PLLA Honeycomb-Like Pattern on Fluorinated Ethylene Propylene as a Substrate for Fibroblast Growth
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33105764
PubMed Central
PMC7690597
DOI
10.3390/polym12112436
PII: polym12112436
Knihovny.cz E-zdroje
- Klíčová slova
- cell response, fluorinated polymer, honeycomb film, poly(l-lactic) acid, scaffold for cell culture, surface morphology,
- Publikační typ
- časopisecké články MeSH
In this study, we present the surface patterning of a biopolymer poly(l-lactide) (PLLA) for fibroblast growth enhancement. The patterning is based on a self-organized pore arrangement directly fabricated from a ternary system of a solvent-nonsolvent biopolymer. We successfully created a porous honeycomb-like pattern (HCP) on a thermally resistant polymer-fluorinated ethylene propylene (FEP). An important preparation step for HCP is activation of the substrate in Ar plasma discharge. The polymer activation leads to changes in the surface chemistry, which corresponds to an increase in the substrate surface wettability. The aim of this study was to evaluate the influence of the PLLA concentration in solution on the surface morphology, roughness, wettability, and chemistry, and subsequently, also on fibroblast proliferation. We confirmed that the amount of PLLA in solution significantly affects the material surface properties. The pore size of the prepared layers, the surface wettability, and the surface oxygen content increased with an increasing amount of biopolymer in the coating solution. The optimal amount was 1 g of PLLA, which resulted in the highest number of cells after 6 days from seeding; however, all three biopolymer concentrations exhibited significantly better results compared to pristine FEP. The cytocompatibility tests showed that the HCP promoted the attachment of cell filopodia to the underlying substrate and, thus, significantly improved the cell-material interactions. We prepared a honeycomb biodegradable support for enhanced cell growth, so the surface properties of perfluoroethylenepropylene were significantly enhanced.
Zobrazit více v PubMed
Singhvi R., Stephanopoulos G., Wang D.I.C. Review: Effects of substratum morphology on cell physiology. Biotechnol. Bioeng. 1994;43:764–771. doi: 10.1002/bit.260430811. PubMed DOI
Chen L., Yan C., Zheng Z. Functional polymer surfaces for controlling cell behaviors. Mater. Today. 2018;21:38–59. doi: 10.1016/j.mattod.2017.07.002. DOI
Wu X., Wang S. Regulating MC3T3-E1 cells on deformable poly(ε-caprolactone) honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent. ACS Appl. Mater. Interfaces. 2012;4:4966–4975. doi: 10.1021/am301334s. PubMed DOI
Michaljaničová I., Slepička P., Rimpelová S., Slepičková Kasálková N., Švorčík V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016;370:131–141. doi: 10.1016/j.apsusc.2016.02.160. DOI
Zhang Q., Yang X., Li P., Huang G., Feng S., Shen C., Han B., Zhang X., Jin F., Xu F., et al. Bioinspired engineering of honeycomb structure—Using nature to inspire human innovation. Prog. Mater. Sci. 2015;74:332–400. doi: 10.1016/j.pmatsci.2015.05.001. DOI
Nishikawa T., Arai K., Hayashi J., Hara M., Shimomura M. “Honeycomb films”: Biointerface for tissue engineering. Int. J. Nanosci. 2002;1:415–418. doi: 10.1142/S0219581X02000425. DOI
Kim J.H., Seo M., Kim S.Y. Lithographically patterned breath figure of photoresponsive small molecules: Dual-patterned honeycomb lines from a combination of bottom-up and top-down lithography. Adv. Mater. 2009;21:4130–4133. doi: 10.1002/adma.200900868. DOI
Calejo M.T., Ilmarinen T., Skottman H., Kellomäki M. Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomater. 2018;66:44–66. doi: 10.1016/j.actbio.2017.11.043. PubMed DOI
Bui V.T., Thuy L.T., Tran Q.C., Nguyen V.T., Dao V.D., Choi J.S., Choi H.S. Ordered honeycomb biocompatible polymer films via a one-step solution-immersion phase separation used as a scaffold for cell cultures. Chem. Eng. J. 2017;320:561–569. doi: 10.1016/j.cej.2017.03.086. DOI
Place E.S., George J.H., Williams C.K., Stevens M.M. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 2009;38:1139–1151. doi: 10.1039/b811392k. PubMed DOI
Velema J., Kaplan D. Biopolymer-based biomaterials as scaffolds for tissue engineering. In: Lee K., Kaplan D., editors. Tissue Engineering I. Advances in Biochemical Engineering/Biotechnology. Volume 102. Springer; Berlin/Heidelberg, Germany: 2006. pp. 187–238. PubMed DOI
Savioli Lopes M., Jardini A.L., Maciel Filho R. Poly (lactic acid) production for tissue engineering applications. Proc. Eng. 2012;42:1402–1413. doi: 10.1016/j.proeng.2012.07.534. DOI
Liu S., Qin S., He M., Zhou D., Qin Q., Wang H. Current applications of poly (lactic acid) composites in tissue engineering and drug delivery. Compos. Part B Eng. 2020;199:108238. doi: 10.1016/j.compositesb.2020.108238. DOI
Bui V.T., Lee H.S., Choi J.H., Choi H.S. Highly ordered and robust honeycomb films with tunable pore sizes fabricated via UV crosslinking after applying improved phase separation. Polymer. 2015;74:46–53. doi: 10.1016/j.polymer.2015.07.056. DOI
Li L., Zhong Y., Li J., Chen C., Zhang A., Xu J., Ma Z. Thermally stable and solvent resistant honeycomb structured polystyrene films via photochemical cross-linking. J. Mater. Chem. 2009;19:7222–7227. doi: 10.1039/b911714h. DOI
Cui L., Peng J., Ding Y., Li X., Han Y. Ordered porous polymer films via phase separation in humidity environment. Polymer. 2005;46:5334–5340. doi: 10.1016/j.polymer.2005.04.018. DOI
Peng J., Han Y., Yang Y., Li B. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer. 2004;45:447–452. doi: 10.1016/j.polymer.2003.11.019. DOI
Lin C.Y., Lin K.Y.A., Yang T.W., Chu Chen Y., Yang H. Self-assembled hemispherical nanowell arrays for superhydrophobic antireflection coatings. J. Colloid Interface Sci. 2017;490:174–180. doi: 10.1016/j.jcis.2016.11.064. PubMed DOI
Wong T., McGrath J.A., Navsaria H. The role of fibroblasts in tissue engineering and regeneration. Br. J. Dermatol. 2007;156:1149–1155. doi: 10.1111/j.1365-2133.2007.07914.x. PubMed DOI
Slepička P., Neznalová K., Fajstavr D., Slepičková Kasálková N., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Process. Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI
Neznalová K., Slepička P., Sajdl P., Švorčík V. Cellulose acetate honeycomb-like pattern created by improved phase separation. Express Polym. Lett. 2020;14:1078–1088. doi: 10.3144/expresspolymlett.2020.87. DOI
Slepička P., Peterková L., Rimpelová S., Pinkner A., Slepičková Kasálková N., Kolská Z., Ruml T., Švorčík V. Plasma activated perfluoroethylenepropylene for cytocompatibility enhancement. Polym. Degrad. Stabil. 2016;130:277–287. doi: 10.1016/j.polymdegradstab.2016.06.017. DOI
Novotná Z., Řezníčková A., Rimpelová S., Veselý M., Kolská Z., Švorčík V. Tailoring of PEEK bioactivity for improved cell interaction: Plasma treatment in action. RSC Adv. 2015;5:41428–41436. doi: 10.1039/C5RA03861H. DOI
Novotná Z., Rimpelová S., Juřík P., Veselý M., Kolská Z., Hubáček T., Švorčík V. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility. Mater. Sci. Eng. C. 2017;71:125–131. doi: 10.1016/j.msec.2016.09.057. PubMed DOI
Švorčík V., Kolářová K., Slepička P., Macková A., Novotná M., Hnatowicz V. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym. Degrad. Stabil. 2006;91:1219–1225. doi: 10.1016/j.polymdegradstab.2005.09.007. DOI
Chau T.T., Bruckard W.J., Koh P.T.L., Nguyen A.V. A review of factors that affect contact angle and implications for flotation practice. Adv. Coll. Interface Sci. 2009;150:106–115. doi: 10.1016/j.cis.2009.07.003. PubMed DOI
Kutasi K., Bibinov N., Von Keudell A., Wiesermann K. Wettabilities of plasma deposited polymer films. J. Optoelectron. Adv. Mater. 2005;7:2549–2556.
Brown P.S., Talbot E.L., Wood T.J., Bain C.D., Badyal J.P.S. Superhydrophobic Hierarchical Honeycomb Surfaces. Langmuir. 2012;28:13712–13719. doi: 10.1021/la302719m. PubMed DOI
Sequeira D.B., Seabra C.M., Palma P.J., Cardoso A.L., Peça J., Santos J.M. Effects of a New Bioceramic Material on Human Apical Papilla Cells. J. Funct. Biomater. 2018;9:74. doi: 10.3390/jfb9040074. PubMed DOI PMC
Surface activation of Hastalex by vacuum argon plasma for cytocompatibility enhancement
Biopolymer Honeycomb Microstructures: A Review
Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer