The retromer and retriever systems are conserved and differentially expanded in parabasalids

. 2024 Jul 01 ; 137 (13) : . [epub] 20240712

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38884339

Grantová podpora
RES0043758 Natural Sciences and Engineering Research Council of Canada
GAUK 354622 Grantova Agentura, Univerzita Karlova
GAUK 354622 Grantová Agentura, Univerzita Karlova
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000759 Ministerstvo Školství, Mládeže a Tělovýchovy
University of Alberta

Early endosomes sort transmembrane cargo either for lysosomal degradation or retrieval to the plasma membrane or the Golgi complex. Endosomal retrieval in eukaryotes is governed by the anciently homologous retromer or retriever complexes. Each comprises a core tri-protein subcomplex, membrane-deformation proteins and interacting partner complexes, together retrieving a variety of known cargo proteins. Trichomonas vaginalis, a sexually transmitted human parasite, uses the endomembrane system for pathogenesis. It has massively and selectively expanded its endomembrane protein complement, the evolutionary path of which has been largely unexplored. Our molecular evolutionary study of retromer, retriever and associated machinery in parabasalids and its free-living sister lineage of Anaeramoeba demonstrates specific expansion of the retromer machinery, contrasting with the retriever components. We also observed partial loss of the Commander complex and sorting nexins in Parabasalia but complete retention in Anaeramoeba. Notably, we identified putative parabasalid sorting nexin analogs. Finally, we report the first retriever protein localization in a non-metazoan group along with retromer protein localization in T. vaginalis.

Zobrazit více v PubMed

Adl, S. M., Bass, D., Lane, C. E., Lukeš, J., Schoch, C. L., Smirnov, A., Agatha, S., Berney, C., Brown, M. W., Burki, F.et al. (2019). Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4-119. 10.1111/jeu.12691 PubMed DOI PMC

Arighi, C. N., Harmell, L. M., Aguilar, R. C., Haft, C. R. and Bonifacino, J. S. (2004). Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123-133. 10.1083/jcb.200312055 PubMed DOI PMC

Barlow, L. D., Maciejowski, W., More, K., Terry, K., Vargová, R., Záhonová, K. and Dacks, J. B. (2023). Comparative genomics for evolutionary cell biology using AMOEBAE: understanding the Golgi and beyond. Methods Mol. Biol. 2557, 431-452. 10.1007/978-1-0716-2639-9_26 PubMed DOI

Benchimol, M., Diniz, J. A. P. and Ribeiro, K. (2000). The fine structure of the axostyle and its associations with organelles in Trichomonads. Tissue Cell 32, 178-187. 10.1054/tice.2000.0102 PubMed DOI

Benchimol, M., de Almeida, L. G. P., Vasconcelos, A. T., de Andrade Rosa, I., Reis Bogo, M., Kist, L. W. and de Souza, W. (2017). Draft genome sequence of Tritrichomonas foetus strain K. Genome Announc. 5, e00195-17. 10.1128/genomeA.00195-17 PubMed DOI PMC

Boesch, D. J., Singla, A., Han, Y., Kramer, D. A., Liu, Q., Suzuki, K., Juneja, P., Zhao, X., Long, X., Medlyn, M. J.et al. (2023). Structural organization of the retriever–CCC endosomal recycling complex. Nat. Struct. Mol. Biol. 31, 910-924. 10.1038/s41594-023-01184-4 PubMed DOI PMC

Burki, F., Roger, A. J., Brown, M. W. and Simpson, A. G. B. (2020). The new tree of Eukaryotes. Trends Ecol. Evol. 35, 43-55. 10.1016/j.tree.2019.08.008 PubMed DOI

Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Wortman, J. R., Bidwell, S. L., Alsmark, U. C. M., Besteiro, S.et al. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315, 207-212. 10.1126/science.1132894 PubMed DOI PMC

Céza, V., Kotyk, M., Kubánková, A., Yubuki, N., Šťáhlavský, F., Silberman, J. D. and Čepička, I. (2022). Free-living trichomonads are unexpectedly diverse. Protist 173, 125883. 10.1016/j.protis.2022.125883 PubMed DOI

Chandra, M., Kendall, A. K. and Jackson, L. P. (2021). Toward understanding the molecular role of SNX27/retromer in human health and disease. Front. Cell Dev. Biol. 9, 642378. 10.3389/fcell.2021.642378 PubMed DOI PMC

