Felts J.R., Gao H., Huang R., Kim J.S., Li T., Li X., et al. A review on mechanics and mechanical properties of 2D materials-Graphene and beyond. Extrem Mech. Lett. 2017;13:42–77. doi: 10.1016/j.eml.2017.01.008. DOI
Shi W., Zhu J., Sim D.H., Tay Y.Y., Lu Z., Zhang Y., Sharma Y., Srinivasan M., Zhang H., Hng H.H., et al. Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 2011;21:3422–3427. doi: 10.1039/c0jm03175e. DOI
Anju M., Renuka N.K. Graphene-dye hybrid optical sensors. Nano-Struct. Nano-Objects. 2019;17:194–217.
Shin S.R., Li Y.-C., Jang H.L., Khoshakhlagh P., Akbari M., Nasajpour A., Zhang Y.S., Tamayol A., Khademhosseini A. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev. 2016;105:255–274. doi: 10.1016/j.addr.2016.03.007. PubMed DOI PMC
Bai R.G., Ninan N., Muthoosamy K., Manickam S. Graphene: A versatile platform for nanotheranostics and tissue engineering. Prog. Mater. Sci. 2018;91:24–69.
Kenry, Lee W.C., Loh K.P., Lim C.T. When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials. 2018;155:236–250. doi: 10.1016/j.biomaterials.2017.10.004. PubMed DOI
Pinto A.M., Goncalves I.C., Magalhaes F.D. Graphene-based materials biocompatibility: A review. Colloid Surface B. 2013;111:188–202. doi: 10.1016/j.colsurfb.2013.05.022. PubMed DOI
Zhang Y., Nayak T.R., Hong H., Cai W. Graphene: A versatile nanoplatform for biomedical applications. Nanoscale. 2012;4:3833–3842. doi: 10.1039/c2nr31040f. PubMed DOI PMC
Li N., Cheng Y., Song Q., Jiang Z., Tang M., Cheng G. Graphene meets biology. Chin. Sci. Bull. 2014;59:1341–1354. doi: 10.1007/s11434-014-0158-0. DOI
Bacon M., Bradley S.J., Nann T. Graphene Quantum Dots. Part. Part. Syst. Charact. 2014;31:415–428. doi: 10.1002/ppsc.201300252. DOI
Paul R., Dai L. Interfacial aspects of carbon composites. Compos. Interfaces. 2018;25:539–605. doi: 10.1080/09276440.2018.1439632. DOI
Du X., Zhou H., Sun W., Liu H.-Y., Zhou G., Zhou H., Mai Y.-W. Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Compos. Sci. Technol. 2017;140:123–133. doi: 10.1016/j.compscitech.2016.12.028. DOI
Slepička P., Slepičková Kasálková N., Pinkner A., Sajdl P., Kolská Z., Švorčík V. Plasma induced cytocompatibility of stabilized poly-L-lactic acid doped with graphene nanoplatelets. React. Funct. Polym. 2018;131:266–275. doi: 10.1016/j.reactfunctpolym.2018.08.006. DOI
Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI
Paul R., Gayen R.N., Biswas S., Venkataprasad Bhat S., Bhunia R. Enhanced UV detection by transparent graphene oxide/ZnO composite thin films. RSC Adv. 2016;6:61661–61672. doi: 10.1039/C6RA05039E. DOI
Fajstavr D., Neznalova K., Svorcik V., Slepicka P. LIPSS Structures Induced on Graphene-Polystyrene Composite. Materials. 2019;12:3460. doi: 10.3390/ma12213460. PubMed DOI PMC
Slepičková Kasálková N., Buřičová L., Slepička P., Kolská Z., Švorčík V. Carbon nanolayers deposited on laser treated PLLA film. Chem. Listy. 2015;109:879–884.
Slepička P., Neznalová K., Fajstavr D., Švorčík V. Nanostructuring of honeycomb-like polystyrene with excimer laser. Prog. Org. Coat. 2020;145:105670. doi: 10.1016/j.porgcoat.2020.105670. DOI
Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Neděla O., Slepička P., Sajdl P., Veselý M., Švorčík V. Surface analysis of ripple pattern on PS and PEN induced with ring-shaped mask due to KrF laser treatment. Surf. Interface Anal. 2017;49:25–33. doi: 10.1002/sia.6054. DOI
Zhao B., Zhao C., Li R., Mahdi Hamidinejad S., Park C.B. Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly (vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interfaces. 2017;9:20873–20884. doi: 10.1021/acsami.7b04935. PubMed DOI
Tuantranont A. Nanomaterials for sensing applications: Introduction and perspectives. In: Tuantranont A., editor. Applications of Nanomaterials in Sensors and Diagnosis. 1st ed. Volume 14. Springer; Berlin/Heidelberg, Germany: 2013. p. 1.
Das S., Wajid A.S., Shelburne J.L., Liao Y.-C., Green M.J. Localized In situ Polymerization on Graphene Surfaces for Stabilized Graphene Dispersions. ACS Appl. Mater. Interfaces. 2011;3:1844–1851. doi: 10.1021/am1011436. PubMed DOI
Potts J.R., Dreyer D.R., Bielawski C.W., Ruoff R.S. Graphene-based polymer nanocomposites. Polymer. 2011;52:5–25. doi: 10.1016/j.polymer.2010.11.042. DOI
Wajid A.S., Das S., Irin F., Tanvir Ahmed H.S., Shelburne J.L., Parviz D., Fullerton R.J., Jankowski A.F., Hedden R.C., Green M.J. Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon. 2012;50:526–534. doi: 10.1016/j.carbon.2011.09.008. DOI
Crevillen A.G., Escarpa A., García C.D., editors. Carbon-Based Nanomaterials in Analytical Chemistry. The Royal Society of Chemistry; Cambridge, UK: 2019. Carbon-based nanomaterials in Analytical Chemistry; pp. 1–36.
Kim K., Abdala A.A., Macosko C.W. Graphene/Polymer Nanocomposites. Macromolecules. 2010;43:6515–6530. doi: 10.1021/ma100572e. DOI
Tiwari S.K., Kumar V., Huczko A., Oraon R., Adhikari A.D., Nayak G.C. Magical Allotropes of Carbon: Prospects and Applications. Crit. Rev. Solid State. 2016;41:257–317. doi: 10.1080/10408436.2015.1127206. DOI
Mohammad N.S. Understanding quantum confinement in nanowires: Basics, applications and possible laws. J. Phys. Condens. Matter. 2014;26:1–28. doi: 10.1088/0953-8984/26/42/423202. PubMed DOI
Zhu S., Zhang J., Qiao C., Tang S., Li Y., Yuan W., Li B., Tian L., Liu F., Hu R., et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011;47:6858–6860. doi: 10.1039/c1cc11122a. PubMed DOI
Pan D., Guo L., Zhang J., Xi C., Xue Q., Huang H., Li J., Zhang Z., Yu W., Chen Z., et al. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 2012;22:3314–3318. doi: 10.1039/c2jm16005f. DOI
Dong Y., Chen C., Zheng X., Gao L., Cui Z., Yang H., Guo C., Chi H., Li C.M. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem. 2012;22:8764–8766. doi: 10.1039/c2jm30658a. DOI
Zhu S., Zhang J., Tang S., Qiao C., Wang L., Wang H., Liu X., Li B., Li Y., Yu W., et al. Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications. Adv. Funct. Mater. 2012;22:4732–4740. doi: 10.1002/adfm.201201499. DOI
Javanbakht S., Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater. Sci. Eng. C. 2018;87:50–59. doi: 10.1016/j.msec.2018.02.010. PubMed DOI
Vilela C., Pinto R.J.B., Pinto S., Marques P., Sofia da Rocha Freire Barros A.S.C. Polysaccharides-Based Hybrids with Graphene. In: Navard P., editor. Polysaccharide Based Hybrid Materials Metals and Metal Oxides, Graphene and Carbon Nanotubes. 1st ed. Springer Nature Switzerland; Cham, Switzerland: 2018. pp. 69–93.
