Carbon Nanostructures, Nanolayers, and Their Composites

. 2021 Sep 12 ; 11 (9) : . [epub] 20210912

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34578684

The versatility of the arrangement of C atoms with the formation of different allotropes and phases has led to the discovery of several new structures with unique properties. Carbon nanomaterials are currently very attractive nanomaterials due to their unique physical, chemical, and biological properties. One of these is the development of superconductivity, for example, in graphite intercalated superconductors, single-walled carbon nanotubes, B-doped diamond, etc. Not only various forms of carbon materials but also carbon-related materials have aroused extraordinary theoretical and experimental interest. Hybrid carbon materials are good candidates for high current densities at low applied electric fields due to their negative electron affinity. The right combination of two different nanostructures, CNF or carbon nanotubes and nanoparticles, has led to some very interesting sensors with applications in electrochemical biosensors, biomolecules, and pharmaceutical compounds. Carbon materials have a number of unique properties. In order to increase their potential application and applicability in different industries and under different conditions, they are often combined with other types of material (most often polymers or metals). The resulting composite materials have significantly improved properties.

Zobrazit více v PubMed

Hirsch A. The era of carbon allotropes. Nat. Mater. 2010;9:868–871. doi: 10.1038/nmat2885. PubMed DOI

Skoda M., Dudek I., Jarosz A., Szukiewicz D. Graphene: One Material, Many Possibilities-Application Difficulties in Biological Systems. J. Nanomater. 2014;2014:190. doi: 10.1155/2014/890246. DOI

Harris P.J.F. New Perspectives on the Structure of Graphitic Carbons. Crit. Rev. Solid. 2005;30:235–253. doi: 10.1080/10408430500406265. DOI

Torres L.E.F., Roche S., Charlier J.-C. Introduction to Carbon-Based Nanostructures. 2nd ed. Cambridge University Press; Cambridge, UK: 2020. pp. 1–10.

Khalaj Z., Monajjemi M., Diudea M.V. Main Allotropes of Carbon: A Brief Review. In: Putz M.V., Mirica M.C., editors. Sustainable Nanosystems Development, Properties, and Applications. IGI Global; Hershey, PA, USA: 2017. pp. 185–213.

Slepicka P., Slepickova Kasalkova N., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI

Grausova L., Vacik J., Vorlicek V., Svorcik V., Slepicka P., Bilkova P., Vandrovcova M., Lisa V., Bacakova L. Fullerene C(60) films of continuous and micropatterned mophology as substrates for adhesion and growth of bone cells. Diam. Relat. Mater. 2009;2009:578–586. doi: 10.1016/j.diamond.2008.10.024. DOI

Stankova L., Fraczek-Szczypta A., Blazewicz M., Filova E., Blazewicz S., Lisa V., Bacakova L. Human osteoblast-like MG 63 cells on polysulfone modified with carbon nanotubes or carbon nanohorns. Carbon. 2014;67:578–591. doi: 10.1016/j.carbon.2013.10.031. DOI

Verdanova M., Rezek B., Broz A., Ukraintsev E., Babchenko O., Artemenko A., Izak T., Kromka A., Kalbac M., Hubalek Kalbacova M. Nanocarbon allotropes-graphene and nanocrystalline diamond-promote cell proliferation. Small. 2016;12:2499–2509. doi: 10.1002/smll.201503749. PubMed DOI

Krueger A. Carbon Materials and Nanotechnology. 1st ed. WILEY-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2010. pp. 1–32.

Falcao E.H., Wudl F. Carbon allotropes: Beyond graphite and diamond. J. Chem. Technol. Biot. 2007;82:524–531. doi: 10.1002/jctb.1693. DOI

Pisarciuc C. Structure, Material Properties and Applications of Diamond-Like Materials. Nonconv. Technol. Rev. 2012;XVI:13–18.

Escudeiro A., Wimmer M.A., Polcar T., Cavaleiro A. Tribological behavior of uncoated and DLC-coated CoCr and Ti-alloys in contact with UHMWPE and PEEK counterbodies. Tribology Int. 2015;89:97–104. doi: 10.1016/j.triboint.2015.02.002. DOI

Mengesha A.E., Youan B.B.C. Nanodiamonds for drug delivery systems. In: Narayan R., editor. Diamond-Based Materials for Biomedical Applications. 1st ed. Woodhead Publishing; Cambridge, UK: 2013. pp. 186–205.

Karczemska A. Diamond materials for microfluidic devices. In: Narayan R., editor. Diamond-Based Materials for Biomedical Applications. 1st ed. Woodhead Publishing; Cambridge, UK: 2013. pp. 256–271.