Chen, K.-E., Healy, M. D. and Collins, B. M. (2019). Towards a molecular understanding of endosomal trafficking by retromer and retriever. Traffic 20, 465-478. 10.1111/tra.12649 PubMed DOI

Cheng, W.-H., Huang, K.-Y., Huang, P.-J., Hsu, J.-H., Fang, Y.-K., Chiu, C.-H. and Tang, P. (2015). Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion. Parasit. Vectors 8, 393. 10.1186/s13071-015-1000-5 PubMed DOI PMC

Collins, B. M., Skinner, C. F., Watson, P. J., Seaman, M. N. J. and Owen, D. J. (2005). Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nat. Struct. Mol. Biol. 12, 594-602. 10.1038/nsmb954 PubMed DOI

Collins, B. M., Norwood, S. J., Kerr, M. C., Mahony, D., Seaman, M. N. J., Teasdale, R. D. and Owen, D. J. (2008). Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9, 366-379. 10.1111/j.1600-0854.2007.00688.x PubMed DOI

Criscuolo, A. and Gribaldo, S. (2010). BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210. 10.1186/1471-2148-10-210 PubMed DOI PMC

Cui, Y., Carosi, J. M., Yang, Z., Ariotti, N., Kerr, M. C., Parton, R. G., Sargeant, T. J. and Teasdale, R. D. (2019). Retromer has a selective function in cargo sorting via endosome transport carriers. J. Cell Biol. 218, 615-631. 10.1083/jcb.201806153 PubMed DOI PMC

Damen, E., Krieger, E., Nielsen, J. E., Eygensteyn, J. and Van Leeuwen, J. E. M. (2006). The human Vps29 retromer component is a metallo-phosphoesterase for a cation-independent mannose 6-phosphate receptor substrate peptide. Biochem. J. 398, 399-409. 10.1042/BJ20060033 PubMed DOI PMC

Derivery, E., Sousa, C., Gautier, J. J., Lombard, B., Loew, D. and Gautreau, A. (2009). The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev. Cell 17, 712-723. 10.1016/j.devcel.2009.09.010 PubMed DOI

Díaz, E. and Pfeffer, S. R. (1998). TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93, 433-443. 10.1016/S0092-8674(00)81171-X PubMed DOI

Dostál, V., Humhalová, T., Beránková, P., Pácalt, O. and Libusová, L. (2023). SWIP mediates retromer–independent membrane recruitment of the WASH complex. Traffic 24, 216-230. 10.1111/tra.12884 PubMed DOI

Edgar, A. J. and Polak, J. M. (2000). Human homologues of yeast vacuolar protein sorting 29 and 35. Biochem. Biophys. Res. Commun. 277, 622-630. 10.1006/bbrc.2000.3727 PubMed DOI

Edwards, T., Burke, P., Smalley, H. and Hobbs, G. (2016). Trichomonas vaginalis: clinical relevance, pathogenicity and diagnosis. Crit. Rev. Microbiol. 42, 406-417. 10.3109/1040841X.2014.958050 PubMed DOI

Gallon, M. and Cullen, P. J. (2015). Retromer and sorting nexins in endosomal sorting. Biochem. Soc. Trans. 43, 33-47. 10.1042/BST20140290 PubMed DOI

Gallon, M., Clairfeuille, T., Steinberg, F., Mas, C., Ghai, R., Sessions, R. B., Teasdale, R. D., Collins, B. M. and Cullen, P. J. (2014). A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer. Proc. Natl. Acad. Sci. USA 111, E3604-E3613. 10.1073/pnas.1410552111 PubMed DOI PMC

Gould, S. B., Woehle, C., Kusdian, G., Landan, G., Tachezy, J., Zimorski, V. and Martin, W. F. (2013). Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int. J. Parasitol. 43, 707-719. 10.1016/j.ijpara.2013.04.002 PubMed DOI

Haft, C. R., Sierra, M. L., Bafford, R., Lesniak, M. A., Barr, V. A. and Taylor, S. I. (2000). Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 4105-4116. 10.1091/mbc.11.12.4105 PubMed DOI PMC

Handrich, M. R., Garg, S. G., Sommerville, E. W., Hirt, R. P. and Gould, S. B. (2019). Characterization of the BspA and Pmp protein family of trichomonads. Parasit. Vectors 12, 406. 10.1186/s13071-019-3660-z PubMed DOI PMC

Harbour, M. E., Breusegem, S. Y. A., Antrobus, R., Freeman, C., Reid, E. and Seaman, M. N. J. (2010). The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J. Cell Sci. 123, 3703-3717. 10.1242/jcs.071472 PubMed DOI PMC

Harrison, M. S., Hung, C.-S., Liu, T., Christiano, R., Walther, T. C. and Burd, C. G. (2014). A mechanism for retromer endosomal coat complex assembly with cargo. Proc. Natl. Acad. Sci. USA 111, 267-272. 10.1073/pnas.1316482111 PubMed DOI PMC

Harterink, M., Port, F., Lorenowicz, M. J., McGough, I. J., Silhankova, M., Betist, M. C., van Weering, J. R. T., van Heesbeen, R. G. H. P., Middelkoop, T. C., Basler, K.et al. (2011). A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat. Cell Biol. 13, 914-923. 10.1038/ncb2281 PubMed DOI PMC

Healy, M. D., McNally, K. E., Butkovič, R., Chilton, M., Kato, K., Sacharz, J., McConville, C., Moody, E. R. R., Shaw, S., Planelles-Herrero, V. J.et al. (2023). Structure of the endosomal Commander complex linked to Ritscher-Schinzel syndrome. Cell 186, 2219-2237.e29. 10.1016/j.cell.2023.04.003 PubMed DOI PMC

Hrdy, I., Hirt, R. P., Dolezal, P., Bardonová, L., Foster, P. G., Tachezy, J. and Martin Embley, T. (2004). Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 618-622. 10.1038/nature03149 PubMed DOI

Huang, K.-Y., Chen, Y.-Y. M., Fang, Y.-K., Cheng, W.-H., Cheng, C.-C., Chen, Y.-C., Wu, T. E., Ku, F.-M., Chen, S.-C., Lin, R.et al. (2014). Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim. Biophys, Acta Gen. Subj. 1840, 53-64. 10.1016/j.bbagen.2013.08.008 PubMed DOI

Huang, K.-Y., Ku, F.-M., Cheng, W.-H., Lee, C.-C., Huang, P.-J., Chu, L. J., Cheng, C.-C., Fang, Y.-K., Wu, H.-H. and Tang, P. (2015). Novel Insights into the Molecular Events Linking to Cell Death Induced by Tetracycline in the Amitochondriate Protozoan Trichomonas vaginalis. Antimicrob. Agents Chemother. 59, 6891-6903. 10.1128/AAC.01779-15 PubMed DOI PMC

Huang, P.-J., Huang, C.-Y., Li, Y.-X., Liu, Y.-C., Chu, L.-J., Yeh, Y.-M., Cheng, W.-H., Chen, R.-M., Lee, C.-C., Chen, L.-C.et al. (2021). Dissecting the transcriptomes of multiple metronidazole-resistant and sensitive Trichomonas vaginalis strains identified distinct genes and pathways associated with drug resistance and cell death. Biomedicines 9, 1817. 10.3390/biomedicines9121817 PubMed DOI PMC

Huotari, J. and Helenius, A. (2011). Endosome maturation. EMBO J. 30, 3481-3500. 10.1038/emboj.2011.286 PubMed DOI PMC

Itzhak, D. N., Tyanova, S., Cox, J. and Borner, G. H. (2016). Global, quantitative and dynamic mapping of protein subcellular localization. Elife 5, e16950. 10.7554/eLife.16950 PubMed DOI PMC

Janssen, B. D., Chen, Y.-P., Molgora, B. M., Wang, S. E., Simoes-Barbosa, A. and Johnson, P. J. (2018). CRISPR/Cas9-mediated gene modification and gene knock out in the human-infective parasite Trichomonas vaginalis. Sci. Rep. 8, 270. 10.1038/s41598-017-18442-3 PubMed DOI PMC

Jia, D., Gomez, T. S., Billadeau, D. D. and Rosen, M. K. (2012). Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Mol. Biol. Cell 23, 2352-2361. 10.1091/mbc.e11-12-1059 PubMed DOI PMC

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A.et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. 10.1038/s41586-021-03819-2 PubMed DOI PMC