Li H., Zhang H. The isolated-pentagon rule and nice substructures infullerens. Ars Math. Contemp. 2018;15:487–497. doi: 10.26493/1855-3974.1359.b33. DOI
Hernández E., Ordejón P., Terrones H. Fullerene growth and the role of nonclassical isomers. Phys. Rev. B. 2001;63:193403.1–193403.4. doi: 10.1103/PhysRevB.63.193403. DOI
Fujine K., Ishida T., Aihara J. Localization energies for graphite and fullerenes. Phys. Chem. Chem. Phys. 2001;3:3917–3919. doi: 10.1039/b103886a. DOI
Mojica M., Alonso J.A., Méndez F. Synthesis of fullerenes. J. Phys. Org. Chem. 2013;26:526–539. doi: 10.1002/poc.3121. DOI
Vandrovcova M., Vacik J., Svorcik V., Slepicka P., Kasalkova N., Vorlicek V., Lavrentiev V., Vosecek V., Grausova L., Lisa V., et al. Fullerene C60 and hybrid C60/Ti films as substrates for adhesion and growth of bone cells. Phys. Status Solidi (a) 2008;205:2252–2261. doi: 10.1002/pssa.200879730. DOI
Kawase T., Tanaka K., Seirai Y., Shiono N., Oda M. Complexation of Carbon Nanorings with Fullerenes: Supramolecular Dynamics and Structural Tuning for a Fullerene Sensor. Angew. Chem. Int. Ed. 2003;42:5597–5600. doi: 10.1002/anie.200352033. PubMed DOI
Levi N., Hantgan R.R., Lively M.O., Carroll D.L., Prasad G.L. C60-Fullerenes: Detection of intracellular photoluminescence and lack of cytotoxic effects. J. Nanobiotechnol. 2006;4:14. doi: 10.1186/1477-3155-4-14. PubMed DOI PMC
Yamakoshi Y., Umezawa N., Ryu A., Arakane K., Miyata N., Goda Y., Masumizu T., Nagano T. Active Oxygen Species Generated from Photoexcited Fullerene (C60) as Potential Medicines: O2-• versus 1O2. J. Am. Chem. Soc. 2003;125:12803–12809. doi: 10.1021/ja0355574. PubMed DOI
Tang Y.J., Ashcroft J.M., Chen D., Min G., Kim C.-H., Murkhejee B., Larabell C., Keasling J.D., Chen F.F. Charge-asociated effects of fullerene derivatives on microbial structural integrity and central metabolism. Nano Lett. 2007;7:754–760. doi: 10.1021/nl063020t. PubMed DOI
Shin S.E., Choi H.J., Hwang J.Y., Bae D.H. Strengthening behavior of carbon/metal nanocomposites. Sci. Rep. 2015;6:16114. doi: 10.1038/srep16114. PubMed DOI PMC
Tjong S.C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced both carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R. 2013;74:281–350. doi: 10.1016/j.mser.2013.08.001. DOI
Robles-Hernandez F.C., Calderon H.A. Nanostructured metal composites reinforced with fullerenes. JOM. 2010;62:63–68. doi: 10.1007/s11837-010-0034-6. DOI
Shpilevsky E.M., Penyazkov O.G., Filatov S.A., Shilagardi G., Tuvshintur P., Timur-Bator D., Ulam-Orgikh D. Modification of materials by carbon nanoparticles. Solid State Phenom. 2018;271:70–75. doi: 10.4028/www.scientific.net/SSP.271.70. DOI
Shpilevsky E.M., Filatov S.A., Shilagardi G., Ulam-Orgikh D., Tuvshintur P., Otgonbaatar M. Properties of Metal-Fullerene Composites. Solid State Phenom. 2018;288:124–129. doi: 10.4028/www.scientific.net/SSP.288.124. DOI
Nasibulin A.G., Pikhitsa P.V., Jiang H., Brown D.P., Krasheninnikov A.V., Anisimov A.S., Queipo P., Moisala A., Gonzalez D., Lientschnig G., et al. A novel hybrid carbon material. Nat. Nanotechnol. 2007;2:156–161. doi: 10.1038/nnano.2007.37. PubMed DOI
Savi P., Giorcelli M., Quaranta S. Multi-Walled Carbon Nanotubes Composites for Microwave Absorbing Applications. Appl. Sci. 2019;9:851. doi: 10.3390/app9050851. DOI
Scarselli M., Castrucci P., De Crescenzi M. Electronic and optoelectronic nano-devices based on carbon nanotubes. J. Phys. Condens. Matter. 2012;24:313202. doi: 10.1088/0953-8984/24/31/313202. PubMed DOI
Gupta S., Murthy C.N., Ratna Prabha C. Recent advances in carbon nanotube based electrochemical biosensors. Int. J. Biol. Macromol. 2018;108:687–703. doi: 10.1016/j.ijbiomac.2017.12.038. PubMed DOI
Gately R.D. Filling of carbon nanotubes and nanofibres. Beilstein J. Nanotechnol. 2015;6:508–516. doi: 10.3762/bjnano.6.53. PubMed DOI PMC
Slepička P., Malá Z., Rimpelová S., Slepičková Kasálková N., Švorčík V. Plasma treatment of the surface of poly(hydroxybutyrate) foil and non-woven fabric and assessment of the biological properties. React. Funct. Polym. 2015;95:71–79. doi: 10.1016/j.reactfunctpolym.2015.08.010. DOI
Slepičková Kasálková N., Váchová K., Slepička P., Švorčík V. Surface Plasma Modification and Characterization of Poly(ethylene-alt-tetrafluoroethylene) Chem. Listy. 2016;110:279–283.
Kolská Z., Řezníčková A., Nagyová M., Slepičková Kasálková N., Sajdl P., Slepička P., Švorčík V. Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym. Degrad. Stab. 2014;101:1–9. doi: 10.1016/j.polymdegradstab.2014.01.024. DOI
Slepičková Kasálková N., Slepička P., Bačáková L., Sajd P., Švorčík V. Biocompatibility of plasma nanostructured biopolymers. Nucl. Instrum. Methods B. 2013;307:642–646. doi: 10.1016/j.nimb.2012.10.035. DOI
Tran P.A., Zhang L., Webster T.J. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv. Drug Deliv. Rev. 2009;61:1097–1114. doi: 10.1016/j.addr.2009.07.010. PubMed DOI
Ali M.S., French T.A., Hastings G.W., Rae T., Rushton N., Ross E.R.S., Wynn-Jones C.H. Carbon fibre composite bone plates. J. Bone Jt. Surg. 1990;72:586–591. doi: 10.1302/0301-620X.72B4.2380209. PubMed DOI
Pimberton D.J., McKibbin B., Savage R., Tayton K., Stuart D. Carbon-Fibre Reinforced Plates for Problem Fractures. J. Bone Jt. Surg. 1992;74:88–92. doi: 10.1302/0301-620X.74B1.1732273. PubMed DOI
Dikbas I., Tanalp J. An Overview of Clinical Studies on Fiber Post Systems. Sci. World J. 2013;2013:171380. doi: 10.1155/2013/171380. PubMed DOI PMC
Huang Y., Miao Y., Ji S., Tjiu W., Liu T. Electrospun Carbon Nanofibers Decorated with Ag–Pt Bimetallic Nanoparticles for Selective Detection of Dopamine. ACS Appl. Mater. Interfaces. 2014;6:12449–12456. doi: 10.1021/am502344p. PubMed DOI
Tavangarian F., Li Y. Carbon nanostructures as nerve scaffolds for repairing large gaps in severed nerves. Ceram. Int. 2012;38:6075–6090. doi: 10.1016/j.ceramint.2012.05.038. DOI
Petersen R. Carbon Fiber Biocompatibility for Implants. Fibers. 2016;4:1. doi: 10.3390/fib4010001. PubMed DOI PMC
Callister W.D. Materials Science and Engineering. 4th ed. John Wiley & Sons; New York, NY, USA: 1997. p. 2.
Chawla K.K. Composite Materials. 2nd ed. Springer; New York, NY, USA: 1998. pp. 252–277.
Berglund L.A. Thermoplastic Resins. In: Peters S.T., editor. Handbook of Composites. 2nd ed. Chapman and Hall; New York, NY, USA: 1998. p. 122.
Thostenson E.T., Ren Z., Chou T.-W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001;61:1899–1912. doi: 10.1016/S0266-3538(01)00094-X. DOI
Asaro L., Villanueva S., Alvarez V., Manfredi L.B., Rodríguez E.S. Fire performance of composites made from carbon/ phenolic prepregs with nanoclays. J. Compos. Mater. 2017;51:3515–3524. doi: 10.1177/0021998316688772. DOI
Chen X., Xia J., Peng J., Li W., Xie S. Carbon-nanotube metal-matrix composites prepared by electroless plating. Compos. Sci. Technol. 2000;60:301–306. doi: 10.1016/S0266-3538(99)00127-X. DOI
Chung D.D.L. Carbon Fiber Composites. Volume 7. Butterworth-Heinemann; Newton, MA, USA: 1994. pp. 125–144.
Rawal S.P. Metal-matrix composites for space applications. JOM. 2001;53:14–17. doi: 10.1007/s11837-001-0139-z. DOI
Harris P.J.F. Carbon nanotube composites. Int. Mater. Rev. 2004;49:31–43. doi: 10.1179/095066004225010505. DOI
Gullapalli S., Wong M.S. Nanotechnology: A guide to nano-objects. Chem. Eng. Prog. 2011;107:28–32.
