PLLA Honeycomb-Like Pattern on Fluorinated Ethylene Propylene as a Substrate for Fibroblast Growth

. 2020 Oct 22 ; 12 (11) : . [epub] 20201022

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33105764

In this study, we present the surface patterning of a biopolymer poly(l-lactide) (PLLA) for fibroblast growth enhancement. The patterning is based on a self-organized pore arrangement directly fabricated from a ternary system of a solvent-nonsolvent biopolymer. We successfully created a porous honeycomb-like pattern (HCP) on a thermally resistant polymer-fluorinated ethylene propylene (FEP). An important preparation step for HCP is activation of the substrate in Ar plasma discharge. The polymer activation leads to changes in the surface chemistry, which corresponds to an increase in the substrate surface wettability. The aim of this study was to evaluate the influence of the PLLA concentration in solution on the surface morphology, roughness, wettability, and chemistry, and subsequently, also on fibroblast proliferation. We confirmed that the amount of PLLA in solution significantly affects the material surface properties. The pore size of the prepared layers, the surface wettability, and the surface oxygen content increased with an increasing amount of biopolymer in the coating solution. The optimal amount was 1 g of PLLA, which resulted in the highest number of cells after 6 days from seeding; however, all three biopolymer concentrations exhibited significantly better results compared to pristine FEP. The cytocompatibility tests showed that the HCP promoted the attachment of cell filopodia to the underlying substrate and, thus, significantly improved the cell-material interactions. We prepared a honeycomb biodegradable support for enhanced cell growth, so the surface properties of perfluoroethylenepropylene were significantly enhanced.

Zobrazit více v PubMed

Singhvi R., Stephanopoulos G., Wang D.I.C. Review: Effects of substratum morphology on cell physiology. Biotechnol. Bioeng. 1994;43:764–771. doi: 10.1002/bit.260430811. PubMed DOI

Chen L., Yan C., Zheng Z. Functional polymer surfaces for controlling cell behaviors. Mater. Today. 2018;21:38–59. doi: 10.1016/j.mattod.2017.07.002. DOI

Wu X., Wang S. Regulating MC3T3-E1 cells on deformable poly(ε-caprolactone) honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent. ACS Appl. Mater. Interfaces. 2012;4:4966–4975. doi: 10.1021/am301334s. PubMed DOI

Michaljaničová I., Slepička P., Rimpelová S., Slepičková Kasálková N., Švorčík V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016;370:131–141. doi: 10.1016/j.apsusc.2016.02.160. DOI

Zhang Q., Yang X., Li P., Huang G., Feng S., Shen C., Han B., Zhang X., Jin F., Xu F., et al. Bioinspired engineering of honeycomb structure—Using nature to inspire human innovation. Prog. Mater. Sci. 2015;74:332–400. doi: 10.1016/j.pmatsci.2015.05.001. DOI

Nishikawa T., Arai K., Hayashi J., Hara M., Shimomura M. “Honeycomb films”: Biointerface for tissue engineering. Int. J. Nanosci. 2002;1:415–418. doi: 10.1142/S0219581X02000425. DOI

Kim J.H., Seo M., Kim S.Y. Lithographically patterned breath figure of photoresponsive small molecules: Dual-patterned honeycomb lines from a combination of bottom-up and top-down lithography. Adv. Mater. 2009;21:4130–4133. doi: 10.1002/adma.200900868. DOI

Calejo M.T., Ilmarinen T., Skottman H., Kellomäki M. Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomater. 2018;66:44–66. doi: 10.1016/j.actbio.2017.11.043. PubMed DOI

Bui V.T., Thuy L.T., Tran Q.C., Nguyen V.T., Dao V.D., Choi J.S., Choi H.S. Ordered honeycomb biocompatible polymer films via a one-step solution-immersion phase separation used as a scaffold for cell cultures. Chem. Eng. J. 2017;320:561–569. doi: 10.1016/j.cej.2017.03.086. DOI

Place E.S., George J.H., Williams C.K., Stevens M.M. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 2009;38:1139–1151. doi: 10.1039/b811392k. PubMed DOI

Velema J., Kaplan D. Biopolymer-based biomaterials as scaffolds for tissue engineering. In: Lee K., Kaplan D., editors. Tissue Engineering I. Advances in Biochemical Engineering/Biotechnology. Volume 102. Springer; Berlin/Heidelberg, Germany: 2006. pp. 187–238. PubMed DOI

Savioli Lopes M., Jardini A.L., Maciel Filho R. Poly (lactic acid) production for tissue engineering applications. Proc. Eng. 2012;42:1402–1413. doi: 10.1016/j.proeng.2012.07.534. DOI

Liu S., Qin S., He M., Zhou D., Qin Q., Wang H. Current applications of poly (lactic acid) composites in tissue engineering and drug delivery. Compos. Part B Eng. 2020;199:108238. doi: 10.1016/j.compositesb.2020.108238. DOI

Bui V.T., Lee H.S., Choi J.H., Choi H.S. Highly ordered and robust honeycomb films with tunable pore sizes fabricated via UV crosslinking after applying improved phase separation. Polymer. 2015;74:46–53. doi: 10.1016/j.polymer.2015.07.056. DOI

Li L., Zhong Y., Li J., Chen C., Zhang A., Xu J., Ma Z. Thermally stable and solvent resistant honeycomb structured polystyrene films via photochemical cross-linking. J. Mater. Chem. 2009;19:7222–7227. doi: 10.1039/b911714h. DOI

Cui L., Peng J., Ding Y., Li X., Han Y. Ordered porous polymer films via phase separation in humidity environment. Polymer. 2005;46:5334–5340. doi: 10.1016/j.polymer.2005.04.018. DOI

Peng J., Han Y., Yang Y., Li B. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer. 2004;45:447–452. doi: 10.1016/j.polymer.2003.11.019. DOI

Lin C.Y., Lin K.Y.A., Yang T.W., Chu Chen Y., Yang H. Self-assembled hemispherical nanowell arrays for superhydrophobic antireflection coatings. J. Colloid Interface Sci. 2017;490:174–180. doi: 10.1016/j.jcis.2016.11.064. PubMed DOI

Wong T., McGrath J.A., Navsaria H. The role of fibroblasts in tissue engineering and regeneration. Br. J. Dermatol. 2007;156:1149–1155. doi: 10.1111/j.1365-2133.2007.07914.x. PubMed DOI

Slepička P., Neznalová K., Fajstavr D., Slepičková Kasálková N., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Process. Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI

Neznalová K., Slepička P., Sajdl P., Švorčík V. Cellulose acetate honeycomb-like pattern created by improved phase separation. Express Polym. Lett. 2020;14:1078–1088. doi: 10.3144/expresspolymlett.2020.87. DOI

Slepička P., Peterková L., Rimpelová S., Pinkner A., Slepičková Kasálková N., Kolská Z., Ruml T., Švorčík V. Plasma activated perfluoroethylenepropylene for cytocompatibility enhancement. Polym. Degrad. Stabil. 2016;130:277–287. doi: 10.1016/j.polymdegradstab.2016.06.017. DOI

Novotná Z., Řezníčková A., Rimpelová S., Veselý M., Kolská Z., Švorčík V. Tailoring of PEEK bioactivity for improved cell interaction: Plasma treatment in action. RSC Adv. 2015;5:41428–41436. doi: 10.1039/C5RA03861H. DOI

Novotná Z., Rimpelová S., Juřík P., Veselý M., Kolská Z., Hubáček T., Švorčík V. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility. Mater. Sci. Eng. C. 2017;71:125–131. doi: 10.1016/j.msec.2016.09.057. PubMed DOI

Švorčík V., Kolářová K., Slepička P., Macková A., Novotná M., Hnatowicz V. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym. Degrad. Stabil. 2006;91:1219–1225. doi: 10.1016/j.polymdegradstab.2005.09.007. DOI

Chau T.T., Bruckard W.J., Koh P.T.L., Nguyen A.V. A review of factors that affect contact angle and implications for flotation practice. Adv. Coll. Interface Sci. 2009;150:106–115. doi: 10.1016/j.cis.2009.07.003. PubMed DOI

Kutasi K., Bibinov N., Von Keudell A., Wiesermann K. Wettabilities of plasma deposited polymer films. J. Optoelectron. Adv. Mater. 2005;7:2549–2556.

Brown P.S., Talbot E.L., Wood T.J., Bain C.D., Badyal J.P.S. Superhydrophobic Hierarchical Honeycomb Surfaces. Langmuir. 2012;28:13712–13719. doi: 10.1021/la302719m. PubMed DOI

Sequeira D.B., Seabra C.M., Palma P.J., Cardoso A.L., Peça J., Santos J.M. Effects of a New Bioceramic Material on Human Apical Papilla Cells. J. Funct. Biomater. 2018;9:74. doi: 10.3390/jfb9040074. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...