Perez G., Maréchal A., Chicot G., Lefranc P., Jeannin P.O., Eon D., Rouger N. Diamond semiconductor performances in power electronics applications. Diamond Rel. Mater. 2020;110:108154. doi: 10.1016/j.diamond.2020.108154. DOI

Narayan J., Bhaumik A. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air. APL Mater. 2015;3:100702-1–100702-11. doi: 10.1063/1.4932622. DOI

Bhaumik A., Sachan R., Narayan J. High-Temperature Superconductivity in Boron-Doped Q-Carbon. ACS Nano. 2017;11:5351–5357. doi: 10.1021/acsnano.7b01294. PubMed DOI

Kopova I., Rezek B., Stehlik S., Ukraintsev E., Slepickova Kasalkova N., Slepicka P., Potocky S., Bacakova L. Growth of Primary Human Osteoblasts on Plasma-Treated and Nanodiamond-Coated PTFE Polymer Foils. Phys. Status Solidi B. 2018;255:1700595. doi: 10.1002/pssb.201700595. DOI

Naeayan R.J., Boehm R.D., Sumant A.V. Introduction to medical applications of diamond particles and surfaces. In: Narayan R., editor. Diamond-Based Materials for Biomedical Applications. 1st ed. Volume 1. Woodhead Publishing Limited; Cambridge, UK: 2013. pp. 3–24.

Catledge S.A., Thomas V., Vohra Y.K. Nanostructured diamond coatings for orthopaedic applications. In: Narayan R., editor. Diamond-Based Materials for Biomedical Applications. 1st ed. Volume 5. Woodhead Publishing Limited; Cambridge, UK: 2013. pp. 105–150. PubMed PMC

Stoller M.D., Park S., Zhu Y., An J., Ruoff R.S. Graphene-Based Ultracapacitors. Nano Lett. 2008;8:3498–3502. doi: 10.1021/nl802558y. PubMed DOI

Gómez-Navarro C., Weitz T.R., Bittner A.M., Scolari M., Mews A., Burghard M., Kern K. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Lett. 2007;7:3499–3503. doi: 10.1021/nl072090c. PubMed DOI

Geim A.K. Graphene: Status and Prospects. Science. 2009;324:1530–1534. doi: 10.1126/science.1158877. PubMed DOI

Allen M.J., Tung V.C., Kaner R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010;110:132–145. doi: 10.1021/cr900070d. PubMed DOI

Kiew S.F., Kiew L.F., Lee H.B., Imae T., Chung L.Y. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J. Control. Release. 2016;226:217–228. doi: 10.1016/j.jconrel.2016.02.015. PubMed DOI

Pacakova B., Verhagen T., Bousa M., Hübner U., Vejpravova J., Kalbac M., Frank O. Mastering the Wrinkling of Selfsupported Graphene. Sci. Rep. 2017;7:10003. doi: 10.1038/s41598-017-10153-z. PubMed DOI PMC

Akinwande D., Brennan C.J., Bunch J.S., Egberts P., Felts J.R., Gao H., Huang R., Kim J.S., Li T., Li X., et al. A review on mechanics and mechanical properties of 2D materials-Graphene and beyond. Extrem Mech. Lett. 2017;13:42–77. doi: 10.1016/j.eml.2017.01.008. DOI

Shi W., Zhu J., Sim D.H., Tay Y.Y., Lu Z., Zhang Y., Sharma Y., Srinivasan M., Zhang H., Hng H.H., et al. Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 2011;21:3422–3427. doi: 10.1039/c0jm03175e. DOI

Anju M., Renuka N.K. Graphene-dye hybrid optical sensors. Nano-Struct. Nano-Objects. 2019;17:194–217.

Shin S.R., Li Y.-C., Jang H.L., Khoshakhlagh P., Akbari M., Nasajpour A., Zhang Y.S., Tamayol A., Khademhosseini A. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev. 2016;105:255–274. doi: 10.1016/j.addr.2016.03.007. PubMed DOI PMC

Bai R.G., Ninan N., Muthoosamy K., Manickam S. Graphene: A versatile platform for nanotheranostics and tissue engineering. Prog. Mater. Sci. 2018;91:24–69.

Kenry, Lee W.C., Loh K.P., Lim C.T. When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials. 2018;155:236–250. doi: 10.1016/j.biomaterials.2017.10.004. PubMed DOI

Pinto A.M., Goncalves I.C., Magalhaes F.D. Graphene-based materials biocompatibility: A review. Colloid Surface B. 2013;111:188–202. doi: 10.1016/j.colsurfb.2013.05.022. PubMed DOI

Zhang Y., Nayak T.R., Hong H., Cai W. Graphene: A versatile nanoplatform for biomedical applications. Nanoscale. 2012;4:3833–3842. doi: 10.1039/c2nr31040f. PubMed DOI PMC

Li N., Cheng Y., Song Q., Jiang Z., Tang M., Cheng G. Graphene meets biology. Chin. Sci. Bull. 2014;59:1341–1354. doi: 10.1007/s11434-014-0158-0. DOI

Bacon M., Bradley S.J., Nann T. Graphene Quantum Dots. Part. Part. Syst. Charact. 2014;31:415–428. doi: 10.1002/ppsc.201300252. DOI

Paul R., Dai L. Interfacial aspects of carbon composites. Compos. Interfaces. 2018;25:539–605. doi: 10.1080/09276440.2018.1439632. DOI

Du X., Zhou H., Sun W., Liu H.-Y., Zhou G., Zhou H., Mai Y.-W. Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Compos. Sci. Technol. 2017;140:123–133. doi: 10.1016/j.compscitech.2016.12.028. DOI

Slepička P., Slepičková Kasálková N., Pinkner A., Sajdl P., Kolská Z., Švorčík V. Plasma induced cytocompatibility of stabilized poly-L-lactic acid doped with graphene nanoplatelets. React. Funct. Polym. 2018;131:266–275. doi: 10.1016/j.reactfunctpolym.2018.08.006. DOI

Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI

Paul R., Gayen R.N., Biswas S., Venkataprasad Bhat S., Bhunia R. Enhanced UV detection by transparent graphene oxide/ZnO composite thin films. RSC Adv. 2016;6:61661–61672. doi: 10.1039/C6RA05039E. DOI

Fajstavr D., Neznalova K., Svorcik V., Slepicka P. LIPSS Structures Induced on Graphene-Polystyrene Composite. Materials. 2019;12:3460. doi: 10.3390/ma12213460. PubMed DOI PMC

Slepičková Kasálková N., Buřičová L., Slepička P., Kolská Z., Švorčík V. Carbon nanolayers deposited on laser treated PLLA film. Chem. Listy. 2015;109:879–884.

Slepička P., Neznalová K., Fajstavr D., Švorčík V. Nanostructuring of honeycomb-like polystyrene with excimer laser. Prog. Org. Coat. 2020;145:105670. doi: 10.1016/j.porgcoat.2020.105670. DOI

Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI

Neděla O., Slepička P., Sajdl P., Veselý M., Švorčík V. Surface analysis of ripple pattern on PS and PEN induced with ring-shaped mask due to KrF laser treatment. Surf. Interface Anal. 2017;49:25–33. doi: 10.1002/sia.6054. DOI

Zhao B., Zhao C., Li R., Mahdi Hamidinejad S., Park C.B. Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly (vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interfaces. 2017;9:20873–20884. doi: 10.1021/acsami.7b04935. PubMed DOI

Tuantranont A. Nanomaterials for sensing applications: Introduction and perspectives. In: Tuantranont A., editor. Applications of Nanomaterials in Sensors and Diagnosis. 1st ed. Volume 14. Springer; Berlin/Heidelberg, Germany: 2013. p. 1.

Das S., Wajid A.S., Shelburne J.L., Liao Y.-C., Green M.J. Localized In situ Polymerization on Graphene Surfaces for Stabilized Graphene Dispersions. ACS Appl. Mater. Interfaces. 2011;3:1844–1851. doi: 10.1021/am1011436. PubMed DOI

Potts J.R., Dreyer D.R., Bielawski C.W., Ruoff R.S. Graphene-based polymer nanocomposites. Polymer. 2011;52:5–25. doi: 10.1016/j.polymer.2010.11.042. DOI

Wajid A.S., Das S., Irin F., Tanvir Ahmed H.S., Shelburne J.L., Parviz D., Fullerton R.J., Jankowski A.F., Hedden R.C., Green M.J. Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon. 2012;50:526–534. doi: 10.1016/j.carbon.2011.09.008. DOI

Crevillen A.G., Escarpa A., García C.D., editors. Carbon-Based Nanomaterials in Analytical Chemistry. The Royal Society of Chemistry; Cambridge, UK: 2019. Carbon-based nanomaterials in Analytical Chemistry; pp. 1–36.

Kim K., Abdala A.A., Macosko C.W. Graphene/Polymer Nanocomposites. Macromolecules. 2010;43:6515–6530. doi: 10.1021/ma100572e. DOI

Tiwari S.K., Kumar V., Huczko A., Oraon R., Adhikari A.D., Nayak G.C. Magical Allotropes of Carbon: Prospects and Applications. Crit. Rev. Solid State. 2016;41:257–317. doi: 10.1080/10408436.2015.1127206. DOI

Mohammad N.S. Understanding quantum confinement in nanowires: Basics, applications and possible laws. J. Phys. Condens. Matter. 2014;26:1–28. doi: 10.1088/0953-8984/26/42/423202. PubMed DOI

Zhu S., Zhang J., Qiao C., Tang S., Li Y., Yuan W., Li B., Tian L., Liu F., Hu R., et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011;47:6858–6860. doi: 10.1039/c1cc11122a. PubMed DOI

Pan D., Guo L., Zhang J., Xi C., Xue Q., Huang H., Li J., Zhang Z., Yu W., Chen Z., et al. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 2012;22:3314–3318. doi: 10.1039/c2jm16005f. DOI

Dong Y., Chen C., Zheng X., Gao L., Cui Z., Yang H., Guo C., Chi H., Li C.M. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem. 2012;22:8764–8766. doi: 10.1039/c2jm30658a. DOI

Zhu S., Zhang J., Tang S., Qiao C., Wang L., Wang H., Liu X., Li B., Li Y., Yu W., et al. Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications. Adv. Funct. Mater. 2012;22:4732–4740. doi: 10.1002/adfm.201201499. DOI

Javanbakht S., Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater. Sci. Eng. C. 2018;87:50–59. doi: 10.1016/j.msec.2018.02.010. PubMed DOI

Vilela C., Pinto R.J.B., Pinto S., Marques P., Sofia da Rocha Freire Barros A.S.C. Polysaccharides-Based Hybrids with Graphene. In: Navard P., editor. Polysaccharide Based Hybrid Materials Metals and Metal Oxides, Graphene and Carbon Nanotubes. 1st ed. Springer Nature Switzerland; Cham, Switzerland: 2018. pp. 69–93.