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. 10.1038/nmeth.4285 PubMed DOI PMC

Kang, S., Tice, A. K., Stairs, C. W., Jones, R. E., Lahr, D. J. G. and Brown, M. W. (2021). The integrin-mediated adhesive complex in the ancestor of animals, fungi, and amoebae. Curr. Biol. 31, 3073-3085.e3. 10.1016/j.cub.2021.04.076 PubMed DOI

Katoh, K., Rozewicki, J. and Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160-1166. 10.1093/bib/bbx108 PubMed DOI PMC

Kendall, A. K., Chandra, M., Xie, B., Wan, W. and Jackson, L. P. (2022). Improved mammalian retromer cryo-EM structures reveal a new assembly interface. J. Biol. Chem. 298, 102523. 10.1016/j.jbc.2022.102523 PubMed DOI PMC

Kerr, M. C., Bennetts, J. S., Simpson, F., Thomas, E. C., Flegg, C., Gleeson, P. A., Wicking, C. and Teasdale, R. D. (2005). A novel mammalian retromer component, Vps26B. Traffic 6, 991-1001. 10.1111/j.1600-0854.2005.00328.x PubMed DOI

Koumandou, V. L., Klute, M. J., Herman, E. K., Nunez-Miguel, R., Dacks, J. B. and Field, M. C. (2011). Evolutionary reconstruction of the retromer complex and its function in Trypanosoma brucei. J. Cell Sci. 124, 1496-1509. 10.1242/jcs.081596 PubMed DOI PMC

Kovtun, O., Leneva, N., Bykov, Y. S., Ariotti, N., Teasdale, R. D., Schaffer, M., Engel, B. D., Owen, D. J., Briggs, J. A. G. and Collins, B. M. (2018). Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature 561, 561-564. 10.1038/s41586-018-0526-z PubMed DOI PMC

Krieger, J. N. (1995). Trichomoniasis in men: old issues and new data. Sex. Transm. Dis. 22, 83-96. 10.1097/00007435-199503000-00003 PubMed DOI

Kulda, J., Vojtechovska, M., Tachezy, J., Demes, P. and Kunzova, E. (1982). Metronidazole resistance of Trichomonas vaginalis as a cause of treatment failure in trichomoniasis--a case report. Sex. Transm. Infect. 58, 394-399. 10.1136/sti.58.6.394 PubMed DOI PMC

Larsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276-3278. 10.1093/bioinformatics/btu531 PubMed DOI PMC

Leneva, N., Kovtun, O., Morado, D. R., G Briggs, J. A. and Owen, D. J. (2021). Architecture and mechanism of metazoan retromer:SNX3 tubular coat assembly. Sci. Adv. 7, eabf8598. 10.1126/sciadv.abf8598 PubMed DOI PMC

Lucas, M., Gershlick, D. C., Vidaurrazaga, A., Rojas, A. L., Bonifacino, J. S. and Hierro, A. (2016). Structural mechanism for cargo recognition by the retromer complex. Cell 167, 1623-1635.e14. 10.1016/j.cell.2016.10.056 PubMed DOI PMC

Maciejowski, W. J., Gile, G. H., Jerlström-Hultqvist, J. and Dacks, J. B. (2023). Ancient and pervasive expansion of adaptin-related vesicle coat machinery across Parabasalia. Int. J. Parasitol. 53, 233-245. 10.1016/j.ijpara.2023.01.002 PubMed DOI

Malik, S.-B., Brochu, C. D., Bilic, I., Yuan, J., Hess, M., Logsdon, J. M. and Carlton, J. M. (2011). Phylogeny of parasitic parabasalia and free-living relatives inferred from conventional markers vs. Rpb1, a single-copy gene. PLoS One 6, e20774. 10.1371/journal.pone.0020774 PubMed DOI PMC

Mallam, A. L. and Marcotte, E. M. (2017). Systems-wide studies uncover commander, a multiprotein complex essential to human development. Cell Syst. 4, 483-494. 10.1016/j.cels.2017.04.006 PubMed DOI PMC

Mann, J. R., McDermott, S., Barnes, T. L., Hardin, J., Bao, H. and Zhou, L. (2009). Trichomoniasis in pregnancy and mental retardation in children. Ann. Epidemiol. 19, 891-899. 10.1016/j.annepidem.2009.08.004 PubMed DOI

