The retromer and retriever systems are conserved and differentially expanded in parabasalids
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
RES0043758
Natural Sciences and Engineering Research Council of Canada
GAUK 354622
Grantova Agentura, Univerzita Karlova
GAUK 354622
Grantová Agentura, Univerzita Karlova
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000759
Ministerstvo Školství, Mládeže a Tělovýchovy
University of Alberta
PubMed
38884339
PubMed Central
PMC11267458
DOI
10.1242/jcs.261949
PII: 356105
Knihovny.cz E-zdroje
- Klíčová slova
- Endomembrane, Evolution, Parabasalids, Phylogenomics, Retriever, Retromer,
- MeSH
- endozomy * metabolismus MeSH
- fylogeneze MeSH
- Golgiho aparát metabolismus MeSH
- lidé MeSH
- molekulární evoluce MeSH
- protozoální proteiny metabolismus genetika MeSH
- transport proteinů MeSH
- Trichomonas vaginalis metabolismus genetika MeSH
- třídící nexiny metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální proteiny MeSH
- třídící nexiny MeSH
Early endosomes sort transmembrane cargo either for lysosomal degradation or retrieval to the plasma membrane or the Golgi complex. Endosomal retrieval in eukaryotes is governed by the anciently homologous retromer or retriever complexes. Each comprises a core tri-protein subcomplex, membrane-deformation proteins and interacting partner complexes, together retrieving a variety of known cargo proteins. Trichomonas vaginalis, a sexually transmitted human parasite, uses the endomembrane system for pathogenesis. It has massively and selectively expanded its endomembrane protein complement, the evolutionary path of which has been largely unexplored. Our molecular evolutionary study of retromer, retriever and associated machinery in parabasalids and its free-living sister lineage of Anaeramoeba demonstrates specific expansion of the retromer machinery, contrasting with the retriever components. We also observed partial loss of the Commander complex and sorting nexins in Parabasalia but complete retention in Anaeramoeba. Notably, we identified putative parabasalid sorting nexin analogs. Finally, we report the first retriever protein localization in a non-metazoan group along with retromer protein localization in T. vaginalis.
Zobrazit více v PubMed
Adl, S. M., Bass, D., Lane, C. E., Lukeš, J., Schoch, C. L., Smirnov, A., Agatha, S., Berney, C., Brown, M. W., Burki, F.et al. (2019). Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4-119. 10.1111/jeu.12691 PubMed DOI PMC
Arighi, C. N., Harmell, L. M., Aguilar, R. C., Haft, C. R. and Bonifacino, J. S. (2004). Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123-133. 10.1083/jcb.200312055 PubMed DOI PMC
Barlow, L. D., Maciejowski, W., More, K., Terry, K., Vargová, R., Záhonová, K. and Dacks, J. B. (2023). Comparative genomics for evolutionary cell biology using AMOEBAE: understanding the Golgi and beyond. Methods Mol. Biol. 2557, 431-452. 10.1007/978-1-0716-2639-9_26 PubMed DOI
Benchimol, M., Diniz, J. A. P. and Ribeiro, K. (2000). The fine structure of the axostyle and its associations with organelles in Trichomonads. Tissue Cell 32, 178-187. 10.1054/tice.2000.0102 PubMed DOI
Benchimol, M., de Almeida, L. G. P., Vasconcelos, A. T., de Andrade Rosa, I., Reis Bogo, M., Kist, L. W. and de Souza, W. (2017). Draft genome sequence of Tritrichomonas foetus strain K. Genome Announc. 5, e00195-17. 10.1128/genomeA.00195-17 PubMed DOI PMC
Boesch, D. J., Singla, A., Han, Y., Kramer, D. A., Liu, Q., Suzuki, K., Juneja, P., Zhao, X., Long, X., Medlyn, M. J.et al. (2023). Structural organization of the retriever–CCC endosomal recycling complex. Nat. Struct. Mol. Biol. 31, 910-924. 10.1038/s41594-023-01184-4 PubMed DOI PMC
Burki, F., Roger, A. J., Brown, M. W. and Simpson, A. G. B. (2020). The new tree of Eukaryotes. Trends Ecol. Evol. 35, 43-55. 10.1016/j.tree.2019.08.008 PubMed DOI
Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Wortman, J. R., Bidwell, S. L., Alsmark, U. C. M., Besteiro, S.et al. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315, 207-212. 10.1126/science.1132894 PubMed DOI PMC
Céza, V., Kotyk, M., Kubánková, A., Yubuki, N., Šťáhlavský, F., Silberman, J. D. and Čepička, I. (2022). Free-living trichomonads are unexpectedly diverse. Protist 173, 125883. 10.1016/j.protis.2022.125883 PubMed DOI
Chandra, M., Kendall, A. K. and Jackson, L. P. (2021). Toward understanding the molecular role of SNX27/retromer in human health and disease. Front. Cell Dev. Biol. 9, 642378. 10.3389/fcell.2021.642378 PubMed DOI PMC
Chen, K.-E., Healy, M. D. and Collins, B. M. (2019). Towards a molecular understanding of endosomal trafficking by retromer and retriever. Traffic 20, 465-478. 10.1111/tra.12649 PubMed DOI
Cheng, W.-H., Huang, K.-Y., Huang, P.-J., Hsu, J.-H., Fang, Y.-K., Chiu, C.-H. and Tang, P. (2015). Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion. Parasit. Vectors 8, 393. 10.1186/s13071-015-1000-5 PubMed DOI PMC
Collins, B. M., Skinner, C. F., Watson, P. J., Seaman, M. N. J. and Owen, D. J. (2005). Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nat. Struct. Mol. Biol. 12, 594-602. 10.1038/nsmb954 PubMed DOI
Collins, B. M., Norwood, S. J., Kerr, M. C., Mahony, D., Seaman, M. N. J., Teasdale, R. D. and Owen, D. J. (2008). Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9, 366-379. 10.1111/j.1600-0854.2007.00688.x PubMed DOI
Criscuolo, A. and Gribaldo, S. (2010). BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210. 10.1186/1471-2148-10-210 PubMed DOI PMC
Cui, Y., Carosi, J. M., Yang, Z., Ariotti, N., Kerr, M. C., Parton, R. G., Sargeant, T. J. and Teasdale, R. D. (2019). Retromer has a selective function in cargo sorting via endosome transport carriers. J. Cell Biol. 218, 615-631. 10.1083/jcb.201806153 PubMed DOI PMC
Damen, E., Krieger, E., Nielsen, J. E., Eygensteyn, J. and Van Leeuwen, J. E. M. (2006). The human Vps29 retromer component is a metallo-phosphoesterase for a cation-independent mannose 6-phosphate receptor substrate peptide. Biochem. J. 398, 399-409. 10.1042/BJ20060033 PubMed DOI PMC
Derivery, E., Sousa, C., Gautier, J. J., Lombard, B., Loew, D. and Gautreau, A. (2009). The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev. Cell 17, 712-723. 10.1016/j.devcel.2009.09.010 PubMed DOI
Díaz, E. and Pfeffer, S. R. (1998). TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93, 433-443. 10.1016/S0092-8674(00)81171-X PubMed DOI
Dostál, V., Humhalová, T., Beránková, P., Pácalt, O. and Libusová, L. (2023). SWIP mediates retromer–independent membrane recruitment of the WASH complex. Traffic 24, 216-230. 10.1111/tra.12884 PubMed DOI
Edgar, A. J. and Polak, J. M. (2000). Human homologues of yeast vacuolar protein sorting 29 and 35. Biochem. Biophys. Res. Commun. 277, 622-630. 10.1006/bbrc.2000.3727 PubMed DOI
Edwards, T., Burke, P., Smalley, H. and Hobbs, G. (2016). Trichomonas vaginalis: clinical relevance, pathogenicity and diagnosis. Crit. Rev. Microbiol. 42, 406-417. 10.3109/1040841X.2014.958050 PubMed DOI
Gallon, M. and Cullen, P. J. (2015). Retromer and sorting nexins in endosomal sorting. Biochem. Soc. Trans. 43, 33-47. 10.1042/BST20140290 PubMed DOI
Gallon, M., Clairfeuille, T., Steinberg, F., Mas, C., Ghai, R., Sessions, R. B., Teasdale, R. D., Collins, B. M. and Cullen, P. J. (2014). A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer. Proc. Natl. Acad. Sci. USA 111, E3604-E3613. 10.1073/pnas.1410552111 PubMed DOI PMC
Gould, S. B., Woehle, C., Kusdian, G., Landan, G., Tachezy, J., Zimorski, V. and Martin, W. F. (2013). Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int. J. Parasitol. 43, 707-719. 10.1016/j.ijpara.2013.04.002 PubMed DOI
Haft, C. R., Sierra, M. L., Bafford, R., Lesniak, M. A., Barr, V. A. and Taylor, S. I. (2000). Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 4105-4116. 10.1091/mbc.11.12.4105 PubMed DOI PMC
Handrich, M. R., Garg, S. G., Sommerville, E. W., Hirt, R. P. and Gould, S. B. (2019). Characterization of the BspA and Pmp protein family of trichomonads. Parasit. Vectors 12, 406. 10.1186/s13071-019-3660-z PubMed DOI PMC
Harbour, M. E., Breusegem, S. Y. A., Antrobus, R., Freeman, C., Reid, E. and Seaman, M. N. J. (2010). The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J. Cell Sci. 123, 3703-3717. 10.1242/jcs.071472 PubMed DOI PMC
Harrison, M. S., Hung, C.-S., Liu, T., Christiano, R., Walther, T. C. and Burd, C. G. (2014). A mechanism for retromer endosomal coat complex assembly with cargo. Proc. Natl. Acad. Sci. USA 111, 267-272. 10.1073/pnas.1316482111 PubMed DOI PMC
Harterink, M., Port, F., Lorenowicz, M. J., McGough, I. J., Silhankova, M., Betist, M. C., van Weering, J. R. T., van Heesbeen, R. G. H. P., Middelkoop, T. C., Basler, K.et al. (2011). A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat. Cell Biol. 13, 914-923. 10.1038/ncb2281 PubMed DOI PMC
Healy, M. D., McNally, K. E., Butkovič, R., Chilton, M., Kato, K., Sacharz, J., McConville, C., Moody, E. R. R., Shaw, S., Planelles-Herrero, V. J.et al. (2023). Structure of the endosomal Commander complex linked to Ritscher-Schinzel syndrome. Cell 186, 2219-2237.e29. 10.1016/j.cell.2023.04.003 PubMed DOI PMC
Hrdy, I., Hirt, R. P., Dolezal, P., Bardonová, L., Foster, P. G., Tachezy, J. and Martin Embley, T. (2004). Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 618-622. 10.1038/nature03149 PubMed DOI
Huang, K.-Y., Chen, Y.-Y. M., Fang, Y.-K., Cheng, W.-H., Cheng, C.-C., Chen, Y.-C., Wu, T. E., Ku, F.-M., Chen, S.-C., Lin, R.et al. (2014). Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim. Biophys, Acta Gen. Subj. 1840, 53-64. 10.1016/j.bbagen.2013.08.008 PubMed DOI
Huang, K.-Y., Ku, F.-M., Cheng, W.-H., Lee, C.-C., Huang, P.-J., Chu, L. J., Cheng, C.-C., Fang, Y.-K., Wu, H.-H. and Tang, P. (2015). Novel Insights into the Molecular Events Linking to Cell Death Induced by Tetracycline in the Amitochondriate Protozoan Trichomonas vaginalis. Antimicrob. Agents Chemother. 59, 6891-6903. 10.1128/AAC.01779-15 PubMed DOI PMC
Huang, P.-J., Huang, C.-Y., Li, Y.-X., Liu, Y.-C., Chu, L.-J., Yeh, Y.-M., Cheng, W.-H., Chen, R.-M., Lee, C.-C., Chen, L.-C.et al. (2021). Dissecting the transcriptomes of multiple metronidazole-resistant and sensitive Trichomonas vaginalis strains identified distinct genes and pathways associated with drug resistance and cell death. Biomedicines 9, 1817. 10.3390/biomedicines9121817 PubMed DOI PMC
Huotari, J. and Helenius, A. (2011). Endosome maturation. EMBO J. 30, 3481-3500. 10.1038/emboj.2011.286 PubMed DOI PMC
Itzhak, D. N., Tyanova, S., Cox, J. and Borner, G. H. (2016). Global, quantitative and dynamic mapping of protein subcellular localization. Elife 5, e16950. 10.7554/eLife.16950 PubMed DOI PMC
Janssen, B. D., Chen, Y.-P., Molgora, B. M., Wang, S. E., Simoes-Barbosa, A. and Johnson, P. J. (2018). CRISPR/Cas9-mediated gene modification and gene knock out in the human-infective parasite Trichomonas vaginalis. Sci. Rep. 8, 270. 10.1038/s41598-017-18442-3 PubMed DOI PMC
Jia, D., Gomez, T. S., Billadeau, D. D. and Rosen, M. K. (2012). Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Mol. Biol. Cell 23, 2352-2361. 10.1091/mbc.e11-12-1059 PubMed DOI PMC
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A.et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. 10.1038/s41586-021-03819-2 PubMed DOI PMC
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. 10.1038/nmeth.4285 PubMed DOI PMC
Kang, S., Tice, A. K., Stairs, C. W., Jones, R. E., Lahr, D. J. G. and Brown, M. W. (2021). The integrin-mediated adhesive complex in the ancestor of animals, fungi, and amoebae. Curr. Biol. 31, 3073-3085.e3. 10.1016/j.cub.2021.04.076 PubMed DOI
Katoh, K., Rozewicki, J. and Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160-1166. 10.1093/bib/bbx108 PubMed DOI PMC
Kendall, A. K., Chandra, M., Xie, B., Wan, W. and Jackson, L. P. (2022). Improved mammalian retromer cryo-EM structures reveal a new assembly interface. J. Biol. Chem. 298, 102523. 10.1016/j.jbc.2022.102523 PubMed DOI PMC
Kerr, M. C., Bennetts, J. S., Simpson, F., Thomas, E. C., Flegg, C., Gleeson, P. A., Wicking, C. and Teasdale, R. D. (2005). A novel mammalian retromer component, Vps26B. Traffic 6, 991-1001. 10.1111/j.1600-0854.2005.00328.x PubMed DOI
Koumandou, V. L., Klute, M. J., Herman, E. K., Nunez-Miguel, R., Dacks, J. B. and Field, M. C. (2011). Evolutionary reconstruction of the retromer complex and its function in Trypanosoma brucei. J. Cell Sci. 124, 1496-1509. 10.1242/jcs.081596 PubMed DOI PMC
Kovtun, O., Leneva, N., Bykov, Y. S., Ariotti, N., Teasdale, R. D., Schaffer, M., Engel, B. D., Owen, D. J., Briggs, J. A. G. and Collins, B. M. (2018). Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature 561, 561-564. 10.1038/s41586-018-0526-z PubMed DOI PMC
Krieger, J. N. (1995). Trichomoniasis in men: old issues and new data. Sex. Transm. Dis. 22, 83-96. 10.1097/00007435-199503000-00003 PubMed DOI
Kulda, J., Vojtechovska, M., Tachezy, J., Demes, P. and Kunzova, E. (1982). Metronidazole resistance of Trichomonas vaginalis as a cause of treatment failure in trichomoniasis--a case report. Sex. Transm. Infect. 58, 394-399. 10.1136/sti.58.6.394 PubMed DOI PMC
Larsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276-3278. 10.1093/bioinformatics/btu531 PubMed DOI PMC
Leneva, N., Kovtun, O., Morado, D. R., G Briggs, J. A. and Owen, D. J. (2021). Architecture and mechanism of metazoan retromer:SNX3 tubular coat assembly. Sci. Adv. 7, eabf8598. 10.1126/sciadv.abf8598 PubMed DOI PMC
Lucas, M., Gershlick, D. C., Vidaurrazaga, A., Rojas, A. L., Bonifacino, J. S. and Hierro, A. (2016). Structural mechanism for cargo recognition by the retromer complex. Cell 167, 1623-1635.e14. 10.1016/j.cell.2016.10.056 PubMed DOI PMC
Maciejowski, W. J., Gile, G. H., Jerlström-Hultqvist, J. and Dacks, J. B. (2023). Ancient and pervasive expansion of adaptin-related vesicle coat machinery across Parabasalia. Int. J. Parasitol. 53, 233-245. 10.1016/j.ijpara.2023.01.002 PubMed DOI
Malik, S.-B., Brochu, C. D., Bilic, I., Yuan, J., Hess, M., Logsdon, J. M. and Carlton, J. M. (2011). Phylogeny of parasitic parabasalia and free-living relatives inferred from conventional markers vs. Rpb1, a single-copy gene. PLoS One 6, e20774. 10.1371/journal.pone.0020774 PubMed DOI PMC
Mallam, A. L. and Marcotte, E. M. (2017). Systems-wide studies uncover commander, a multiprotein complex essential to human development. Cell Syst. 4, 483-494. 10.1016/j.cels.2017.04.006 PubMed DOI PMC