Maa P.-C., Siddiqui N.A., Marom G., Kim J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A. 2010;41:1345–1367. doi: 10.1016/j.compositesa.2010.07.003. DOI
Xiea X.-L., Maia Y.-W., Zhou X.-P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. R-Rep. 2005;49:89–112. doi: 10.1016/j.mser.2005.04.002. DOI
Shirvanimoghaddam K., Abolhasani M.M., Polisetti B., Naebe M. Periodical patterning of a fully tailored nanocarbon on CNT for fabrication of thermoplastic composites. Compos. Part A. 2018;107:304–314. doi: 10.1016/j.compositesa.2018.01.015. DOI
Seyhan A.T., Tanoglu M., Schulte K. Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Eng. Fract. Mech. 2008;75:5151–5516. doi: 10.1016/j.engfracmech.2008.08.003. DOI
Roy S., Petrova R.S., Mitra S. Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites. Nanotechnol. Rev. 2018;7:475–485. doi: 10.1515/ntrev-2018-0068. PubMed DOI PMC
Rafiee R., Pourazizi R. Influence of CNT functionalization on the interphase region between CNT and polymer. Comput. Mater. Sci. 2015;96:573–578. doi: 10.1016/j.commatsci.2014.03.056. DOI
Shirvanimoghaddam K., Balaji K.V., Yadav R., Zabihi O., Ahmadi M., Adetunji P., Naebe M. Balancing the toughness and strength in polypropylene composites. Compos. Part B. 2021;223:109121. doi: 10.1016/j.compositesb.2021.109121. DOI
Ahmadabadi V.G., Shirvanimoghaddam K., Kerr R., Showkath N., Naebe M. Structure-rate performance relationship in Si nanoparticles-carbon nanofiber composite as flexible anode for lithium-ion batteries. Electrochim. Acta. 2020;330:135232. doi: 10.1016/j.electacta.2019.135232. DOI
Mykhailiv O., Zubyk H., Plonska-Brzezinska M.E. Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorg. Chim. Acta. 2017;468:49–66. doi: 10.1016/j.ica.2017.07.021. DOI
Aref A.R., Chen S.-W., Rajagopalan R., Randall C. Bimodal porous carbon cathode and prelithiated coalesced carbon onion anode for ultrahigh power energy efficient lithium ion capacitors. Carbon. 2019;152:89–97. doi: 10.1016/j.carbon.2019.05.074. DOI
Hou S., Chung D.-H., Lin T. High-yield synthesis of carbon nano-onions in counterflow diffusion flames. Carbon. 2009;47:938–947. doi: 10.1016/j.carbon.2008.11.054. DOI
Chung D.-H., Lin T.-H., Hou S.S. Flame synthesis of carbon nano-onions enhanced by acoustic modulation. Nanotechnology. 2010;21:435604. doi: 10.1088/0957-4484/21/43/435604. PubMed DOI
Chen X.H., Deng F.M., Wang J.X., Yang H.S., Wu G.T., Zhang X.B., Peng J.C., Li W.Z. New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chem. Phys. Lett. 2001;336:201–204. doi: 10.1016/S0009-2614(01)00085-9. DOI
Camisasca A., Giordaniac S. Carbon nano-onions in biomedical applications: Promising theranostic agents. Inorg. Chim. Acta. 2017;468:67–76. doi: 10.1016/j.ica.2017.06.009. DOI
Bobrowska D.M., Brzezinski K., Plonska-Brzezinska M.E. PEGylated Carbon Nano-onions Composite as a Carrier of Polyphenolic Compounds: A Promising System for Medical Applications and Biological Sensors. Colloid Interface Sci. Commun. 2017;21:6–9. doi: 10.1016/j.colcom.2017.10.004. DOI
Krokosz A., Lichota A., Nowak K.E., Grebowski J. Carbon nanoparticles as possible radioprotectors in biological systems. Radiat. Phys. Chem. 2016;128:143–150. doi: 10.1016/j.radphyschem.2016.07.006. DOI
