Surface activation of Hastalex by vacuum argon plasma for cytocompatibility enhancement

. 2024 Mar 30 ; 10 (6) : e27816. [epub] 20240311

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38510028
Odkazy

PubMed 38510028
PubMed Central PMC10951612
DOI 10.1016/j.heliyon.2024.e27816
PII: S2405-8440(24)03847-7
Knihovny.cz E-zdroje

Here, we present surface analysis and biocompatibility evaluation of novel composite material based on graphene oxide traded as Hastalex. First, the surface morphology and elemental analysis of the pristine material were examined by atomic force and scanning electron microscopies, and by energy-dispersive and X-ray photoelectron spectroscopies, respectively. The Hastalex surface was then modified by plasma (3 and 8 W with exposure times up to 240 s), the impact of which on the material surface wettability and morphology was further evaluated. In addition, the material aging was studied at room and elevated temperatures. Significant changes in surface roughness, morphology, and area were detected at the nanometer scale after plasma exposure. An increase in oxygen content due to the plasma exposure was observed both for 3 and 8 W. The plasma treatment had an outstanding effect on the cytocompatibility of Hastalex foil treated at both input powers of 3 and 8 W. The cell number of human MRC-5 fibroblasts on Hastalex foils exposed to plasma increased significantly compared to pristine Hastalex and even to tissue culture polystyrene. The plasma exposure also affected the fibroblasts' cell growth and shape.

Zobrazit více v PubMed

Sheehan J.E., Buesking K., Sullivan B. Carbon-carbon composites. Annu. Rev. Mater. Sci. 1994;24(1):19–44.

Zhu C., Mu X., van Aken P.A., Maier J., Yu Y. Fast Li storage in MoS2‐graphene‐carbon nanotube nanocomposites: advantageous functional integration of 0D, 1D, and 2D nanostructures. Adv. Energy Mater. 2015;5(4)

Zhang L., Aboagye A., Kelkar A., Lai C., Fong H. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 2014;49:463–480.

Magesa F., Wu Y., Tian Y., Vianney J.-M., Buza J., He Q., Tan Y. Graphene and graphene like 2D graphitic carbon nitride: Electrochemical detection of food colorants and toxic substances in environment. Trends in Environmental Analytical Chemistry. 2019;23

Lee J.-H., Park S.-J. Recent advances in preparations and applications of carbon aerogels: a review. Carbon. 2020;163:1–18.

Novoselov K.S., Geim A.K., Morozov S.V., Dubonos S., Zhang Y., Jiang D. 2004. Room-temperature Electric Field Effect and Carrier-type Inversion in Graphene Films. arXiv preprint cond-mat/0410631.

Mishra N., Boeckl J., Motta N., Iacopi F. Graphene growth on silicon carbide: a review. physica status solidi (a) 2016;213(9):2277–2289.

Wang L., Zhang X., Chan H.L., Yan F., Ding F. Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth. J. Am. Chem. Soc. 2013;135(11):4476–4482. PubMed

Pénicaud A., Drummond C. Deconstructing graphite: graphenide solutions. Acc. Chem. Res. 2013;46(1):129–137. PubMed

Kang J., Ko Y., Kim J.P., Kim J.Y., Kim J., Kwon O., Kim K.C., Kim D.W. Microwave-assisted design of nanoporous graphene membrane for ultrafast and switchable organic solvent nanofiltration. Nat. Commun. 2023;14(1):901. PubMed PMC

Fang H., Geng Z., Guan N., Zhou L., Zhang L., Hu J. Controllable generation of interfacial gas structures on the graphite surface by substrate hydrophobicity and gas oversaturation in water. Soft Matter. 2022;18(43):8251–8261. PubMed

Slepičková Kasálková N., Slepička P., Švorčík V. Carbon nanostructures, nanolayers, and their composites. Nanomaterials. 2021;11(9):2368. PubMed PMC

Gao W. 2015. The Chemistry of Graphene Oxide. Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications; pp. 61–95.

Guex L.G., Sacchi B., Peuvot K.F., Andersson R.L., Pourrahimi A.M., Ström V., Farris S., Olsson R.T. Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale. 2017;9(27):9562–9571. PubMed

Xie M., Zhang F., Peng H., Zhang Y., Li Y., Xu Y., Xie J. Layer-by-layer modification of magnetic graphene oxide by chitosan and sodium alginate with enhanced dispersibility for targeted drug delivery and photothermal therapy. Colloids Surf. B Biointerfaces. 2019;176:462–470. PubMed

Hou Y., Lv S., Liu L., Liu X. High-quality preparation of graphene oxide via the Hummers' method: understanding the roles of the intercalator, oxidant, and graphite particle size. Ceram. Int. 2020;46(2):2392–2402.

Al-Gaashani R., Najjar A., Zakaria Y., Mansour S., Atieh M. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019;45(11):14439–14448.

Chen J., Yao B., Li C., Shi G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 2013;64:225–229.

Zaaba N., Foo K., Hashim U., Tan S., Liu W.-W., Voon C. Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 2017;184:469–477.

Yu H., Zhang B., Bulin C., Li R., Xing R. High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 2016;6(1) PubMed PMC

Yu W., Sisi L., Haiyan Y., Jie L. Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv. 2020;10(26):15328–15345. PubMed PMC

Cao N., Zhang Y. Study of reduced graphene oxide preparation by Hummers' method and related characterization. J. Nanomater. 2015;2015:2. 2.

Alam S.N., Sharma N., Kumar L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO) Graphene. 2017;6(1):1–18.

Das B., Prasad K.E., Ramamurty U., Rao C. Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology. 2009;20(12) PubMed

Ismail A.M., AL-Oqla F.M., Risby M., Sapuan S. On the enhancement of the fatigue fracture performance of polymer matrix composites by reinforcement with carbon nanotubes: a systematic review. Carbon Letters. 2022;32(3):727–740.

Feng T., Liu N., Wang S., Qin C., Shi S., Zeng X., Liu G. Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: a review. Advances in nano research. 2021;10(6):559.

Jagannatham M., Chandran P., Sankaran S., Haridoss P., Nayan N., Bakshi S.R. Tensile properties of carbon nanotubes reinforced aluminum matrix composites: a review. Carbon. 2020;160:14–44.

Kumar A., Sharma K., Dixit A.R. A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Letters. 2021;31(2):149–165.

Harris P.J. Carbon nanotube composites. Int. Mater. Rev. 2004;49(1):31–43.

Andrews R., Weisenberger M. Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci. 2004;8(1):31–37.

Byrne M.T., Gun'ko Y.K. Recent advances in research on carbon nanotube–polymer composites. Adv. Mater. 2010;22(15):1672–1688. PubMed

Prusty R.K., Rathore D.K., Ray B.C. CNT/polymer interface in polymeric composites and its sensitivity study at different environments. Adv. Colloid Interface Sci. 2017;240:77–106. PubMed

Arash B., Wang Q., Varadan V. Mechanical properties of carbon nanotube/polymer composites. Sci. Rep. 2014;4(1):6479. PubMed PMC

Nurazzi N., Sabaruddin F., Harussani M., Kamarudin S., Rayung M., Asyraf M., Aisyah H., Norrrahim M., Ilyas R., Abdullah N. Mechanical performance and applications of CNTs reinforced polymer composites—a review. Nanomaterials. 2021;11(9):2186. PubMed PMC

Li X., Ma L., Zhang H., Wang S., Jiang Z., Guo R., Wu H., Cao X., Yang J., Wang B. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. J. Membr. Sci. 2015;479:1–10.

Agarwal V., Zetterlund P.B. Strategies for reduction of graphene oxide–A comprehensive review. Chem. Eng. J. 2021;405

An H., Noh C., Jeon S., Shin M., Kwon Y., Chung Y. The effect of low‐defected carboxylic acid functional group–rich carbon nanotube–doped electrode on the performance of aqueous vanadium redox flow battery. Int. J. Energy Res. 2022;46(9):11802–11817.

Nam T.H., Goto K., Nakayama H., Oshima K., Premalal V., Shimamura Y., Inoue Y., Naito K., Kobayashi S. Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites. Compos. Appl. Sci. Manuf. 2014;64:194–202.

Zhu Y.-F., Ma C., Zhang W., Zhang R.-P., Koratkar N., Liang J. Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J. Appl. Phys. 2009;105(5)

Klinovaja J., Schmidt M.J., Braunecker B., Loss D. Carbon nanotubes in electric and magnetic fields. Phys. Rev. B. 2011;84(8) PubMed

Bae M., Woo S., Lee J.M., Lee W., Yoon S.-H. A prediction model for photopatternable thickness of photocurable polymer nanocomposites containing carbon-based high-aspect-ratio fillers. Compos. Sci. Technol. 2022;218

Díez-Pascual A.M. Carbon-based polymer nanocomposites for high-performance applications. MDPI. 2020;12:872. PubMed PMC

Abbasi H., Antunes M., Velasco J.I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019;103:319–373.

Panahi-Sarmad M., Noroozi M., Abrisham M., Eghbalinia S., Teimoury F., Bahramian A.R., Dehghan P., Sadri M., Goodarzi V. A comprehensive review on carbon-based polymer nanocomposite foams as electromagnetic interference shields and piezoresistive sensors. ACS Appl. Electron. Mater. 2020;2(8):2318–2350.

Ovcharenko E.A., Seifalian A., Rezvova M.A., Klyshnikov K.Y., Glushkova T.V., Akenteva T.N., Antonova L.V., Velikanova E.A., Chernonosova V.S., Shevelev G.Y. A new nanocomposite copolymer Based on functionalised Graphene oxide for Development of Heart Valves. Sci. Rep. 2020;10(1):1–14. PubMed PMC

Singh S.K., Kachel M., Castillero E., Xue Y., Kalfa D., Ferrari G., George I. Polymeric prosthetic heart valves: a review of current technologies and future directions. Frontiers in Cardiovascular Medicine. 2023;10 PubMed PMC

Seifalian A., Basma Z., Digesu A., Khullar V. Polypropylene Pelvic mesh: what went wrong and what will Be of the future? Biomedicines. 2023;11(3):741. PubMed PMC

Bui H.T., Khair N., Yeats B., Gooden S., James S.P., Dasi L.P. Transcatheter heart valves: a biomaterials perspective. Adv. Healthcare Mater. 2021;10(15) PubMed

Zare P., Aleemardani M., Seifalian A., Bagher Z., Seifalian A.M. Graphene oxide: opportunities and challenges in biomedicine. Nanomaterials. 2021;11(5):1083. PubMed PMC

Bagher Z., Asgari N., Bozorgmehr P., Kamrava S.K., Alizadeh R., Seifalian A. Will tissue-engineering strategies bring new hope for the reconstruction of nasal septal cartilage? Curr. Stem Cell Res. Ther. 2020;15(2):144–154. PubMed

Žáková P., Slepičková Kasálková N., Kolská Z., Leitner J., Karpíšková J., Stibor I., Slepička P., Švorčík V. Cytocompatibility of amine functionalized carbon nanoparticles grafted on polyethylene. Mater. Sci. Eng. C. 2016;60:394–401. PubMed

Žáková P., Slepičková Kasálková N., Slepička P., Kolská Z., Karpíšková J., Stibor I., Švorčík V. Cytocompatibility of polyethylene grafted with triethylenetetramine functionalized carbon nanoparticles. Appl. Surf. Sci. 2017;422:809–816. PubMed

Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. PubMed

Slepička P., Slepičková Kasálková N., Pinkner A., Sajdl P., Kolská Z., Švorčík V. Plasma induced cytocompatibility of stabilized poly-L-lactic acid doped with graphene nanoplatelets. React. Funct. Polym. 2018;131:266–275.

Lišková J., Slepičková Kasálková N., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. PubMed

Fajstavr D., Neznalová K., Švorčík V., Slepička P. LIPSS structures induced on graphene-polystyrene composite. Materials. 2019;12:3460. PubMed PMC

Fajstavr D., Frýdlová B., Rimpelová S., Slepičková Kasálková N., Sajdl P., Švorčík V., Slepička P. KrF laser and plasma exposure of PDMS–carbon composite and its antibacterial properties. Materials. 2022;15:839–856. PubMed PMC

Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. PLLA honeycomb-like pattern on fluorinated ethylene propylene as a substrate for fibroblast growth. Polymers. 2020;12(11):2436. PubMed PMC

Slepička P., Michaljaničová I., Rimpelová S., Švorčík V. Surface roughness in action - cells in opposition. Mater. Sci. Eng. C. 2017;76:818–826. PubMed

Rimpelová S., Slepičková Kasálková N., Slepička P., Lemerová H., Švorčík V., Ruml T. Plasma treated polyethylene grafted with adhesive molecules for enhanced adhesion and growth of fibroblasts. Mater. Sci. Eng. C. 2013;33(3):1116–1124. PubMed

Slepička P., Stýblová S., Slepičková Kasálková N., Rimpelová S., Švorčík V. Cytocompatibility of polyhydroxybutyrate modified by plasma discharge. Polym. Eng. Sci. 2014;54:1231–1238.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

BioHastalex modified with silver nanolayers and heat treatment for antibacterial properties

. 2025 Jan 15 ; 11 (1) : e41467. [epub] 20241225

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...