Mann, J. R., McDermott, S., Barnes, T. L., Hardin, J., Bao, H. and Zhou, L. (2009). Trichomoniasis in pregnancy and mental retardation in children. Ann. Epidemiol. 19, 891-899. 10.1016/j.annepidem.2009.08.004 PubMed DOI
Margarita, V., Bailey, N. P., Rappelli, P., Diaz, N., Dessì, D., Fettweis, J. M., Hirt, R. P. and Fiori, P. L. (2022). Two different species of Mycoplasma endosymbionts can influence trichomonas vaginalis pathophysiology. MBio 13, e0091822. 10.1128/mbio.00918-22 PubMed DOI PMC
McClelland, R. S., Sangaré, L., Hassan, W. M., Lavreys, L., Mandaliya, K., Kiarie, J., Ndinya–Achola, J., Jaoko, W. and Baeten, J. M. (2007). Infection with Trichomonas vaginalis Increases the Risk of HIV–1 Acquisition. J. Infect. Dis. 195, 698-702. 10.1086/511278 PubMed DOI
McGough, I. J., de Groot, R. E. A., Jellett, A. P., Betist, M. C., Varandas, K. C., Danson, C. M., Heesom, K. J., Korswagen, H. C. and Cullen, P. J. (2018). SNX3-retromer requires an evolutionary conserved MON2:DOPEY2:ATP9A complex to mediate Wntless sorting and Wnt secretion. Nat. Commun. 9, 3737. 10.1038/s41467-018-06114-3 PubMed DOI PMC
McNally, K. E. and Cullen, P. J. (2018). Endosomal retrieval of Cargo: retromer is not alone. Trends Cell Biol. 28, 807-822. 10.1016/j.tcb.2018.06.005 PubMed DOI
McNally, K. E., Faulkner, R., Steinberg, F., Gallon, M., Ghai, R., Pim, D., Langton, P., Pearson, N., Danson, C. M., Nägele, H.et al. (2017). Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat. Cell Biol. 19, 1214-1225. 10.1038/ncb3610 PubMed DOI PMC
Meyer, C., Zizioli, D., Lausmann, S., Eskelinen, E.-L., Hamann, J., Saftig, P., von Figura, K. and Schu, P. (2000). μ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J. 19, 2193-2203. 10.1093/emboj/19.10.2193 PubMed DOI PMC
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A. and Lanfear, R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534. 10.1093/molbev/msaa015 PubMed DOI PMC
Nothwehr, S. F. and Hindes, A. E. (1997). The yeast VPS5/GRD2 gene encodes a sorting nexin-1-like protein required for localizing membrane proteins to the late Golgi. J. Cell Sci. 110, 1063-1072. 10.1242/jcs.110.9.1063 PubMed DOI
Palmieri, N., de Jesus Ramires, M., Hess, M. and Bilic, I. (2021). Complete genomes of the eukaryotic poultry parasite Histomonas meleagridis: linking sequence analysis with virulence / attenuation. BMC Genomics 22, 753. 10.1186/s12864-021-08059-2 PubMed DOI PMC
Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi, M. L., Bork, P., Bridge, A., Colwell, L.et al. (2023). InterPro in 2022. Nucleic Acids Res. 51, D418-D427. 10.1093/nar/gkac993 PubMed DOI PMC
Pipaliya, S. V., Santos, R., Salas-Leiva, D., Balmer, E. A., Wirdnam, C. D., Roger, A. J., Hehl, A. B., Faso, C. and Dacks, J. B. (2021). Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata. BMC Biol. 19, 167. 10.1186/s12915-021-01077-2 PubMed DOI PMC
Raiborg, C. and Stenmark, H. (2009). The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445-452. 10.1038/nature07961 PubMed DOI
Robert, X. and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320-W324. 10.1093/nar/gku316 PubMed DOI PMC
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B.et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682. 10.1038/nmeth.2019 PubMed DOI PMC
Seaman, M. N. J. (2004). Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111-122. 10.1083/jcb.200312034 PubMed DOI PMC
Seaman, M. N. J. (2021). The retromer complex: from genesis to revelations. Trends Biochem. Sci. 46, 608-620. 10.1016/j.tibs.2020.12.009 PubMed DOI
Seaman, M. N. J., Michael McCaffery, J. and Emr, S. D. (1998). A membrane coat complex essential for endosome-to-golgi retrograde transport in yeast. J. Cell Biol. 142, 665-681. 10.1083/jcb.142.3.665 PubMed DOI PMC
Shi, H., Rojas, R., Bonifacino, J. S. and Hurley, J. H. (2006). The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nat. Struct. Mol. Biol. 13, 540-548. 10.1038/nsmb1103 PubMed DOI PMC
Simonetti, B. and Cullen, P. J. (2019). Actin-dependent endosomal receptor recycling. Curr. Opin. Cell Biol. 56, 22-33. 10.1016/j.ceb.2018.08.006 PubMed DOI
Štáfková, J., Rada, P., Meloni, D., Žárský, V., Smutná, T., Zimmann, N., Harant, K., Pompach, P., Hrdý, I. and Tachezy, J. (2018). Dynamic secretome of Trichomonas vaginalis: case study of β-amylases. Mol. Cell. Proteomics 17, 304-320. 10.1074/mcp.RA117.000434 PubMed DOI PMC
Stairs, C. W., Táborský, P., Salomaki, E. D., Kolisko, M., Pánek, T., Eme, L., Hradilová, M., Vlček, Č., Jerlström-Hultqvist, J., Roger, A. J.et al. (2021). Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr. Biol. 31, 5605-5612.e5. 10.1016/j.cub.2021.10.010 PubMed DOI
Steinberg, F., Gallon, M., Winfield, M., Thomas, E. C., Bell, A. J., Heesom, K. J., Tavaré, J. M. and Cullen, P. J. (2013). A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat. Cell Biol. 15, 461-471. 10.1038/ncb2721 PubMed DOI PMC
Strochlic, T. I., Setty, T. G., Sitaram, A. and Burd, C. G. (2007). Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J. Cell Biol. 177, 115-125. 10.1083/jcb.200609161 PubMed DOI PMC
Sutcliffe, S., Giovannucci, E., Alderete, J. F., Chang, T. H., Gaydos, C. A., Zenilman, J. M., De Marzo, A. M., Willett, W. C. and Platz, E. A. (2006). Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol. Biomark. Prevent. 15, 939-945. 10.1158/1055-9965.EPI-05-0781 PubMed DOI
Teasdale, R. D. and Collins, B. M. (2012). Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem. J. 441, 39-59. 10.1042/BJ20111226 PubMed DOI
Tu, Y., Zhao, L., Billadeau, D. D. and Jia, D. (2020). Endosome-to-TGN trafficking: organelle-vesicle and organelle-organelle interactions. Front. Cell Dev. Biol. 8, 163. 10.3389/fcell.2020.00163 PubMed DOI PMC
Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A.et al. (2022). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439-D444. 10.1093/nar/gkab1061 PubMed DOI PMC
Wang, D., Ye, Z., Wei, W., Yu, J., Huang, L., Zhang, H. and Yue, J. (2021). Capping protein regulates endosomal trafficking by controlling F-actin density around endocytic vesicles and recruiting RAB5 effectors. Elife 10, e65910. 10.7554/eLife.65910 PubMed DOI PMC
Woessner, D. J. and Dawson, S. C. (2012). The Giardia median body protein is a ventral disc protein that is critical for maintaining a domed disc conformation during attachment. Eukaryot. Cell 11, 292-301. 10.1128/EC.05262-11 PubMed DOI PMC
Xie, Y., Zhong, P., Guan, W., Zhao, Y., Yang, S., Shao, Y. and Li, J. (2023). Transcriptional profile of Trichomonas vaginalis in response to metronidazole. BMC Genomics 24, 318. 10.1186/s12864-023-09339-9 PubMed DOI PMC
Zhang, Y. (2005). TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302-2309. 10.1093/nar/gki524 PubMed DOI PMC
Zimmann, N., Rada, P., Žárský, V., Smutná, T., Záhonová, K., Dacks, J., Harant, K., Hrdý, I. and Tachezy, J. (2022). Proteomic analysis of Trichomonas vaginalis phagolysosome, lysosomal targeting, and unconventional secretion of cysteine peptidases. Mol. Cell. Proteomics 21, 100174. 10.1016/j.mcpro.2021.100174 PubMed DOI PMC
Zimmermann, L., Stephens, A., Nam, S.-Z., Rau, D., Kübler, J., Lozajic, M., Gabler, F., Söding, J., Lupas, A. N. and Alva, V. (2018). A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237-2243. 10.1016/j.jmb.2017.12.007 PubMed DOI