Li H., Zhang H. The isolated-pentagon rule and nice substructures infullerens. Ars Math. Contemp. 2018;15:487–497. doi: 10.26493/1855-3974.1359.b33. DOI

Hernández E., Ordejón P., Terrones H. Fullerene growth and the role of nonclassical isomers. Phys. Rev. B. 2001;63:193403.1–193403.4. doi: 10.1103/PhysRevB.63.193403. DOI

Fujine K., Ishida T., Aihara J. Localization energies for graphite and fullerenes. Phys. Chem. Chem. Phys. 2001;3:3917–3919. doi: 10.1039/b103886a. DOI

Mojica M., Alonso J.A., Méndez F. Synthesis of fullerenes. J. Phys. Org. Chem. 2013;26:526–539. doi: 10.1002/poc.3121. DOI

Vandrovcova M., Vacik J., Svorcik V., Slepicka P., Kasalkova N., Vorlicek V., Lavrentiev V., Vosecek V., Grausova L., Lisa V., et al. Fullerene C60 and hybrid C60/Ti films as substrates for adhesion and growth of bone cells. Phys. Status Solidi (a) 2008;205:2252–2261. doi: 10.1002/pssa.200879730. DOI

Kawase T., Tanaka K., Seirai Y., Shiono N., Oda M. Complexation of Carbon Nanorings with Fullerenes: Supramolecular Dynamics and Structural Tuning for a Fullerene Sensor. Angew. Chem. Int. Ed. 2003;42:5597–5600. doi: 10.1002/anie.200352033. PubMed DOI

Levi N., Hantgan R.R., Lively M.O., Carroll D.L., Prasad G.L. C60-Fullerenes: Detection of intracellular photoluminescence and lack of cytotoxic effects. J. Nanobiotechnol. 2006;4:14. doi: 10.1186/1477-3155-4-14. PubMed DOI PMC

Yamakoshi Y., Umezawa N., Ryu A., Arakane K., Miyata N., Goda Y., Masumizu T., Nagano T. Active Oxygen Species Generated from Photoexcited Fullerene (C60) as Potential Medicines:  O2-• versus 1O2. J. Am. Chem. Soc. 2003;125:12803–12809. doi: 10.1021/ja0355574. PubMed DOI

Tang Y.J., Ashcroft J.M., Chen D., Min G., Kim C.-H., Murkhejee B., Larabell C., Keasling J.D., Chen F.F. Charge-asociated effects of fullerene derivatives on microbial structural integrity and central metabolism. Nano Lett. 2007;7:754–760. doi: 10.1021/nl063020t. PubMed DOI

Shin S.E., Choi H.J., Hwang J.Y., Bae D.H. Strengthening behavior of carbon/metal nanocomposites. Sci. Rep. 2015;6:16114. doi: 10.1038/srep16114. PubMed DOI PMC

Tjong S.C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced both carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R. 2013;74:281–350. doi: 10.1016/j.mser.2013.08.001. DOI

Robles-Hernandez F.C., Calderon H.A. Nanostructured metal composites reinforced with fullerenes. JOM. 2010;62:63–68. doi: 10.1007/s11837-010-0034-6. DOI

Shpilevsky E.M., Penyazkov O.G., Filatov S.A., Shilagardi G., Tuvshintur P., Timur-Bator D., Ulam-Orgikh D. Modification of materials by carbon nanoparticles. Solid State Phenom. 2018;271:70–75. doi: 10.4028/www.scientific.net/SSP.271.70. DOI

Shpilevsky E.M., Filatov S.A., Shilagardi G., Ulam-Orgikh D., Tuvshintur P., Otgonbaatar M. Properties of Metal-Fullerene Composites. Solid State Phenom. 2018;288:124–129. doi: 10.4028/www.scientific.net/SSP.288.124. DOI

Nasibulin A.G., Pikhitsa P.V., Jiang H., Brown D.P., Krasheninnikov A.V., Anisimov A.S., Queipo P., Moisala A., Gonzalez D., Lientschnig G., et al. A novel hybrid carbon material. Nat. Nanotechnol. 2007;2:156–161. doi: 10.1038/nnano.2007.37. PubMed DOI

Savi P., Giorcelli M., Quaranta S. Multi-Walled Carbon Nanotubes Composites for Microwave Absorbing Applications. Appl. Sci. 2019;9:851. doi: 10.3390/app9050851. DOI

Scarselli M., Castrucci P., De Crescenzi M. Electronic and optoelectronic nano-devices based on carbon nanotubes. J. Phys. Condens. Matter. 2012;24:313202. doi: 10.1088/0953-8984/24/31/313202. PubMed DOI

Gupta S., Murthy C.N., Ratna Prabha C. Recent advances in carbon nanotube based electrochemical biosensors. Int. J. Biol. Macromol. 2018;108:687–703. doi: 10.1016/j.ijbiomac.2017.12.038. PubMed DOI

Gately R.D. Filling of carbon nanotubes and nanofibres. Beilstein J. Nanotechnol. 2015;6:508–516. doi: 10.3762/bjnano.6.53. PubMed DOI PMC

Slepička P., Malá Z., Rimpelová S., Slepičková Kasálková N., Švorčík V. Plasma treatment of the surface of poly(hydroxybutyrate) foil and non-woven fabric and assessment of the biological properties. React. Funct. Polym. 2015;95:71–79. doi: 10.1016/j.reactfunctpolym.2015.08.010. DOI

Slepičková Kasálková N., Váchová K., Slepička P., Švorčík V. Surface Plasma Modification and Characterization of Poly(ethylene-alt-tetrafluoroethylene) Chem. Listy. 2016;110:279–283.