Margarita, V., Bailey, N. P., Rappelli, P., Diaz, N., Dessì, D., Fettweis, J. M., Hirt, R. P. and Fiori, P. L. (2022). Two different species of Mycoplasma endosymbionts can influence trichomonas vaginalis pathophysiology. MBio 13, e0091822. 10.1128/mbio.00918-22 PubMed DOI PMC

McClelland, R. S., Sangaré, L., Hassan, W. M., Lavreys, L., Mandaliya, K., Kiarie, J., Ndinya–Achola, J., Jaoko, W. and Baeten, J. M. (2007). Infection with Trichomonas vaginalis Increases the Risk of HIV–1 Acquisition. J. Infect. Dis. 195, 698-702. 10.1086/511278 PubMed DOI

McGough, I. J., de Groot, R. E. A., Jellett, A. P., Betist, M. C., Varandas, K. C., Danson, C. M., Heesom, K. J., Korswagen, H. C. and Cullen, P. J. (2018). SNX3-retromer requires an evolutionary conserved MON2:DOPEY2:ATP9A complex to mediate Wntless sorting and Wnt secretion. Nat. Commun. 9, 3737. 10.1038/s41467-018-06114-3 PubMed DOI PMC

McNally, K. E. and Cullen, P. J. (2018). Endosomal retrieval of Cargo: retromer is not alone. Trends Cell Biol. 28, 807-822. 10.1016/j.tcb.2018.06.005 PubMed DOI

McNally, K. E., Faulkner, R., Steinberg, F., Gallon, M., Ghai, R., Pim, D., Langton, P., Pearson, N., Danson, C. M., Nägele, H.et al. (2017). Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat. Cell Biol. 19, 1214-1225. 10.1038/ncb3610 PubMed DOI PMC

Meyer, C., Zizioli, D., Lausmann, S., Eskelinen, E.-L., Hamann, J., Saftig, P., von Figura, K. and Schu, P. (2000). μ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J. 19, 2193-2203. 10.1093/emboj/19.10.2193 PubMed DOI PMC

Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A. and Lanfear, R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534. 10.1093/molbev/msaa015 PubMed DOI PMC

Nothwehr, S. F. and Hindes, A. E. (1997). The yeast VPS5/GRD2 gene encodes a sorting nexin-1-like protein required for localizing membrane proteins to the late Golgi. J. Cell Sci. 110, 1063-1072. 10.1242/jcs.110.9.1063 PubMed DOI

Palmieri, N., de Jesus Ramires, M., Hess, M. and Bilic, I. (2021). Complete genomes of the eukaryotic poultry parasite Histomonas meleagridis: linking sequence analysis with virulence / attenuation. BMC Genomics 22, 753. 10.1186/s12864-021-08059-2 PubMed DOI PMC

Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi, M. L., Bork, P., Bridge, A., Colwell, L.et al. (2023). InterPro in 2022. Nucleic Acids Res. 51, D418-D427. 10.1093/nar/gkac993 PubMed DOI PMC

Pipaliya, S. V., Santos, R., Salas-Leiva, D., Balmer, E. A., Wirdnam, C. D., Roger, A. J., Hehl, A. B., Faso, C. and Dacks, J. B. (2021). Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata. BMC Biol. 19, 167. 10.1186/s12915-021-01077-2 PubMed DOI PMC

Raiborg, C. and Stenmark, H. (2009). The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445-452. 10.1038/nature07961 PubMed DOI

Robert, X. and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320-W324. 10.1093/nar/gku316 PubMed DOI PMC

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B.et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682. 10.1038/nmeth.2019 PubMed DOI PMC

Seaman, M. N. J. (2004). Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111-122. 10.1083/jcb.200312034 PubMed DOI PMC

Seaman, M. N. J. (2021). The retromer complex: from genesis to revelations. Trends Biochem. Sci. 46, 608-620. 10.1016/j.tibs.2020.12.009 PubMed DOI

Seaman, M. N. J., Michael McCaffery, J. and Emr, S. D. (1998). A membrane coat complex essential for endosome-to-golgi retrograde transport in yeast. J. Cell Biol. 142, 665-681. 10.1083/jcb.142.3.665 PubMed DOI PMC