Xu B., Yue S., Qiao N., Chu M., Wei G. Easy preparation of nitrogen-doped porous carbon nanospheres and their application in supercapacitors. Mater. Lett. 2014;131:49–52. doi: 10.1016/j.matlet.2014.05.164. DOI
Choi C.H., Park S.H., Chung M.W., Woo S.I. Easy and controlled synthesis of nitrogen-doped carbon. Carbon. 2013;55:98–107. doi: 10.1016/j.carbon.2012.12.014. DOI
Švorčík V., Makajová Z., Slepičková Kasálková N., Kolská Z., Žáková P., Karpíšková J., Stibor I., Slepička P. Cytocompatibility of polymers grafted by activated carbon nano-particles. Carbon. 2014;69:361–371. doi: 10.1016/j.carbon.2013.12.037. DOI
Žáková P., Slepičková Kasálková N., Kolská Z., Leitner J., Karpíšková J., Stibor I., Slepička P., Švorčík V. Cytocompatibility of amine functionalized carbon nanoparticles grafted on polyethylene. Mater. Sci. Eng. C. 2016;60:294–401. doi: 10.1016/j.msec.2015.11.058. PubMed DOI
Žáková P., Slepičková Kasálková N., Slepička P., Kolská Z., Karpíšková J., Stibor I., Švorčík V. Cytocompatibility of polyethylene grafted with triethylenetetramine functionalized carbon nanoparticles. Appl. Surf. Sci. 2017;422:809–816. doi: 10.1016/j.apsusc.2017.06.089. PubMed DOI
Haque A., Narayan J. Electron field emission from Q-carbon. Diam. Relat. Mater. 2018;86:71–78. doi: 10.1016/j.diamond.2018.04.008. DOI
Yoshinaka H., Inubushi S., Wakita T., Yokoya T., Muraoka Y. Formation of Q-carbon by adjusting sp3 content in diamond-like carbon films and laser energy density of pulsed laser annealing. Carbon. 2020;167:504–511. doi: 10.1016/j.carbon.2020.06.025. DOI
Narayan J., Bhaumik A. Q-carbon discovery and formation of single-crystal diamond nano- and microneedles and thin films. Mater. Res. Lett. 2016;4:118–126. doi: 10.1080/21663831.2015.1126865. DOI
Sachan R., Bhaumik A., Pant P., Prater J., Narayan J. Diamond film growth by HFCVD on Q-carbon seeded substrate. Carbon. 2019;141:182–189. doi: 10.1016/j.carbon.2018.09.058. DOI
Narayan J., Gupta S., Bhaumik A., Sachan R., Cellini F., Riedo E. Q-carbon harder than diamond. MRS Commun. 2018;8:428–436. doi: 10.1557/mrc.2018.35. DOI
Narayan J., Bhaumik A. Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 2015;118:215303-1–215303-12. doi: 10.1063/1.4936595. DOI
Narayan J., Bhaumik A., Gupta S., Haque A., Sachan R. Progress in Q-carbon and related materials with extraordinary properties. Mater. Res. Lett. 2018;6:353–364. doi: 10.1080/21663831.2018.1458753. DOI
Bhaumik A., Nori S., Sachan R., Gupta S., Kumar D., Majumdar A.K., Narayan J. Room-Temperature Ferromagnetism and Extraordinary Hall Effect in Nanostructured Q-Carbon: Implications for Potential Spintronic Devices. ACS Appl. Nano Mater. 2018;1:807–819. doi: 10.1021/acsanm.7b00253. DOI
Sachan R., Gupta S., Narayan J. Nonequilibrium Structural Evolution of Q-Carbon and Interfaces. ACS Appl. Mater. Interfaces. 2020;12:1330–1338. doi: 10.1021/acsami.9b17428. PubMed DOI
Bhaumik A., Sachan R., Narayan J. A novel high-temperature carbon-based superconductor: B-doped Q-carbon. J. Appl. Phys. 2017;122:045301-2–045301-15. doi: 10.1063/1.4994787. DOI
Haque A., Pant P., Narayan J. Large-area diamond thin film on Q-carbon coated crystalline sapphire by HFCVD. J. Cryst. Growth. 2018;504:17–25. doi: 10.1016/j.jcrysgro.2018.09.036. DOI
Gupta S., Sachan R., Bhaumik A., Narayan J. Enhanced mechanical properties of Q-carbon nanocomposites by nanosecond pulsed laser annealing. Nanotechnology. 2018;29:45LT02. doi: 10.1088/1361-6528/aadd75. PubMed DOI
Joshi P., Gupta S., Haque A., Narayan J. Fabrication of ultrahard Q-carbon nanocoatings on AISI 304 and 316 stainless steels and subsequent formation of high-quality diamond films. Diam. Relat. Mater. 2020;104:107742. doi: 10.1016/j.diamond.2020.107742. DOI
Lee Y.J., Jung J.C., Park S., Seo J.G., Baeck S.-H., Yoon J.R., Yi J., Song I.K. Effect of preparation method on electrochemical property of Mn-doped carbon aerogel for supercapacitor. Curr. Appl. Phys. 2011;11:1–5. doi: 10.1016/j.cap.2010.06.001. DOI
Alex A.S., Lekshmi M.S.A., Sekkar V., John B., Gouri C., Ilangovan S.A. Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells. Polym. Adv. Technol. 2017;28:1945–1950. doi: 10.1002/pat.4085. DOI
Hanzawa Y., Hatori H., Yoshizawa N., Yamada Y. Structural changes in carbon aerogels with high temperaturetreatment. Carbon. 2002;40:575–581. doi: 10.1016/S0008-6223(01)00150-6. DOI
Lai F., Huang Y., Zuo L., Gu H., Miao Y.-E., Liu T. Electrospun nanofiber-supported carbon aerogel as a versatile platform toward asymmetric supercapacitors. J. Mater. Chem. A. 2016;4:15861–15869. doi: 10.1039/C6TA04797A. DOI
Zhang S.Q., Wang J., Shen J., Deng Z.S., Lai Z.Q., Zhou B., Attia S.M., Chen L.Y. The investigation of the adsorption character. Nanostruct. Mater. 1999;11:375–381. doi: 10.1016/S0965-9773(99)00054-9. DOI
Sun W., Du A., Gao G., Shen J., Wu G. Graphene-templated carbon aerogels combining with ultra-high electrical conductivity and ultra-low thermal conductivity. Microporous Mesoporous Mater. 2017;253:71–79. doi: 10.1016/j.micromeso.2017.06.044. DOI
Song P., Cui J., Di J., Liu D., Xu M., Tang B., Zeng Q., Xiong J., Wang C., He Q., et al. Carbon Microtube Aerogel Derived from Kapok Fiber: An Efficient and Recyclable Sorbent for Oils and Organic Solvents. ACS Nano. 2020;14:595–602. doi: 10.1021/acsnano.9b07063. PubMed DOI
Mecklenburg M., Schuchardt A., Mishra J.K., Kaps S., Adelung R., Lotnyk A., Kienle L., Schulte K. Aerographite: Ultra Lightweight, Flexible Nanowall, Carbon Microtube Material with Outstanding Mechanical Performance. Adv. Mater. 2012;24:3486–3490. doi: 10.1002/adma.201200491. PubMed DOI
Ashrafiyan O., Saremi M., Pakseresht A., Ghasali E. Oxidation-Protective Coatings for Carbon-Carbon Composites. In: Pakseresht A.H., editor. Production, Properties, and Applications of High Temperature Coatings. IGI Global; Hershey, PA, USA: 2018. pp. 429–446.
Zeng Y., Xiong X., Guo S., Zhang W.-Z. SiC/SiC–YAG–YSZ oxidation protective coatings for carbon/carbon composites. Corros. Sci. 2013;70:68–73. doi: 10.1016/j.corsci.2013.01.013. DOI
Li C., Zhang X., Wang K., Su F., Chen C.-M., Liu F., Wu Z.-S., Ma Y. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. J. Energy Chem. 2021;54:352–367. doi: 10.1016/j.jechem.2020.05.058. DOI
Gould R.D., Kasap S., Ray A.K. Thin Films. In: Kasap S., Capper P., editors. Springer Handbook of Electronic and Photonic Materials. 2nd ed. Springer; Cham, Switzerland: 2017. pp. 659–711.
Shah S.I., Jaffari G.H., Yassitepe E., Ali B. Evaporation: Processes, Bulk Microstructures, and Mechanical Properties. In: Martin P.M., editor. Handbook of Deposition Technologies for Films and Coatings. 3rd ed. William Andrew Publishing; Boston, MA, USA: 2010. pp. 135–252.
Rossnagel S.M. Thin film deposition with physical vapor deposition and related technologies. J. Vac. Sci. Technol. A. 2003;21:S74–S87. doi: 10.1116/1.1600450. DOI
Lišková J., Slepičková Kasálková N., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. doi: 10.1016/j.msec.2019.02.105. PubMed DOI
Robertson J. Diamond-like amorphous carbon. Mater. Sci. Eng. R. 2002;37:129–281. doi: 10.1016/S0927-796X(02)00005-0. DOI
Voevodin A.A., Donley M.S. Preparation of amorphous diamond-like carbon by pulsed laser deposition: A critical review. Surf. Coat. Technol. 1996;82:199–213. doi: 10.1016/0257-8972(95)02734-3. DOI
Roy R.K., Lee K.-R. Biomedical Applications of Diamond-Like Carbon Coatings: A Review. J. Biomed. Mater. Res. B. 2007;83:72–84. doi: 10.1002/jbm.b.30768. PubMed DOI
Bewilogua K., Hofmann D. History of diamond-like carbon films—From first experiments to worldwide applications. Surf. Coat. Technol. 2014;242:214–225. doi: 10.1016/j.surfcoat.2014.01.031. DOI
Rajak D.K., Kumar A., Behera A., Menezes P.L. Diamond-Like Carbon (DLC) Coatings: Classification, Properties, and Applications. Appl. Sci. 2021;11:4445. doi: 10.3390/app11104445. DOI
Lifshitz Y. Hydrogen-flee amorphous carbon films: Correlation between growth conditions and properties. Diam. Relat. Mater. 1996;5:388–400. doi: 10.1016/0925-9635(95)00445-9. DOI
Robertson J. Hard amorphous (diamond-like) carbons. Prog. Solid State Chem. 1991;21:199–333. doi: 10.1016/0079-6786(91)90002-H. DOI
Lettington A.H. Application of diamond-like carbon thin films. Carbon. 1998;36:555–560. doi: 10.1016/S0008-6223(98)00062-1. DOI
Ohgoe Y., Hirakuri K.K., Saitoh H., Nakahigashi T., Ohtake N., Hirata A., Kanda K., Hiratsuka M., Fukui Y. Classification of DLC films in terms of biological response. Surf. Coat. Technol. 2012;207:350–354. doi: 10.1016/j.surfcoat.2012.07.018. DOI
Hubáček T., Siegel J., Khalili R., Slepičková Kasálková N., Švorčík V. Carbon coatings on polymers and their biocompatibility. Appl. Surf. Sci. 2013;275:43–48. doi: 10.1016/j.apsusc.2013.01.127. DOI
Lifshitz Y. Diamond-like carbon—Present status. Diam. Relat. Mater. 1999;8:1659–1676. doi: 10.1016/S0925-9635(99)00087-4. DOI
Fryčková O., Hubáček T., Slepička P., Švorčík V. Characterization and cytocompatibility of carbon films. J. Nanosci. 2012;12:6724–6730. doi: 10.1166/jnn.2012.4558. PubMed DOI
Schwan J., Ulrich S., Roth H., Ehrhardt H., Silva S.R.P., Robertson J., Samlenski R., Brenn R. Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating. J. Appl. Phys. 1996;79:1416–1422. doi: 10.1063/1.360979. DOI
Schelz S., Richmond T., Kania P., Oelhafen P., Güntherodt H.J. Electronic and atomic structure of evaporated carbon films. Surf. Sci. 1996;359:227–236. doi: 10.1016/0039-6028(96)00364-0. DOI
Chester D.W., Klemic J.F., Stern E., Sigwortha F.J., Klemic K.G. Holey carbon micro-arrays for transmission electron microscopy: A microcontact printing approach. Ultramicroscopy. 2007;107:685–691. doi: 10.1016/j.ultramic.2007.01.004. PubMed DOI
Slepička P., Hurtuková K., Fajstavr D., Slepičková Kasálková N., Lyutakov O., Švorčík V. Carbon-gold nanocomposite induced by unique high energy laser single-shot annealing. Mater. Lett. 2021;301:130256. doi: 10.1016/j.matlet.2021.130256. DOI
BioHastalex modified with silver nanolayers and heat treatment for antibacterial properties
Surface activation of Hastalex by vacuum argon plasma for cytocompatibility enhancement
High-Energy Excimer Annealing of Nanodiamond Layers
Antibacterial Properties of Silver Nanoclusters with Carbon Support on Flexible Polymer
Carbon Transformation Induced by High Energy Excimer Treatment
KrF Laser and Plasma Exposure of PDMS-Carbon Composite and Its Antibacterial Properties