Kolská Z., Řezníčková A., Nagyová M., Slepičková Kasálková N., Sajdl P., Slepička P., Švorčík V. Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym. Degrad. Stab. 2014;101:1–9. doi: 10.1016/j.polymdegradstab.2014.01.024. DOI

Slepičková Kasálková N., Slepička P., Bačáková L., Sajd P., Švorčík V. Biocompatibility of plasma nanostructured biopolymers. Nucl. Instrum. Methods B. 2013;307:642–646. doi: 10.1016/j.nimb.2012.10.035. DOI

Tran P.A., Zhang L., Webster T.J. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv. Drug Deliv. Rev. 2009;61:1097–1114. doi: 10.1016/j.addr.2009.07.010. PubMed DOI

Ali M.S., French T.A., Hastings G.W., Rae T., Rushton N., Ross E.R.S., Wynn-Jones C.H. Carbon fibre composite bone plates. J. Bone Jt. Surg. 1990;72:586–591. doi: 10.1302/0301-620X.72B4.2380209. PubMed DOI

Pimberton D.J., McKibbin B., Savage R., Tayton K., Stuart D. Carbon-Fibre Reinforced Plates for Problem Fractures. J. Bone Jt. Surg. 1992;74:88–92. doi: 10.1302/0301-620X.74B1.1732273. PubMed DOI

Dikbas I., Tanalp J. An Overview of Clinical Studies on Fiber Post Systems. Sci. World J. 2013;2013:171380. doi: 10.1155/2013/171380. PubMed DOI PMC

Huang Y., Miao Y., Ji S., Tjiu W., Liu T. Electrospun Carbon Nanofibers Decorated with Ag–Pt Bimetallic Nanoparticles for Selective Detection of Dopamine. ACS Appl. Mater. Interfaces. 2014;6:12449–12456. doi: 10.1021/am502344p. PubMed DOI

Tavangarian F., Li Y. Carbon nanostructures as nerve scaffolds for repairing large gaps in severed nerves. Ceram. Int. 2012;38:6075–6090. doi: 10.1016/j.ceramint.2012.05.038. DOI

Petersen R. Carbon Fiber Biocompatibility for Implants. Fibers. 2016;4:1. doi: 10.3390/fib4010001. PubMed DOI PMC

Callister W.D. Materials Science and Engineering. 4th ed. John Wiley & Sons; New York, NY, USA: 1997. p. 2.

Chawla K.K. Composite Materials. 2nd ed. Springer; New York, NY, USA: 1998. pp. 252–277.

Berglund L.A. Thermoplastic Resins. In: Peters S.T., editor. Handbook of Composites. 2nd ed. Chapman and Hall; New York, NY, USA: 1998. p. 122.

Thostenson E.T., Ren Z., Chou T.-W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001;61:1899–1912. doi: 10.1016/S0266-3538(01)00094-X. DOI

Asaro L., Villanueva S., Alvarez V., Manfredi L.B., Rodríguez E.S. Fire performance of composites made from carbon/ phenolic prepregs with nanoclays. J. Compos. Mater. 2017;51:3515–3524. doi: 10.1177/0021998316688772. DOI

Chen X., Xia J., Peng J., Li W., Xie S. Carbon-nanotube metal-matrix composites prepared by electroless plating. Compos. Sci. Technol. 2000;60:301–306. doi: 10.1016/S0266-3538(99)00127-X. DOI

Chung D.D.L. Carbon Fiber Composites. Volume 7. Butterworth-Heinemann; Newton, MA, USA: 1994. pp. 125–144.

Rawal S.P. Metal-matrix composites for space applications. JOM. 2001;53:14–17. doi: 10.1007/s11837-001-0139-z. DOI

Harris P.J.F. Carbon nanotube composites. Int. Mater. Rev. 2004;49:31–43. doi: 10.1179/095066004225010505. DOI

Gullapalli S., Wong M.S. Nanotechnology: A guide to nano-objects. Chem. Eng. Prog. 2011;107:28–32.

Maa P.-C., Siddiqui N.A., Marom G., Kim J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A. 2010;41:1345–1367. doi: 10.1016/j.compositesa.2010.07.003. DOI

Xiea X.-L., Maia Y.-W., Zhou X.-P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. R-Rep. 2005;49:89–112. doi: 10.1016/j.mser.2005.04.002. DOI

Shirvanimoghaddam K., Abolhasani M.M., Polisetti B., Naebe M. Periodical patterning of a fully tailored nanocarbon on CNT for fabrication of thermoplastic composites. Compos. Part A. 2018;107:304–314. doi: 10.1016/j.compositesa.2018.01.015. DOI

Seyhan A.T., Tanoglu M., Schulte K. Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Eng. Fract. Mech. 2008;75:5151–5516. doi: 10.1016/j.engfracmech.2008.08.003. DOI

Roy S., Petrova R.S., Mitra S. Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites. Nanotechnol. Rev. 2018;7:475–485. doi: 10.1515/ntrev-2018-0068. PubMed DOI PMC

Rafiee R., Pourazizi R. Influence of CNT functionalization on the interphase region between CNT and polymer. Comput. Mater. Sci. 2015;96:573–578. doi: 10.1016/j.commatsci.2014.03.056. DOI

Shirvanimoghaddam K., Balaji K.V., Yadav R., Zabihi O., Ahmadi M., Adetunji P., Naebe M. Balancing the toughness and strength in polypropylene composites. Compos. Part B. 2021;223:109121. doi: 10.1016/j.compositesb.2021.109121. DOI

Ahmadabadi V.G., Shirvanimoghaddam K., Kerr R., Showkath N., Naebe M. Structure-rate performance relationship in Si nanoparticles-carbon nanofiber composite as flexible anode for lithium-ion batteries. Electrochim. Acta. 2020;330:135232. doi: 10.1016/j.electacta.2019.135232. DOI

Mykhailiv O., Zubyk H., Plonska-Brzezinska M.E. Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorg. Chim. Acta. 2017;468:49–66. doi: 10.1016/j.ica.2017.07.021. DOI

Aref A.R., Chen S.-W., Rajagopalan R., Randall C. Bimodal porous carbon cathode and prelithiated coalesced carbon onion anode for ultrahigh power energy efficient lithium ion capacitors. Carbon. 2019;152:89–97. doi: 10.1016/j.carbon.2019.05.074. DOI

Hou S., Chung D.-H., Lin T. High-yield synthesis of carbon nano-onions in counterflow diffusion flames. Carbon. 2009;47:938–947. doi: 10.1016/j.carbon.2008.11.054. DOI

Chung D.-H., Lin T.-H., Hou S.S. Flame synthesis of carbon nano-onions enhanced by acoustic modulation. Nanotechnology. 2010;21:435604. doi: 10.1088/0957-4484/21/43/435604. PubMed DOI

Chen X.H., Deng F.M., Wang J.X., Yang H.S., Wu G.T., Zhang X.B., Peng J.C., Li W.Z. New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chem. Phys. Lett. 2001;336:201–204. doi: 10.1016/S0009-2614(01)00085-9. DOI

Camisasca A., Giordaniac S. Carbon nano-onions in biomedical applications: Promising theranostic agents. Inorg. Chim. Acta. 2017;468:67–76. doi: 10.1016/j.ica.2017.06.009. DOI

Bobrowska D.M., Brzezinski K., Plonska-Brzezinska M.E. PEGylated Carbon Nano-onions Composite as a Carrier of Polyphenolic Compounds: A Promising System for Medical Applications and Biological Sensors. Colloid Interface Sci. Commun. 2017;21:6–9. doi: 10.1016/j.colcom.2017.10.004. DOI

Krokosz A., Lichota A., Nowak K.E., Grebowski J. Carbon nanoparticles as possible radioprotectors in biological systems. Radiat. Phys. Chem. 2016;128:143–150. doi: 10.1016/j.radphyschem.2016.07.006. DOI

Xu B., Yue S., Qiao N., Chu M., Wei G. Easy preparation of nitrogen-doped porous carbon nanospheres and their application in supercapacitors. Mater. Lett. 2014;131:49–52. doi: 10.1016/j.matlet.2014.05.164. DOI

Choi C.H., Park S.H., Chung M.W., Woo S.I. Easy and controlled synthesis of nitrogen-doped carbon. Carbon. 2013;55:98–107. doi: 10.1016/j.carbon.2012.12.014. DOI

Švorčík V., Makajová Z., Slepičková Kasálková N., Kolská Z., Žáková P., Karpíšková J., Stibor I., Slepička P. Cytocompatibility of polymers grafted by activated carbon nano-particles. Carbon. 2014;69:361–371. doi: 10.1016/j.carbon.2013.12.037. DOI

Žáková P., Slepičková Kasálková N., Kolská Z., Leitner J., Karpíšková J., Stibor I., Slepička P., Švorčík V. Cytocompatibility of amine functionalized carbon nanoparticles grafted on polyethylene. Mater. Sci. Eng. C. 2016;60:294–401. doi: 10.1016/j.msec.2015.11.058. PubMed DOI

Žáková P., Slepičková Kasálková N., Slepička P., Kolská Z., Karpíšková J., Stibor I., Švorčík V. Cytocompatibility of polyethylene grafted with triethylenetetramine functionalized carbon nanoparticles. Appl. Surf. Sci. 2017;422:809–816. doi: 10.1016/j.apsusc.2017.06.089. PubMed DOI

Haque A., Narayan J. Electron field emission from Q-carbon. Diam. Relat. Mater. 2018;86:71–78. doi: 10.1016/j.diamond.2018.04.008. DOI

Yoshinaka H., Inubushi S., Wakita T., Yokoya T., Muraoka Y. Formation of Q-carbon by adjusting sp3 content in diamond-like carbon films and laser energy density of pulsed laser annealing. Carbon. 2020;167:504–511. doi: 10.1016/j.carbon.2020.06.025. DOI

Narayan J., Bhaumik A. Q-carbon discovery and formation of single-crystal diamond nano- and microneedles and thin films. Mater. Res. Lett. 2016;4:118–126. doi: 10.1080/21663831.2015.1126865. DOI

Sachan R., Bhaumik A., Pant P., Prater J., Narayan J. Diamond film growth by HFCVD on Q-carbon seeded substrate. Carbon. 2019;141:182–189. doi: 10.1016/j.carbon.2018.09.058. DOI

Narayan J., Gupta S., Bhaumik A., Sachan R., Cellini F., Riedo E. Q-carbon harder than diamond. MRS Commun. 2018;8:428–436. doi: 10.1557/mrc.2018.35. DOI

Narayan J., Bhaumik A. Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 2015;118:215303-1–215303-12. doi: 10.1063/1.4936595. DOI

Narayan J., Bhaumik A., Gupta S., Haque A., Sachan R. Progress in Q-carbon and related materials with extraordinary properties. Mater. Res. Lett. 2018;6:353–364. doi: 10.1080/21663831.2018.1458753. DOI

Bhaumik A., Nori S., Sachan R., Gupta S., Kumar D., Majumdar A.K., Narayan J. Room-Temperature Ferromagnetism and Extraordinary Hall Effect in Nanostructured Q-Carbon: Implications for Potential Spintronic Devices. ACS Appl. Nano Mater. 2018;1:807–819. doi: 10.1021/acsanm.7b00253. DOI

Sachan R., Gupta S., Narayan J. Nonequilibrium Structural Evolution of Q-Carbon and Interfaces. ACS Appl. Mater. Interfaces. 2020;12:1330–1338. doi: 10.1021/acsami.9b17428. PubMed DOI

Bhaumik A., Sachan R., Narayan J. A novel high-temperature carbon-based superconductor: B-doped Q-carbon. J. Appl. Phys. 2017;122:045301-2–045301-15. doi: 10.1063/1.4994787. DOI

Haque A., Pant P., Narayan J. Large-area diamond thin film on Q-carbon coated crystalline sapphire by HFCVD. J. Cryst. Growth. 2018;504:17–25. doi: 10.1016/j.jcrysgro.2018.09.036. DOI

Gupta S., Sachan R., Bhaumik A., Narayan J. Enhanced mechanical properties of Q-carbon nanocomposites by nanosecond pulsed laser annealing. Nanotechnology. 2018;29:45LT02. doi: 10.1088/1361-6528/aadd75. PubMed DOI

Joshi P., Gupta S., Haque A., Narayan J. Fabrication of ultrahard Q-carbon nanocoatings on AISI 304 and 316 stainless steels and subsequent formation of high-quality diamond films. Diam. Relat. Mater. 2020;104:107742. doi: 10.1016/j.diamond.2020.107742. DOI

Lee Y.J., Jung J.C., Park S., Seo J.G., Baeck S.-H., Yoon J.R., Yi J., Song I.K. Effect of preparation method on electrochemical property of Mn-doped carbon aerogel for supercapacitor. Curr. Appl. Phys. 2011;11:1–5. doi: 10.1016/j.cap.2010.06.001. DOI

Alex A.S., Lekshmi M.S.A., Sekkar V., John B., Gouri C., Ilangovan S.A. Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells. Polym. Adv. Technol. 2017;28:1945–1950. doi: 10.1002/pat.4085. DOI

Hanzawa Y., Hatori H., Yoshizawa N., Yamada Y. Structural changes in carbon aerogels with high temperaturetreatment. Carbon. 2002;40:575–581. doi: 10.1016/S0008-6223(01)00150-6. DOI

Lai F., Huang Y., Zuo L., Gu H., Miao Y.-E., Liu T. Electrospun nanofiber-supported carbon aerogel as a versatile platform toward asymmetric supercapacitors. J. Mater. Chem. A. 2016;4:15861–15869. doi: 10.1039/C6TA04797A. DOI

Zhang S.Q., Wang J., Shen J., Deng Z.S., Lai Z.Q., Zhou B., Attia S.M., Chen L.Y. The investigation of the adsorption character. Nanostruct. Mater. 1999;11:375–381. doi: 10.1016/S0965-9773(99)00054-9. DOI

Sun W., Du A., Gao G., Shen J., Wu G. Graphene-templated carbon aerogels combining with ultra-high electrical conductivity and ultra-low thermal conductivity. Microporous Mesoporous Mater. 2017;253:71–79. doi: 10.1016/j.micromeso.2017.06.044. DOI

Song P., Cui J., Di J., Liu D., Xu M., Tang B., Zeng Q., Xiong J., Wang C., He Q., et al. Carbon Microtube Aerogel Derived from Kapok Fiber: An Efficient and Recyclable Sorbent for Oils and Organic Solvents. ACS Nano. 2020;14:595–602. doi: 10.1021/acsnano.9b07063. PubMed DOI

Mecklenburg M., Schuchardt A., Mishra J.K., Kaps S., Adelung R., Lotnyk A., Kienle L., Schulte K. Aerographite: Ultra Lightweight, Flexible Nanowall, Carbon Microtube Material with Outstanding Mechanical Performance. Adv. Mater. 2012;24:3486–3490. doi: 10.1002/adma.201200491. PubMed DOI

Ashrafiyan O., Saremi M., Pakseresht A., Ghasali E. Oxidation-Protective Coatings for Carbon-Carbon Composites. In: Pakseresht A.H., editor. Production, Properties, and Applications of High Temperature Coatings. IGI Global; Hershey, PA, USA: 2018. pp. 429–446.