Shi, H., Rojas, R., Bonifacino, J. S. and Hurley, J. H. (2006). The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nat. Struct. Mol. Biol. 13, 540-548. 10.1038/nsmb1103 PubMed DOI PMC

Simonetti, B. and Cullen, P. J. (2019). Actin-dependent endosomal receptor recycling. Curr. Opin. Cell Biol. 56, 22-33. 10.1016/j.ceb.2018.08.006 PubMed DOI

Štáfková, J., Rada, P., Meloni, D., Žárský, V., Smutná, T., Zimmann, N., Harant, K., Pompach, P., Hrdý, I. and Tachezy, J. (2018). Dynamic secretome of Trichomonas vaginalis: case study of β-amylases. Mol. Cell. Proteomics 17, 304-320. 10.1074/mcp.RA117.000434 PubMed DOI PMC

Stairs, C. W., Táborský, P., Salomaki, E. D., Kolisko, M., Pánek, T., Eme, L., Hradilová, M., Vlček, Č., Jerlström-Hultqvist, J., Roger, A. J.et al. (2021). Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr. Biol. 31, 5605-5612.e5. 10.1016/j.cub.2021.10.010 PubMed DOI

Steinberg, F., Gallon, M., Winfield, M., Thomas, E. C., Bell, A. J., Heesom, K. J., Tavaré, J. M. and Cullen, P. J. (2013). A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat. Cell Biol. 15, 461-471. 10.1038/ncb2721 PubMed DOI PMC

Strochlic, T. I., Setty, T. G., Sitaram, A. and Burd, C. G. (2007). Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J. Cell Biol. 177, 115-125. 10.1083/jcb.200609161 PubMed DOI PMC

Sutcliffe, S., Giovannucci, E., Alderete, J. F., Chang, T. H., Gaydos, C. A., Zenilman, J. M., De Marzo, A. M., Willett, W. C. and Platz, E. A. (2006). Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol. Biomark. Prevent. 15, 939-945. 10.1158/1055-9965.EPI-05-0781 PubMed DOI

Teasdale, R. D. and Collins, B. M. (2012). Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem. J. 441, 39-59. 10.1042/BJ20111226 PubMed DOI

Tu, Y., Zhao, L., Billadeau, D. D. and Jia, D. (2020). Endosome-to-TGN trafficking: organelle-vesicle and organelle-organelle interactions. Front. Cell Dev. Biol. 8, 163. 10.3389/fcell.2020.00163 PubMed DOI PMC

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A.et al. (2022). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439-D444. 10.1093/nar/gkab1061 PubMed DOI PMC

Wang, D., Ye, Z., Wei, W., Yu, J., Huang, L., Zhang, H. and Yue, J. (2021). Capping protein regulates endosomal trafficking by controlling F-actin density around endocytic vesicles and recruiting RAB5 effectors. Elife 10, e65910. 10.7554/eLife.65910 PubMed DOI PMC

Woessner, D. J. and Dawson, S. C. (2012). The Giardia median body protein is a ventral disc protein that is critical for maintaining a domed disc conformation during attachment. Eukaryot. Cell 11, 292-301. 10.1128/EC.05262-11 PubMed DOI PMC

Xie, Y., Zhong, P., Guan, W., Zhao, Y., Yang, S., Shao, Y. and Li, J. (2023). Transcriptional profile of Trichomonas vaginalis in response to metronidazole. BMC Genomics 24, 318. 10.1186/s12864-023-09339-9 PubMed DOI PMC

Zhang, Y. (2005). TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302-2309. 10.1093/nar/gki524 PubMed DOI PMC

Zimmann, N., Rada, P., Žárský, V., Smutná, T., Záhonová, K., Dacks, J., Harant, K., Hrdý, I. and Tachezy, J. (2022). Proteomic analysis of Trichomonas vaginalis phagolysosome, lysosomal targeting, and unconventional secretion of cysteine peptidases. Mol. Cell. Proteomics 21, 100174. 10.1016/j.mcpro.2021.100174 PubMed DOI PMC

Zimmermann, L., Stephens, A., Nam, S.-Z., Rau, D., Kübler, J., Lozajic, M., Gabler, F., Söding, J., Lupas, A. N. and Alva, V. (2018). A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237-2243. 10.1016/j.jmb.2017.12.007 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace