Nanostructures on Fluoropolymer Nanotextile Prepared Using a High-Energy Excimer Laser
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
37374464
PubMed Central
PMC10302280
DOI
10.3390/ma16124280
PII: ma16124280
Knihovny.cz E-resources
- Keywords
- PTFE, antibacterial properties, laser exposure, morphology, nanostructure, polymer, silver nanolayer, wettability,
- Publication type
- Journal Article MeSH
This study is focused on polytetrafluoroethylene (PTFE) porous nanotextile and its modification with thin, silver sputtered nanolayers, combined with a subsequent modification with an excimer laser. The KrF excimer laser was set to single-shot pulse mode. Subsequently, the physico chemical properties, morphology, surface chemistry, and wettability were determined. Minor effects of the excimer laser on the pristine PTFE substrate were described, but significant changes were observed after the application of the excimer laser to the polytetrafluoroethylene with sputtered silver, where the formation of a silver nanoparticles/PTFE/Ag composite was described, with a wettability similar to that of a superhydrophobic surface. Both scanning electron microscopy and atomic force microscopy revealed the formation of superposed globular structures on the polytetrafluoroethylene lamellar primary structure, which was also confirmed using energy dispersive spectroscopy. The combined changes in the surface morphology, chemistry, and thus wettability induced a significant change in the PTFE's antibacterial properties. Samples coated with silver and further treated with the excimer laser 150 mJ/cm2 inhibited 100% of the bacterial strain E. coli. The motivation of this study was to find a material with flexible and elastic properties and a hydrophobic character, with antibacterial properties that could be enhanced with silver nanoparticles, but hydrophobic properties that would be maintained. These properties can be used in different types of applications, mainly in tissue engineering and the medicinal industry, where water-repellent materials may play important roles. This synergy was achieved via the technique we proposed, and even when the Ag nanostructures were prepared, the high hydrophobicity of the system Ag-polytetrafluorethylene was maintained.
See more in PubMed
Guo Q., Huang Y., Xu M., Huang Q., Cheng J., Yu S., Zhang Y., Xiao C. PTFE porous membrane technology: A comprehensive review. J. Membr. Sci. 2022;664:121115. doi: 10.1016/j.memsci.2022.121115. DOI
Subbiah T., Bhat G.S., Tock R.W., Parameswaran S., Ramkumar S.S. Electrospinning of nanofibers. J. Appl. Polym. Sci. 2005;96:557–569. doi: 10.1002/app.21481. DOI
Ramakrishna S., Fujihara K., Teo W.E., Lim T.C., Ma Z. An Introduction to Elektrospinning and Nanofibers. World Scientific; Singapore: 2005.
Unnithan A.R., Arathyram R.S., Kim C.S. Chapter 3—Electrospinning of Polymers for Tissue Engineering. William Andrew Publishing; Norwich, NY, USA: 2015. pp. 45–55. DOI
Yarin A.L., Koombhongse S., Reneker D.H. Bending instability in electrospinning of nanofibers. J. Appl. Phys. 2001;89:3018–3026. doi: 10.1063/1.1333035. DOI
Xu H., Jin W., Wang F., Liu G., Li C., Wang J., Zhu H., Guo Y. Formation and characterization of polytetrafluoroethylene nanofiber membranes for high-efficiency fine particulate filtration. R. Soc. Chem. 2019;9:13631–13645. doi: 10.1039/C9RA01643K. PubMed DOI PMC
Yu S., Huang Q., Cheng J., Huang Y., Xiao C. Pore Structure Optimization of Electrospun PTFE Nanofiber Membrane and Its Application in Membrane Emulsification. Sep. Purif. Technol. 2020;251:117297. doi: 10.1016/j.seppur.2020.117297. DOI
Švorčík V., Hubáček T., Slepička P., Siegel J., Kolská Z., Bláhová O., Macková A., Hnatowicz V. Characterization of carbon nanolayers flash evaporated on PET and PTFE. Carbon. 2009;47:1770–1778. doi: 10.1016/j.carbon.2009.03.001. DOI
Slepička P., Kolská Z., Náhlík J., Hnatowicz V., Švorčík V. Properties of Au nanolayers on polyethyleneterephthalate and polytetrafluoroethylene. Surf. Interface Anal. 2009;41:741–745. doi: 10.1002/sia.3082. DOI
Hurtuková K., Vašinová T., Slepičková Kasálková N., Fajstavr D., Rimpelová S., Pavlíčková V.S., Švorčík V., Slepička P. Antibacterial Properties of Silver Nanoclusters with Carbon Support on Flexible Polymer. Nanomaterials. 2022;12:2658. doi: 10.3390/nano12152658. PubMed DOI PMC
Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. Cell Behavior of Primary Fibroblasts and Osteoblasts on Plasma-Treated Fluorinated Polymer Coated with Honeycomb Polystyrene. Materials. 2021;14:889. doi: 10.3390/ma14040889. PubMed DOI PMC
Hurtuková K., Fajstavrová K., Rimpelová S., Vokatá B., Fajstavr D., Kasálková N.S., Siegel J., Švorčík V., Slepička P. Antibacterial Properties of a Honeycomb-like Pattern with Cellulose Acetate and Silver Nanoparticles. Materials. 2021;14:4051. doi: 10.3390/ma14144051. PubMed DOI PMC