Zeng Y., Xiong X., Guo S., Zhang W.-Z. SiC/SiC–YAG–YSZ oxidation protective coatings for carbon/carbon composites. Corros. Sci. 2013;70:68–73. doi: 10.1016/j.corsci.2013.01.013. DOI

Li C., Zhang X., Wang K., Su F., Chen C.-M., Liu F., Wu Z.-S., Ma Y. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. J. Energy Chem. 2021;54:352–367. doi: 10.1016/j.jechem.2020.05.058. DOI

Gould R.D., Kasap S., Ray A.K. Thin Films. In: Kasap S., Capper P., editors. Springer Handbook of Electronic and Photonic Materials. 2nd ed. Springer; Cham, Switzerland: 2017. pp. 659–711.

Shah S.I., Jaffari G.H., Yassitepe E., Ali B. Evaporation: Processes, Bulk Microstructures, and Mechanical Properties. In: Martin P.M., editor. Handbook of Deposition Technologies for Films and Coatings. 3rd ed. William Andrew Publishing; Boston, MA, USA: 2010. pp. 135–252.

Rossnagel S.M. Thin film deposition with physical vapor deposition and related technologies. J. Vac. Sci. Technol. A. 2003;21:S74–S87. doi: 10.1116/1.1600450. DOI

Lišková J., Slepičková Kasálková N., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. doi: 10.1016/j.msec.2019.02.105. PubMed DOI

Robertson J. Diamond-like amorphous carbon. Mater. Sci. Eng. R. 2002;37:129–281. doi: 10.1016/S0927-796X(02)00005-0. DOI

Voevodin A.A., Donley M.S. Preparation of amorphous diamond-like carbon by pulsed laser deposition: A critical review. Surf. Coat. Technol. 1996;82:199–213. doi: 10.1016/0257-8972(95)02734-3. DOI

Roy R.K., Lee K.-R. Biomedical Applications of Diamond-Like Carbon Coatings: A Review. J. Biomed. Mater. Res. B. 2007;83:72–84. doi: 10.1002/jbm.b.30768. PubMed DOI

Bewilogua K., Hofmann D. History of diamond-like carbon films—From first experiments to worldwide applications. Surf. Coat. Technol. 2014;242:214–225. doi: 10.1016/j.surfcoat.2014.01.031. DOI

Rajak D.K., Kumar A., Behera A., Menezes P.L. Diamond-Like Carbon (DLC) Coatings: Classification, Properties, and Applications. Appl. Sci. 2021;11:4445. doi: 10.3390/app11104445. DOI

Lifshitz Y. Hydrogen-flee amorphous carbon films: Correlation between growth conditions and properties. Diam. Relat. Mater. 1996;5:388–400. doi: 10.1016/0925-9635(95)00445-9. DOI

Robertson J. Hard amorphous (diamond-like) carbons. Prog. Solid State Chem. 1991;21:199–333. doi: 10.1016/0079-6786(91)90002-H. DOI

Lettington A.H. Application of diamond-like carbon thin films. Carbon. 1998;36:555–560. doi: 10.1016/S0008-6223(98)00062-1. DOI

Ohgoe Y., Hirakuri K.K., Saitoh H., Nakahigashi T., Ohtake N., Hirata A., Kanda K., Hiratsuka M., Fukui Y. Classification of DLC films in terms of biological response. Surf. Coat. Technol. 2012;207:350–354. doi: 10.1016/j.surfcoat.2012.07.018. DOI

Hubáček T., Siegel J., Khalili R., Slepičková Kasálková N., Švorčík V. Carbon coatings on polymers and their biocompatibility. Appl. Surf. Sci. 2013;275:43–48. doi: 10.1016/j.apsusc.2013.01.127. DOI

Lifshitz Y. Diamond-like carbon—Present status. Diam. Relat. Mater. 1999;8:1659–1676. doi: 10.1016/S0925-9635(99)00087-4. DOI

Fryčková O., Hubáček T., Slepička P., Švorčík V. Characterization and cytocompatibility of carbon films. J. Nanosci. 2012;12:6724–6730. doi: 10.1166/jnn.2012.4558. PubMed DOI

Schwan J., Ulrich S., Roth H., Ehrhardt H., Silva S.R.P., Robertson J., Samlenski R., Brenn R. Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating. J. Appl. Phys. 1996;79:1416–1422. doi: 10.1063/1.360979. DOI

Schelz S., Richmond T., Kania P., Oelhafen P., Güntherodt H.J. Electronic and atomic structure of evaporated carbon films. Surf. Sci. 1996;359:227–236. doi: 10.1016/0039-6028(96)00364-0. DOI

Chester D.W., Klemic J.F., Stern E., Sigwortha F.J., Klemic K.G. Holey carbon micro-arrays for transmission electron microscopy: A microcontact printing approach. Ultramicroscopy. 2007;107:685–691. doi: 10.1016/j.ultramic.2007.01.004. PubMed DOI

Slepička P., Hurtuková K., Fajstavr D., Slepičková Kasálková N., Lyutakov O., Švorčík V. Carbon-gold nanocomposite induced by unique high energy laser single-shot annealing. Mater. Lett. 2021;301:130256. doi: 10.1016/j.matlet.2021.130256. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...