Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer

. 2021 Oct 24 ; 13 (21) : . [epub] 20211024

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34771220

In this study, we present a simple approach for developing a biocompatible polymer scaffold with a honeycomb-like micropattern. We aimed to combine a plasma treatment of fluorinated ethylene propylene (FEP) substrate with an improved phase separation technique. The plasma exposure served for modification of the polymer surface properties, such as roughness, surface chemistry, and wettability. The treated FEP substrate was applied for the growth of a honeycomb-like pattern from a solution of polymethyl methacrylate (PMMA). The properties of the pattern were strongly dependent on the conditions of plasma exposure of the FEP substrate. The physico-chemical properties of the prepared pattern, such as changes in wettability, aging, morphology, and surface chemistry, were determined. Further, we have examined the cellular response of human osteoblasts (U-2 OS) on the modified substrates. The micropattern prepared with a selected combination of surface activation and amount of PMMA for honeycomb construction showed a positive effect on U-2 OS cell adhesion and proliferation. Samples with higher PMMA content (3 and 4 g) formed more periodic hexagonal structures on the surface compared to its lower amount (1 and 2 g), which led to a significant increase in the pattern cytocompatibility compared to pristine or plasma-treated FEP.

Zobrazit více v PubMed

Karihaloo B.L., Zhang K., Wang J. Honeybee combs: How the circular cells transform into rounded hexagons. J. R. Soc. Interface. 2013;10:20130299. doi: 10.1098/rsif.2013.0299. PubMed DOI PMC

Bekkar F., Bettahar F., Meghabar R., Hamadouche M., Moreno-Benitez I., Vilas-Vilela J.L., Ruiz-Rubio L. Study of the capacity of poly(N-vinylcarbazole) derivatives to form honeycomb-like patterns. J. Appl. Polym. Sci. 2021;138:50975. doi: 10.1002/app.50975. DOI

Bui V.T., Ko S.H. Large-scale fabrication of commercially available, nonpolar linear polymer film with a highly ordered honeycomb pattern. ACS Appl. Mater. Interfaces. 2015;7:10541–10547. doi: 10.1021/acsami.5b02097. PubMed DOI

Svečnjak L., Chesson L.A., Gallina A., Maia M., Martinello M., Mutinelli F., Muz N.M., Nunes F.M., Saucy F., Tipple B.J., et al. Standard methods for Apis mellifera beeswax research. J. Apic. Res. 2019;58:1–108. doi: 10.1080/00218839.2019.1571556. DOI

Zhang A., Bai H., Li L. Breath figure: A nature-inspired preparation method for ordered porous films. Chem. Rev. 2015;115:9801–9868. doi: 10.1021/acs.chemrev.5b00069. PubMed DOI

Zhang S., Ren J., Chen S., Luo Y., Bai X., Ye L., Yang F., Cao Y. Large area electrochromic displays with ultrafast response speed and high contrast using solution-processable and patternable honeycomb-like polyaniline nanostructures. J. Electroanal. Chem. 2020;870:114248. doi: 10.1016/j.jelechem.2020.114248. DOI

Hepburn H.R., Muerrle T., Radloff S.E. The cell bases of honeybee combs. Apidologie. 2007;38:268–271. doi: 10.1051/apido:2007005. DOI

Bui V.T., Thi Thuy L., Chinh Tran Q., Nguyen V.T., Dao V.D., Sig Choi J., Choi H. Ordered honeycomb biocompatible polymer films via a one-step solution immersion phase separation used as a scaffold for cell cultures. Chem. Eng. J. 2017;320:561–569. doi: 10.1016/j.cej.2017.03.086. DOI

Dao V.D., Bui V.T., Choi H.S. Pt-coated cylindrical micropatterned honeycomb Petri dishes as an efficient TCO-free counter electrode in liquid junction photovoltaic devices. J. Power Sources. 2018;376:41–45. doi: 10.1016/j.jpowsour.2017.11.073. DOI

Bui V.T., Thi Thuy L., Choi J.S., Choi H.S. Ordered cylindrical micropatterned Petri dishes used as scaffolds for cell growth. J. Colloid Interface Sci. 2018;513:161–169. doi: 10.1016/j.jcis.2017.11.024. PubMed DOI

Hales T.C. The honeycomb conjecture. Discret. Comput. Geom. 2001;25:1–22. doi: 10.1007/s004540010071. DOI

Hales T.C. Dělové koule a včelí plásty. Pokroky Mat. Fyziky Astron. 2001;46:101–118.

Nazzi F. The hexagonal shape of the honeycomb cells depends on the construction behavior of bees. Sci. Rep. 2016;6:28341. doi: 10.1038/srep28341. PubMed DOI PMC

Pirk C.W.W., Hepburn H.R., Radloff S.E., Tautz J. Honeybee combs: Construction through a liquid equilibrium process? Naturwissenschaften. 2004;91:350–353. doi: 10.1007/s00114-004-0539-3. PubMed DOI

Sari M., Hening P., Chotiman S.E., Ana D.I., Yusuf Y. Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering. Biomater. Res. 2021;25:2. doi: 10.1186/s40824-021-00203-z. PubMed DOI PMC

Hurtuková K., Fajstavrová K., Rimpelová S., Vokatá B., Fajstavr D., Slepičková Kasálková N., Siegel J., Švorčík V., Slepička P. Antibacterial properties of a honeycomb-like pattern with cellulose acetate and silver nanoparticles. Materials. 2021;14:4051. doi: 10.3390/ma14144051. PubMed DOI PMC

Loh Q.L., Choong B., Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. B Rev. 2013;19:485–502. doi: 10.1089/ten.teb.2012.0437. PubMed DOI PMC

Tu C., Cai Q., Yang J., Wan Y., Bei J., Wang S. The fabrication and characterization of poly(lactic acid) scaffolds for tissue engineering by improved solid–liquid phase separation. Polym. Adv. Technol. 2003;14:565–573. doi: 10.1002/pat.370. DOI

Calejo M.T., Ilmarinen T., Skottman H., Kellomäki M. Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomater. 2017;66:44–66. doi: 10.1016/j.actbio.2017.11.043. PubMed DOI

Huang K., Pan Q., Yang F., Ni S., Wei X., He D. Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D Appl. Phys. 2008;41:155417. doi: 10.1088/0022-3727/41/15/155417. DOI

Ungár T., Gubicza J., Ribárik G., Borbély A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 2004;34:298–310. doi: 10.1107/S0021889801003715. DOI

Niezgoda S.R., Kanjarla A.K., Beyerlein I.J., Tomé C.N. Stochastic modeling of twin nucleation in polycrystals: An application in hexagonal close-packed metals. Int. J. Plast. 2014;56:119–138. doi: 10.1016/j.ijplas.2013.11.005. DOI

Farjadian F., Azadi S., Mohammadi-Samani S., Ashrafi H., Azadi A. A novel approach to the application of hexagonal mesoporous silica in solid-phase extraction of drugs. Heliyon. 2018;4:e00930. doi: 10.1016/j.heliyon.2018.e00930. PubMed DOI PMC

Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI

Slepička P., Neználová K., Fajstavr D., Slepičková Kasálková N., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Process. Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI

Karthaus O., Maruyama N., Cieren X., Shimomura M., Hasegawa H., Hashimoto T. Water-assisted formation of micrometer-size honeycomb patterns of polymers. Langmuir. 2000;16:6071–6076. doi: 10.1021/la0001732. DOI

Ke B.B., Van L.S., Zhang W.X., Xu Z.K. Controlled synthesis of linear and comb-like glycopolymers for preparation of honeycomb-patterned films. Polymer. 2010;51:2168–2176. doi: 10.1016/j.polymer.2010.03.021. DOI

Munoz-Bonilla A., Fernández-García M., Rodríguez-Hernández J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014;39:510–554. doi: 10.1016/j.progpolymsci.2013.08.006. DOI

Liu Q., Wu Y., Li Z. Facile preparation of super-hydrophobic fabrics composed of fibres with microporous or microspherical coatings using the static breath figure method. Prog. Org. Coat. 2020;149:105938. doi: 10.1016/j.porgcoat.2020.105938. DOI

Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. PLLA honeycomb-like pattern on fluorinated ethylene propylene as a substrate for fibroblast growth. Polymers. 2020;12:2436. doi: 10.3390/polym12112436. PubMed DOI PMC

Bui V.T., Ko S., Choi H.S. A surfactant-free bio-compatible film with a highly ordered honeycomb pattern fabricated via an improved phase separation method. Chem. Commun. 2014;50:3817. doi: 10.1039/C3CC48654K. PubMed DOI

Dou Y., Jin M., Zhou G., Shui L. Breath figure method for construction of honeycomb films. Membranes. 2015;5:399–424. doi: 10.3390/membranes5030399. PubMed DOI PMC

Bui V.T., Dao V.D., Choi H.S. Transferable thin films with sponge-like porous structure via improved phase separation. Polymer. 2018;101:184–191. doi: 10.1016/j.polymer.2016.08.063. DOI

Qi S., Moffat J.G., Yang Z. Early stage phase separation in pharmaceutical solid dispersion thin films under high humidity: Improved spatial understanding using probe-based thermal and spectroscopic nanocharacterization methods. Mol. Pharm. 2013;10:918–930. doi: 10.1021/mp300557q. PubMed DOI

Shirzad M., Matbouei A., Fathi A., Rabiee S.M. Experimental and numerical investigation of polymethyl methacrylate scaffolds for bone tissue engineering. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020;234:586–594. doi: 10.1177/1464420720901851. DOI

Tan H.Y., Loke W.K., Nguyen N.T. A reliable method for bonding polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA) and its application in micropumps. Sens. Actuators B. 2010;151:133–139. doi: 10.1016/j.snb.2010.09.035. DOI

Zafar M.S. Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers. 2020;12:2299. doi: 10.3390/polym12102299. PubMed DOI PMC

Matbouei A., Fathi A., Rabiee S.M., Shirzad M. Layered manufacturing of a three-dimensional polymethyl methacrylate (PMMA) scaffold used for bone regeneration. Mater. Technol. 2018;34:167–177. doi: 10.1080/10667857.2018.1541212. DOI

Ali U., Loke W.K., Bt. Abd Karim K.J., Buang N.A. A Review of the properties and applications of poly(methyl methacrylate) (PMMA) Polym. Rev. 2015;55:678–705. doi: 10.1080/15583724.2015.1031377. DOI

Harb S.V., Bassous N.J., de Souza T.A.C., Trentin A., Pulcinelli S.H., Santilli C.V., Webster T.J., Lobo A.O., Hammer P. Hydroxyapatite and β-TCP modified PMMA-TiO2 and PMMA-ZrO2 coatings for bioactive corrosion protection of Ti6Al4V implants. Mater. Sci. Eng. C. 2020;116:111149. doi: 10.1016/j.msec.2020.111149. PubMed DOI

Gautam R., Singh R.D., Sharma V.P., Siddhartha R., Chand P., Kumar R. Biocompatibility of polymethylmethacrylate resins used in dentistry. J. Biomed. Mater. Res. 2012;100B:1444–1450. doi: 10.1002/jbm.b.32673. PubMed DOI

Webb J.C.J., Spencer R.F. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J. Bone Jt. Surg. 2007;89-B:851–857. doi: 10.1302/0301-620X.89B7.19148. PubMed DOI

Arora M., Chan E.K., Gupta S., Diwan A.D. Polymethylmethacrylate bone cements and additives: A review of the literature. World J. Orthop. 2013;4:67–74. doi: 10.5312/wjo.v4.i2.67. PubMed DOI PMC

Vallo C.I., Montemartini P.E., Lopez J.M.P., Cuadrado T.R. Polymethylmethacrylate-based bone cement modified with hydroxyapatite. J. Biomed. Mater. Res. 1999;48:150–158. doi: 10.1002/(SICI)1097-4636(1999)48:2<150::AID-JBM9>3.0.CO;2-D. PubMed DOI

Samad H.A., Jaafar M., Othman R., Kawashita M., Razak N.H.A. New bioactive glass-ceramic: Synthesis and application in PMMA bone cement composites. Biomed. Mater. Eng. 2011;21:247–258. doi: 10.3233/BME-2011-0673. PubMed DOI

Juřík P., Slepička P., Mistrík J., Janíček P., Rimpelová S., Kolská Z., Švorčík V. Oriented gold ripple-like structures on poly-l-lactic acid. Appl. Surf. Sci. 2014;321:503–510. doi: 10.1016/j.apsusc.2014.10.033. DOI

Hassan A., Abd El Aal S.A., Shehata M.M., El-Saftawy A.A. Plasma etching and modification of polyethylene for improved surface structure, wettability and optical behavior. Surf. Rev. Lett. 2018;26:1850220. doi: 10.1142/s0218625X18502207. DOI

Ebnesajjad S. Applied Plastics Engineering Handbook. Elsevier; Amsterdam, The Netherlands: 2017. Introduction to fluoropolymers; pp. 55–71. DOI

Chu P.K., Chen J.Y., Wang L.P., Huang N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 2002;36:143–206. doi: 10.1016/S0927-796X(02)00004-9. DOI

Slepička P., Trostová S., Slepičková Kasálková N., Kolská Z., Sajdl P., Švorčík V. Surface modification of biopolymers by argon plasma and thermal treatment. Plasma Process. Polym. 2011;9:197–206. doi: 10.1002/ppap.201100126. DOI

Li R., Wu G., Hao Y., Peng J., Zhai M. Radiation Technology for Advanced Materials. Elsevier; Amsterdam, The Netherlands: 2019. Radiation degradation or modification of poly(tetrafluoroethylene) and natural polymers; pp. 141–182. DOI

Furstner R., Barthlott W., Neinhuis C., Walzel P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir. 2005;21:956–961. doi: 10.1021/la0401011. PubMed DOI

Wang X., Wang F., Yu Z., Zhang Y., Qi C., Du L. Surface free energy and dynamic wettability of wood simultaneously treated with acidic dye and flame retardant. J. Wood Sci. 2017;63:271–280. doi: 10.1007/s10086-017-1621-8. DOI

Junkar I. Interaction of cells and platelets with biomaterial surfaces treated with gaseous plasma. Adv. Biomembr. Lipid Self-Assem. 2016;36:25–59. doi: 10.1016/bs.abl.2016.01.002. DOI

Polini A., Yang F. Nanofiber Composites for Biomedical Applications. 1st ed. Elsevier Science & Technology; Amsterdam, The Netherlands: 2017. Chapter Hydrophilicity: Physicochemical characterization of nanofiber composites; pp. 97–115. DOI

Sun J., Li Y., Liu G., Chu F., Chen C., Zhang Y., Tian H., Song Y. Patterning a Superhydrophobic Area on a Facile Fabricated Superhydrophilic Layer Based on an Inkjet-Printed Water-Soluble Polymer Template. Langmuir. 2020;36:9952–9959. doi: 10.1021/acs.langmuir.0c01769. PubMed DOI

Beijer N.R.M., Nauryzgaliyeva Z.M., Arteaga E.M., Pieuchot L., Anselme K., van de Peppel J., Vasilevich A.S., Groen N., Roumans N., Hebels D.G.A.J., et al. Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns. Sci. Rep. 2019;9:9099. doi: 10.1038/s41598-019-45284-y. PubMed DOI PMC

Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. Cell Behavior of Primary Fibroblasts and Osteoblasts on Plasma-Treated Fluorinated Polymer Coated with Honeycomb Polystyrene. Materials. 2021;14:889. doi: 10.3390/ma14040889. PubMed DOI PMC

Neznalová K., Fajstavr D., Rimpelová S., Slepičková Kasálková N., Kolská Z., Švorčík V., Slepička P. Honeycomb-patterned poly(L-lactic) acid on plasma-activated FEP as cell culture scaffold. Polym. Deg. Stab. 2020;181:109370. doi: 10.1016/j.polymdegradstab.2020.109370. DOI

Slepička P., Peterková L., Rimpelová S., Pinker A., Slepičková Kasálková N., Kolská Z., Ruml T., Švorčík V. Plasma activated perfluoroethylenepropylene for cytocompatibility enhancement. Polym. Degrad. Stab. 2016;130:277–287. doi: 10.1016/j.polymdegradstab.2016.06.017. DOI

Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J. Cell Sci. 2010;123:4195–4200. doi: 10.1242/jcs.023820. PubMed DOI PMC

Slepicka P., Slepickova Kasalkova N., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nanostructures on Fluoropolymer Nanotextile Prepared Using a High-Energy Excimer Laser

. 2023 Jun 09 ; 16 (12) : . [epub] 20230609

Biopolymer Honeycomb Microstructures: A Review

. 2023 Jan 12 ; 16 (2) : . [epub] 20230112

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...