Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34771220
PubMed Central
PMC8587905
DOI
10.3390/polym13213663
PII: polym13213663
Knihovny.cz E-zdroje
- Klíčová slova
- FEP, PMMA, cell adhesion, cell growth, cytocompatibility, honeycomb-like pattern, material morphology, plasma modification, polymer,
- Publikační typ
- časopisecké články MeSH
In this study, we present a simple approach for developing a biocompatible polymer scaffold with a honeycomb-like micropattern. We aimed to combine a plasma treatment of fluorinated ethylene propylene (FEP) substrate with an improved phase separation technique. The plasma exposure served for modification of the polymer surface properties, such as roughness, surface chemistry, and wettability. The treated FEP substrate was applied for the growth of a honeycomb-like pattern from a solution of polymethyl methacrylate (PMMA). The properties of the pattern were strongly dependent on the conditions of plasma exposure of the FEP substrate. The physico-chemical properties of the prepared pattern, such as changes in wettability, aging, morphology, and surface chemistry, were determined. Further, we have examined the cellular response of human osteoblasts (U-2 OS) on the modified substrates. The micropattern prepared with a selected combination of surface activation and amount of PMMA for honeycomb construction showed a positive effect on U-2 OS cell adhesion and proliferation. Samples with higher PMMA content (3 and 4 g) formed more periodic hexagonal structures on the surface compared to its lower amount (1 and 2 g), which led to a significant increase in the pattern cytocompatibility compared to pristine or plasma-treated FEP.
Zobrazit více v PubMed
Karihaloo B.L., Zhang K., Wang J. Honeybee combs: How the circular cells transform into rounded hexagons. J. R. Soc. Interface. 2013;10:20130299. doi: 10.1098/rsif.2013.0299. PubMed DOI PMC
Bekkar F., Bettahar F., Meghabar R., Hamadouche M., Moreno-Benitez I., Vilas-Vilela J.L., Ruiz-Rubio L. Study of the capacity of poly(N-vinylcarbazole) derivatives to form honeycomb-like patterns. J. Appl. Polym. Sci. 2021;138:50975. doi: 10.1002/app.50975. DOI
Bui V.T., Ko S.H. Large-scale fabrication of commercially available, nonpolar linear polymer film with a highly ordered honeycomb pattern. ACS Appl. Mater. Interfaces. 2015;7:10541–10547. doi: 10.1021/acsami.5b02097. PubMed DOI
Svečnjak L., Chesson L.A., Gallina A., Maia M., Martinello M., Mutinelli F., Muz N.M., Nunes F.M., Saucy F., Tipple B.J., et al. Standard methods for Apis mellifera beeswax research. J. Apic. Res. 2019;58:1–108. doi: 10.1080/00218839.2019.1571556. DOI
Zhang A., Bai H., Li L. Breath figure: A nature-inspired preparation method for ordered porous films. Chem. Rev. 2015;115:9801–9868. doi: 10.1021/acs.chemrev.5b00069. PubMed DOI
Zhang S., Ren J., Chen S., Luo Y., Bai X., Ye L., Yang F., Cao Y. Large area electrochromic displays with ultrafast response speed and high contrast using solution-processable and patternable honeycomb-like polyaniline nanostructures. J. Electroanal. Chem. 2020;870:114248. doi: 10.1016/j.jelechem.2020.114248. DOI
Hepburn H.R., Muerrle T., Radloff S.E. The cell bases of honeybee combs. Apidologie. 2007;38:268–271. doi: 10.1051/apido:2007005. DOI
Bui V.T., Thi Thuy L., Chinh Tran Q., Nguyen V.T., Dao V.D., Sig Choi J., Choi H. Ordered honeycomb biocompatible polymer films via a one-step solution immersion phase separation used as a scaffold for cell cultures. Chem. Eng. J. 2017;320:561–569. doi: 10.1016/j.cej.2017.03.086. DOI
Dao V.D., Bui V.T., Choi H.S. Pt-coated cylindrical micropatterned honeycomb Petri dishes as an efficient TCO-free counter electrode in liquid junction photovoltaic devices. J. Power Sources. 2018;376:41–45. doi: 10.1016/j.jpowsour.2017.11.073. DOI
Bui V.T., Thi Thuy L., Choi J.S., Choi H.S. Ordered cylindrical micropatterned Petri dishes used as scaffolds for cell growth. J. Colloid Interface Sci. 2018;513:161–169. doi: 10.1016/j.jcis.2017.11.024. PubMed DOI
Hales T.C. The honeycomb conjecture. Discret. Comput. Geom. 2001;25:1–22. doi: 10.1007/s004540010071. DOI
Hales T.C. Dělové koule a včelí plásty. Pokroky Mat. Fyziky Astron. 2001;46:101–118.
Nazzi F. The hexagonal shape of the honeycomb cells depends on the construction behavior of bees. Sci. Rep. 2016;6:28341. doi: 10.1038/srep28341. PubMed DOI PMC
Pirk C.W.W., Hepburn H.R., Radloff S.E., Tautz J. Honeybee combs: Construction through a liquid equilibrium process? Naturwissenschaften. 2004;91:350–353. doi: 10.1007/s00114-004-0539-3. PubMed DOI
Sari M., Hening P., Chotiman S.E., Ana D.I., Yusuf Y. Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering. Biomater. Res. 2021;25:2. doi: 10.1186/s40824-021-00203-z. PubMed DOI PMC
Hurtuková K., Fajstavrová K., Rimpelová S., Vokatá B., Fajstavr D., Slepičková Kasálková N., Siegel J., Švorčík V., Slepička P. Antibacterial properties of a honeycomb-like pattern with cellulose acetate and silver nanoparticles. Materials. 2021;14:4051. doi: 10.3390/ma14144051. PubMed DOI PMC
Loh Q.L., Choong B., Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. B Rev. 2013;19:485–502. doi: 10.1089/ten.teb.2012.0437. PubMed DOI PMC
Tu C., Cai Q., Yang J., Wan Y., Bei J., Wang S. The fabrication and characterization of poly(lactic acid) scaffolds for tissue engineering by improved solid–liquid phase separation. Polym. Adv. Technol. 2003;14:565–573. doi: 10.1002/pat.370. DOI
Calejo M.T., Ilmarinen T., Skottman H., Kellomäki M. Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomater. 2017;66:44–66. doi: 10.1016/j.actbio.2017.11.043. PubMed DOI
Huang K., Pan Q., Yang F., Ni S., Wei X., He D. Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D Appl. Phys. 2008;41:155417. doi: 10.1088/0022-3727/41/15/155417. DOI
Ungár T., Gubicza J., Ribárik G., Borbély A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 2004;34:298–310. doi: 10.1107/S0021889801003715. DOI
Niezgoda S.R., Kanjarla A.K., Beyerlein I.J., Tomé C.N. Stochastic modeling of twin nucleation in polycrystals: An application in hexagonal close-packed metals. Int. J. Plast. 2014;56:119–138. doi: 10.1016/j.ijplas.2013.11.005. DOI
Farjadian F., Azadi S., Mohammadi-Samani S., Ashrafi H., Azadi A. A novel approach to the application of hexagonal mesoporous silica in solid-phase extraction of drugs. Heliyon. 2018;4:e00930. doi: 10.1016/j.heliyon.2018.e00930. PubMed DOI PMC
Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Slepička P., Neználová K., Fajstavr D., Slepičková Kasálková N., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Process. Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI
Karthaus O., Maruyama N., Cieren X., Shimomura M., Hasegawa H., Hashimoto T. Water-assisted formation of micrometer-size honeycomb patterns of polymers. Langmuir. 2000;16:6071–6076. doi: 10.1021/la0001732. DOI
Ke B.B., Van L.S., Zhang W.X., Xu Z.K. Controlled synthesis of linear and comb-like glycopolymers for preparation of honeycomb-patterned films. Polymer. 2010;51:2168–2176. doi: 10.1016/j.polymer.2010.03.021. DOI
Munoz-Bonilla A., Fernández-García M., Rodríguez-Hernández J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014;39:510–554. doi: 10.1016/j.progpolymsci.2013.08.006. DOI
Liu Q., Wu Y., Li Z. Facile preparation of super-hydrophobic fabrics composed of fibres with microporous or microspherical coatings using the static breath figure method. Prog. Org. Coat. 2020;149:105938. doi: 10.1016/j.porgcoat.2020.105938. DOI
Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. PLLA honeycomb-like pattern on fluorinated ethylene propylene as a substrate for fibroblast growth. Polymers. 2020;12:2436. doi: 10.3390/polym12112436. PubMed DOI PMC
Bui V.T., Ko S., Choi H.S. A surfactant-free bio-compatible film with a highly ordered honeycomb pattern fabricated via an improved phase separation method. Chem. Commun. 2014;50:3817. doi: 10.1039/C3CC48654K. PubMed DOI
Dou Y., Jin M., Zhou G., Shui L. Breath figure method for construction of honeycomb films. Membranes. 2015;5:399–424. doi: 10.3390/membranes5030399. PubMed DOI PMC
Bui V.T., Dao V.D., Choi H.S. Transferable thin films with sponge-like porous structure via improved phase separation. Polymer. 2018;101:184–191. doi: 10.1016/j.polymer.2016.08.063. DOI
Qi S., Moffat J.G., Yang Z. Early stage phase separation in pharmaceutical solid dispersion thin films under high humidity: Improved spatial understanding using probe-based thermal and spectroscopic nanocharacterization methods. Mol. Pharm. 2013;10:918–930. doi: 10.1021/mp300557q. PubMed DOI
Shirzad M., Matbouei A., Fathi A., Rabiee S.M. Experimental and numerical investigation of polymethyl methacrylate scaffolds for bone tissue engineering. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020;234:586–594. doi: 10.1177/1464420720901851. DOI
Tan H.Y., Loke W.K., Nguyen N.T. A reliable method for bonding polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA) and its application in micropumps. Sens. Actuators B. 2010;151:133–139. doi: 10.1016/j.snb.2010.09.035. DOI
Zafar M.S. Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers. 2020;12:2299. doi: 10.3390/polym12102299. PubMed DOI PMC
Matbouei A., Fathi A., Rabiee S.M., Shirzad M. Layered manufacturing of a three-dimensional polymethyl methacrylate (PMMA) scaffold used for bone regeneration. Mater. Technol. 2018;34:167–177. doi: 10.1080/10667857.2018.1541212. DOI
Ali U., Loke W.K., Bt. Abd Karim K.J., Buang N.A. A Review of the properties and applications of poly(methyl methacrylate) (PMMA) Polym. Rev. 2015;55:678–705. doi: 10.1080/15583724.2015.1031377. DOI
Harb S.V., Bassous N.J., de Souza T.A.C., Trentin A., Pulcinelli S.H., Santilli C.V., Webster T.J., Lobo A.O., Hammer P. Hydroxyapatite and β-TCP modified PMMA-TiO2 and PMMA-ZrO2 coatings for bioactive corrosion protection of Ti6Al4V implants. Mater. Sci. Eng. C. 2020;116:111149. doi: 10.1016/j.msec.2020.111149. PubMed DOI
Gautam R., Singh R.D., Sharma V.P., Siddhartha R., Chand P., Kumar R. Biocompatibility of polymethylmethacrylate resins used in dentistry. J. Biomed. Mater. Res. 2012;100B:1444–1450. doi: 10.1002/jbm.b.32673. PubMed DOI
Webb J.C.J., Spencer R.F. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J. Bone Jt. Surg. 2007;89-B:851–857. doi: 10.1302/0301-620X.89B7.19148. PubMed DOI
Arora M., Chan E.K., Gupta S., Diwan A.D. Polymethylmethacrylate bone cements and additives: A review of the literature. World J. Orthop. 2013;4:67–74. doi: 10.5312/wjo.v4.i2.67. PubMed DOI PMC
Vallo C.I., Montemartini P.E., Lopez J.M.P., Cuadrado T.R. Polymethylmethacrylate-based bone cement modified with hydroxyapatite. J. Biomed. Mater. Res. 1999;48:150–158. doi: 10.1002/(SICI)1097-4636(1999)48:2<150::AID-JBM9>3.0.CO;2-D. PubMed DOI
Samad H.A., Jaafar M., Othman R., Kawashita M., Razak N.H.A. New bioactive glass-ceramic: Synthesis and application in PMMA bone cement composites. Biomed. Mater. Eng. 2011;21:247–258. doi: 10.3233/BME-2011-0673. PubMed DOI
Juřík P., Slepička P., Mistrík J., Janíček P., Rimpelová S., Kolská Z., Švorčík V. Oriented gold ripple-like structures on poly-l-lactic acid. Appl. Surf. Sci. 2014;321:503–510. doi: 10.1016/j.apsusc.2014.10.033. DOI
Hassan A., Abd El Aal S.A., Shehata M.M., El-Saftawy A.A. Plasma etching and modification of polyethylene for improved surface structure, wettability and optical behavior. Surf. Rev. Lett. 2018;26:1850220. doi: 10.1142/s0218625X18502207. DOI
Ebnesajjad S. Applied Plastics Engineering Handbook. Elsevier; Amsterdam, The Netherlands: 2017. Introduction to fluoropolymers; pp. 55–71. DOI
Chu P.K., Chen J.Y., Wang L.P., Huang N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 2002;36:143–206. doi: 10.1016/S0927-796X(02)00004-9. DOI
Slepička P., Trostová S., Slepičková Kasálková N., Kolská Z., Sajdl P., Švorčík V. Surface modification of biopolymers by argon plasma and thermal treatment. Plasma Process. Polym. 2011;9:197–206. doi: 10.1002/ppap.201100126. DOI
Li R., Wu G., Hao Y., Peng J., Zhai M. Radiation Technology for Advanced Materials. Elsevier; Amsterdam, The Netherlands: 2019. Radiation degradation or modification of poly(tetrafluoroethylene) and natural polymers; pp. 141–182. DOI
Furstner R., Barthlott W., Neinhuis C., Walzel P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir. 2005;21:956–961. doi: 10.1021/la0401011. PubMed DOI
Wang X., Wang F., Yu Z., Zhang Y., Qi C., Du L. Surface free energy and dynamic wettability of wood simultaneously treated with acidic dye and flame retardant. J. Wood Sci. 2017;63:271–280. doi: 10.1007/s10086-017-1621-8. DOI
Junkar I. Interaction of cells and platelets with biomaterial surfaces treated with gaseous plasma. Adv. Biomembr. Lipid Self-Assem. 2016;36:25–59. doi: 10.1016/bs.abl.2016.01.002. DOI
Polini A., Yang F. Nanofiber Composites for Biomedical Applications. 1st ed. Elsevier Science & Technology; Amsterdam, The Netherlands: 2017. Chapter Hydrophilicity: Physicochemical characterization of nanofiber composites; pp. 97–115. DOI
Sun J., Li Y., Liu G., Chu F., Chen C., Zhang Y., Tian H., Song Y. Patterning a Superhydrophobic Area on a Facile Fabricated Superhydrophilic Layer Based on an Inkjet-Printed Water-Soluble Polymer Template. Langmuir. 2020;36:9952–9959. doi: 10.1021/acs.langmuir.0c01769. PubMed DOI
Beijer N.R.M., Nauryzgaliyeva Z.M., Arteaga E.M., Pieuchot L., Anselme K., van de Peppel J., Vasilevich A.S., Groen N., Roumans N., Hebels D.G.A.J., et al. Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns. Sci. Rep. 2019;9:9099. doi: 10.1038/s41598-019-45284-y. PubMed DOI PMC
Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. Cell Behavior of Primary Fibroblasts and Osteoblasts on Plasma-Treated Fluorinated Polymer Coated with Honeycomb Polystyrene. Materials. 2021;14:889. doi: 10.3390/ma14040889. PubMed DOI PMC
Neznalová K., Fajstavr D., Rimpelová S., Slepičková Kasálková N., Kolská Z., Švorčík V., Slepička P. Honeycomb-patterned poly(L-lactic) acid on plasma-activated FEP as cell culture scaffold. Polym. Deg. Stab. 2020;181:109370. doi: 10.1016/j.polymdegradstab.2020.109370. DOI
Slepička P., Peterková L., Rimpelová S., Pinker A., Slepičková Kasálková N., Kolská Z., Ruml T., Švorčík V. Plasma activated perfluoroethylenepropylene for cytocompatibility enhancement. Polym. Degrad. Stab. 2016;130:277–287. doi: 10.1016/j.polymdegradstab.2016.06.017. DOI
Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J. Cell Sci. 2010;123:4195–4200. doi: 10.1242/jcs.023820. PubMed DOI PMC
Slepicka P., Slepickova Kasalkova N., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI
Nanostructures on Fluoropolymer Nanotextile Prepared Using a High-Energy Excimer Laser
Biopolymer Honeycomb Microstructures: A Review