Hurtuková K., Juřicová V., Fajstavrová K., Fajstavr D., Slepičková Kasálková N., Rimpelová S., Švorčík V., Slepička P. Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer. Polymers. 2021;13:3663. doi: 10.3390/polym13213663. PubMed DOI PMC
Slepička P., Neznalová K., Fajstavr D., Švorčík V. Nanostructuring of honeycomb-like polystyrene with excimer laser. Prog. Org. Coat. 2020;145:105670. doi: 10.1016/j.porgcoat.2020.105670. DOI
Neznalova K., Sajdl P., Svorcik V., Slepicka P. Cellulose acetate honeycomb-like pattern created by improved phase separation. Express Polym. Lett. 2020;14:1078–1088. doi: 10.3144/expresspolymlett.2020.87. DOI
Neznalová K., Fajstavr D., Rimpelová S., Slepičková Kasálková N., Kolská Z., Švorčík V., Slepička P. Honeycomb-patterned poly(l-lactic) acid on plasma-activated FEP as cell culture scaffold. Polym. Degrad. Stab. 2020;181:109370. doi: 10.1016/j.polymdegradstab.2020.109370. DOI
Zhang S., Liang X., Gadd G.M., Zhao Q. A sol–gel based silver nanoparticle/polytetrafluorethylene (AgNP/PTFE) coating with enhanced antibacterial and anti-corrosive properties. Appl. Surf. Sci. 2021;535:147675. doi: 10.1016/j.apsusc.2020.147675. DOI
Guo L., Yuan W., Lua Z., Li C.M. Polymer/nanosilver composite coatings for antibacterial applications. Colloids Surf. A. 2013;439:69–83. doi: 10.1016/j.colsurfa.2012.12.029. DOI
Spagnol C., Fragal E.H., Pereira A.G.B., Nakamura C.V., Muniz E.C., Follmann H.D.M., Silva R., Rubira A.F. Cellulose nanowhiskers decorated with silver nanoparticles as an additive to antibacterial polymers membranes fabricated by electrospinning. J. Colloid Interface Sci. 2018;531:705–715. doi: 10.1016/j.jcis.2018.07.096. PubMed DOI
Sawada I., Fachrul R., Ito T., Ohmukai Y., Maruyama T., Matsuyama H. Development of a hydrophilic polymer membrane containing silver nanoparticles with both organic antifouling and antibacterial properties. J. Membr. Sci. 2012;387–388:1–6. doi: 10.1016/j.memsci.2011.06.020. DOI
Teper P., Oleszko-Torbus N., Bochenek M., Hajduk B., Kubacki J., Jałowiecki L., Płaza G., Kowalczuk A., Mendrek B. Hybrid nanolayers of star polymers and silver nanoparticles with antibacterial activity. Colloids Surf. B Biointerface. 2022;213:112404. doi: 10.1016/j.colsurfb.2022.112404. PubMed DOI
Maziya K., Dlamini B.C., Malinga S.P. Hyperbranched polymer nanofibrous membrane grafted with silver nanoparticles for dual antifouling and antibacterial properties against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa . React. Funct. Polym. 2020;148:104494. doi: 10.1016/j.reactfunctpolym.2020.104494. DOI
Luo H., Huang T., Li X., Wang J., Lv T., Tan W., Gao F., Zhang J., Zhou B. Synergistic antibacterial and wound-healing applications of an imidazole-based porous organic polymer encapsulated silver nanoparticles composite. Microporous Mesoporous Mater. 2022;337:111925. doi: 10.1016/j.micromeso.2022.111925. DOI
Rajanandkumar R. Synthesis and characterization of polymer encapsulated silver nanoparticle coatings for antibacterial effect. Mater. Today Proc. 2021;47:1782–1786. doi: 10.1016/j.matpr.2021.02.608. DOI
Monte J.P., Fontes A., Santos B.S., Pereira G.A.L., Pereira G. Recent advances in hydroxyapatite/polymer/silver nanoparticles scaffolds with antimicrobial activity for bone regeneration. Mater. Lett. 2023;338:134027. doi: 10.1016/j.matlet.2023.134027. DOI
Abd El-Kader M.F.H., Elabbasy M.T., Ahmed M.K., Menazea A.A. Structural, morphological features, and antibacterial behavior of PVA/PVP polymeric blends doped with silver nanoparticles via pulsed laser ablation. J. Mater. Res. Technol. 2021;13:291–300. doi: 10.1016/j.jmrt.2021.04.055. DOI
Guo R., Yin G., Sha X., Wei L., Zhao Q. Effect of surface modification on the adhesion enhancement of electrolessly deposited Ag-PTFE antibacterial composite coatings to polymer substrates. Mater. Lett. 2015;143:256–260. doi: 10.1016/j.matlet.2014.12.125. DOI
Gao Z.N., Wang Z., Yue T.N., Weng Y.X., Wang M. Multifunctional cotton non-woven fabrics coated with silver nanoparticles and polymers for antibacterial, superhydrophobic and high performance microwave shielding. J. Colloid Interface Sci. 2021;582:112–123. doi: 10.1016/j.jcis.2020.08.037. PubMed DOI
Zhang X.F., Liu Z.G., Shen W., Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016;17:1534. doi: 10.3390/ijms17091534. PubMed DOI PMC
Sun Y., Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science. 2002;298:2176–2179. doi: 10.1126/science.1077229. PubMed DOI
Kim D., Jeong S., Moon J. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology. 2006;28:4019–4024. doi: 10.1088/0957-4484/17/16/004. PubMed DOI
Chen S.F., Zhang H. Aggregation kinetics of nanosilver in different water conditions. Adv. Nat. Sci. Nanotechnol. 2012;3:035006. doi: 10.1088/2043-6262/3/3/035006. DOI
Tien D.C., Liao C.Y., Huang J.C., Tseng K.H., Lung J.K., Tsung T.T., Kao W.S., Tsai T.H., Cheng T.W., Yu B.S., et al. Novel technique for preparing a nano-silver water suspension by the arc-discharge method. Rev. Adv. Mater. Sci. 2008;18:750–756.
Nguyen Q.H., Tran Q.G., Le A.-H. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013;4:033001
Wender H., Migowski P., Feil A.F., Teixeira S.R., Dupont J. Sputtering deposition of nanoparticles onto liquid substrates: Recent advances and future trends. Coord. Chem. Rev. 2013;257:2468–2483. doi: 10.1016/j.ccr.2013.01.013. DOI
Lee D.K., Kang Y.S. Synthesis of Silver Nanocrystallites by a New Thermal Decomposition Method and Their Characterization. ETRI J. 2004;26:252–256. doi: 10.4218/etrij.04.0103.0061. DOI
Siegel J., Kvítek O., Kolská Z., Slepička P., Švorčík V. Gold Nanostructures Prepared on Solid Surface. InTech Publ.; Rijeka, Croatia: 2012. pp. 43–70.
Sakamoto M., Fujistuka M., Majima T. Light as a construction tool of metal nanoparticles: Synthesis and mechanism. J. Photochem. Photobiol. 2009;10:33–56. doi: 10.1016/j.jphotochemrev.2008.11.002. DOI
Huang L., Zhai M.L., Long D.W., Peng J., Xu L., Wu G.Z., Li J.Q.J. UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. Nanopart. Res. 2008;10:1193–1202. doi: 10.1007/s11051-007-9353-0. DOI
Sintubin L., Verstraete W., Boon N. Biologically produced nanosilver: Current state and future perspectives. Biotechnol. Bioeng. 2012;109:2422–2436. doi: 10.1002/bit.24570. PubMed DOI
Suresh A.K., Pelletier D.A., Wang W., Moon J.W., Gu B., Mortensen N.P., Allison D.P., Joy D.C., Phelps T.J., Doktycz M.J. Silver nanocrystallites: Biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ. Sci. Technol. 2010;44:5210–5215. doi: 10.1021/es903684r. PubMed DOI
Fayaz A.M., Balaji K., Girilal M., Yadav R., Kalaichelvan P.T., Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. 2010;6:100–103. doi: 10.1016/j.nano.2009.04.006. PubMed DOI
Ahmed A., Usman M., Ji Z., Rafiq M., Yu B., Shen Y., Cong H. Nature-inspired biogenic synthesis of silver nanoparticles for antibacterial applications. Mater. Today Chem. 2023;27:101339. doi: 10.1016/j.mtchem.2022.101339. DOI
Midha K., Singh G., Nagpal M., Arora S. Potential Application of Silver Nanoparticles in Medicine. Nanosci. Nanotechnol.-Asia. 2016;6:82–91. doi: 10.2174/2210681205666150818230319. DOI
Chan M., Hidalgo G., Asadishad B., Almeida S., Muja N., Mohammadi M.S., Nazhat S.N., Tufenkji N. Inhibition of bacterial motility and spreading via release of cranberry derived materials from silicone substrates. Colloid Surf. B. 2013;110:275–280. doi: 10.1016/j.colsurfb.2013.03.047. PubMed DOI
Marmur A., Volpe C.D., Siboni S., Amirfazli A., Drelich J.W. Contact angles and wettability: Towards common and accurate terminology. Surf. Innov. 2017;5:3–8. doi: 10.1680/jsuin.17.00002. DOI
Bormashenko E., Bormashenko Y., Whyman G., Pogreb R., Musin A., Jager R., Barkay Z. Contact Angle Hysteresis on Polymer Substrates Established with Various Experimental Techniques, Its Interpretation, and Quantitative Characterization. Langmuir. 2008;24:4020–4025. doi: 10.1021/la703875b. PubMed DOI