Comparative Genomics for Evolutionary Cell Biology Using AMOEBAE: Understanding the Golgi and Beyond
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- Adaptin, BLAST, Basidiomycete, Comparative genomics, Computational pipeline, Evolutionary Cell Biology, Golgi, Homology searching, Molecular evolution, Workflow,
- MeSH
- Amoeba * genetika MeSH
- biologická evoluce MeSH
- genomika metody MeSH
- Golgiho aparát metabolismus MeSH
- reprodukovatelnost výsledků MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Taking an evolutionary approach to cell biology can yield important new information about how the cell works and how it evolved to do so. This is true of the Golgi apparatus, as it is of all systems within the cell. Comparative genomics is one of the crucial first steps to this line of research, but comes with technical challenges that must be overcome for rigor and robustness. We here introduce AMOEBAE, a workflow for mid-range scale comparative genomic analyses. It allows for customization of parameters, queries, and taxonomic sampling of genomic and transcriptomics data. This protocol article covers the rationale for an evolutionary approach to cell biological study (i.e., when would AMOEBAE be useful), how to use AMOEBAE, and discussion of limitations. It also provides an example dataset, which demonstrates that the Golgi protein AP4 Epsilon is present as the sole retained subunit of the AP4 complex in basidiomycete fungi. AMOEBAE can facilitate comparative genomic studies by balancing reproducibility and speed with user-input and interpretation. It is hoped that AMOEBAE or similar tools will encourage cell biologists to incorporate an evolutionary context into their research.
Department of Biological Sciences University of Alberta Edmonton AB Canada
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czechia
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czechia
Division of Infectious Diseases Department of Medicine University of Alberta Edmonton AB Canada
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czechia
Zobrazit více v PubMed
Lynch M, Field MC, Goodson HV et al (2014) Evolutionary cell biology: two origins, one objective. Proc Natl Acad Sci 111:16990–16994. https://doi.org/10.1073/pnas.1415861111 DOI
Horváthová L, Žárský V, Pánek T et al (2021) Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat Commun 12:2947. https://doi.org/10.1038/s41467-021-23046-7 DOI
Chan CJ, Le R, Burns K et al (2019) BioID performed on Golgi-enriched fractions identify C10orf76 as a GBF1-binding protein essential for Golgi maintenance and secretion. Mol Cell Proteomics 18:2285–2297. https://doi.org/10.1074/mcp.RA119.001645 DOI
McNally KE, Faulkner R, Steinberg F et al (2017) Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol 19:1214–1225. https://doi.org/10.1038/ncb3610 DOI
Stairs CW, Dharamshi JE, Tamarit D et al (2020) Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Sci Adv 6:eabb7258. https://doi.org/10.1126/sciadv.abb7258 DOI
Zaremba-Niedzwiedzka K, Caceres EF, Saw JH et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358. https://doi.org/10.1038/nature21031 DOI
Archuleta TL, Frazier MN, Monken AE et al (2017) Structure and evolution of ENTH and VHS/ENTH-like domains in tepsin. Traffic 18:590–603. https://doi.org/10.1111/tra.12499 DOI
Gershlick DC, Schindler C, Chen Y, Bonifacino JS (2016) TSSC1 is novel component of the endosomal retrieval machinery. Mol Biol Cell 27:2867–2878. https://doi.org/10.1091/mbc.e16-04-0209 DOI
Kirkham M, Nixon SJ, Howes MT et al (2008) Evolutionary analysis and molecular dissection of caveola biogenesis. J Cell Sci 121:2075–2086. https://doi.org/10.1242/jcs.024588 DOI
Leung KF, Dacks JB, Field MC (2008) Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9:1698–1716. https://doi.org/10.1111/j.1600-0854.2008.00797.x DOI
Hirst J, Schlacht A, Norcott JP et al (2014) Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife 3:e02866. https://doi.org/10.7554/eLife.02866 DOI
Hirst J, Barlow LD, Francisco GC et al (2011) The fifth adaptor protein complex. PLoS Biol 9:e1001170. https://doi.org/10.1371/journal.pbio.1001170 DOI
Hirst J, Edgar JR, Esteves T et al (2015) Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Hum Mol Genet 24:4984–4996. https://doi.org/10.1093/hmg/ddv220 DOI
Dacks JB, Field MC (2018) Evolutionary origins and specialisation of membrane transport. Curr Opin Cell Biol 53:70–76. https://doi.org/10.1016/j.ceb.2018.06.001 DOI
More K, Klinger CM, Barlow LD, Dacks JB (2020) Evolution and natural history of membrane trafficking in eukaryotes. Curr Biol 30:R553–R564. https://doi.org/10.1016/j.cub.2020.03.068 DOI
Archibald JM, Simpson AGB, Slamovits CH (2017) Handbook of the protists, 2nd edn. Springer DOI
Mowbrey K, Dacks JB (2009) Evolution and diversity of the Golgi body. FEBS Lett 583:3738–3745. https://doi.org/10.1016/j.febslet.2009.10.025 DOI
Klute MJ, Melaçon P, Dacks JB (2011) Evolution and diversity of the Golgi. Cold Spring Harb Perspect Biol 3:1–17. https://doi.org/10.1101/cshperspect.a007849 DOI
Cavalier-Smith T (1987) The origin of eukaryote and archaebacterial cells. Ann N Y Acad Sci 503:17–54. https://doi.org/10.1111/j.1749-6632.1987.tb40596.x DOI
Dacks JB, Davis LAM, Sjögren AM et al (2003) Evidence for Golgi bodies in proposed “Golgi-lacking” lineages. Proc Biol Sci 270(Suppl):S168–S171. https://doi.org/10.1098/rsbl.2003.0058 DOI
Marti M, Hehl AB (2003) Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends Parasitol 19:440–446. https://doi.org/10.1016/S1471-4922(03)00201-0 DOI
Talamás-Lara D, Acosta-Virgen K, Chávez-Munguía B et al (2021) Golgi apparatus components in Entamoeba histolytica and Entamoeba dispar after monensin treatment. Microsc Res Tech 84:1887–1896. https://doi.org/10.1002/jemt.23745 DOI
Beznoussenko GV, Ragnini-Wilson A, Wilson C, Mironov AA (2016) Three-dimensional and immune electron microscopic analysis of the secretory pathway in Saccharomyces cerevisiae. Histochem Cell Biol 146:515–527. https://doi.org/10.1007/s00418-016-1483-y DOI
Herman EK, Yiangou L, Cantoni DM et al (2018) Identification and characterisation of the cryptic Golgi apparatus in Naegleria gruberi:J Cell Sci, jcs.213306. https://doi.org/10.1242/jcs.213306
Kurz S, Tiedtke A (1993) The Golgi Apparatus of Tetrahymena Thermophila. J Eukaryot Microbiol 40:10–13. https://doi.org/10.1111/j.1550-7408.1993.tb04874.x DOI
Brugerolle G, Viscogliosi E (1994) Organization and composition of the striated roots supporting the Golgi apparatus, the so-called parabasal apparatus, in parabasalid flagellates. Biol Cell 81:277–285. https://doi.org/10.1016/0248-4900(94)90010-8 DOI
Barlow LD, Nývltová E, Aguilar M et al (2018) A sophisticated, differentiated Golgi in the ancestor of eukaryotes. BMC Biol 16. https://doi.org/10.1186/s12915-018-0492-9
Cantalapiedra CP, Hernández-Plaza A, Letunic I et al (2021) eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 38(12):5825–5829 DOI
Huerta-Cepas J, Szklarczyk D, Heller D et al (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/gky1085 DOI
Blum M, Chang H-Y, Chuguransky S et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49:D344–D354. https://doi.org/10.1093/nar/gkaa977 DOI
Li L (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189. https://doi.org/10.1101/gr.1224503 DOI
Cosentino S, Iwasaki W (2019) SonicParanoid: fast, accurate and easy orthology inference. Bioinformatics 35:149–151. https://doi.org/10.1093/bioinformatics/bty631 DOI
Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238. https://doi.org/10.1186/s13059-019-1832-y DOI
Burgos PV, Mardones GA, Rojas AL et al (2010) Sorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complex. Dev Cell 18:425–436. https://doi.org/10.1016/j.devcel.2010.01.015 DOI
Hirst J, Bright NA, Rous B, Robinson MS (1999) Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 10:2787–2802. https://doi.org/10.1091/mbc.10.8.2787 DOI
Davies AK, Itzhak DN, Edgar JR et al (2018) AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun 9:3958. https://doi.org/10.1038/s41467-018-06172-7 DOI
Barlow LD, Dacks JB, Wideman JG (2014) From all to (nearly) none: tracing adaptin evolution in Fungi. Cell Logist 4:e28114. https://doi.org/10.4161/cl.28114 DOI
Field MC, Gabernet-Castello C, Dacks JB (2007) Reconstructing the evolution of the endocytic system: insights from genomics and molecular cell biology. Adv Exp Med Biol 607:84–96. https://doi.org/10.1007/978-0-387-74021-8_7 DOI
Wilson G (2016) Software carpentry: lessons learned. F1000Research 3(62):10.12688/f1000research.3-62.v2
Ekblom R, Wolf JBW (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7:1026–1042. https://doi.org/10.1111/eva.12178 DOI
Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13:329–342. https://doi.org/10.1038/nrg3174 DOI
Pearson WR (2013) An Introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinforma 1:1286–1292. https://doi.org/10.1002/0471250953.bi0301s42.An DOI
Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421 DOI
Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763. https://doi.org/10.1093/bioinformatics/14.9.755 DOI
Altenhoff AM, Dessimoz C (2012) Inferring orthology and paralogy. In: Anisimova M (ed) Evolutionary genomics. Humana Press, Totowa, NJ, pp 259–279 DOI
Gabaldón T (2008) Large-scale assignment of orthology: back to phylogenetics? Genome Biol 9:235. https://doi.org/10.1186/gb-2008-9-10-235 DOI
Hooff JJE, Tromer E, Dam TJP et al (2019) Inferring the evolutionary history of your favorite protein: a guide for molecular biologists. BioEssays 41:1900006. https://doi.org/10.1002/bies.201900006 DOI
Barlow LD (2022) AMOEBAE v3.0. Zenodo. https://doi.org/10.5281/zenodo.5825385
Rivera MC, Jain R, Moore JE, Lake JA (1998) Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci 95:6239–6244. https://doi.org/10.1073/pnas.95.11.6239 DOI
Deutekom ES, Vosseberg J, van Dam TJP, Snel B (2019) Measuring the impact of gene prediction on gene loss estimates in Eukaryotes by quantifying falsely inferred absences. PLOS Comput Biol 15:e1007301. https://doi.org/10.1371/journal.pcbi.1007301 DOI
Larson RT, Dacks JB, Barlow LD (2019) Recent gene duplications dominate evolutionary dynamics of adaptor protein complex subunits in embryophytes. Traffic 20:961–973. https://doi.org/10.1111/tra.12698 DOI
Molder F, Jablonski KP, Letcher B et al (2021) Sustainable data analysis with Snakemake. F1000Res 10:33 DOI
Field HI, Coulson RM, Field MC (2013) An automated graphics tool for comparative genomics: the Coulson plot generator. BMC Bioinformatics 14:141. https://doi.org/10.1186/1471-2105-14-141 DOI
Steinegger M, Meier M, Mirdita M et al (2019) HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20:473. https://doi.org/10.1186/s12859-019-3019-7 DOI
The retromer and retriever systems are conserved and differentially expanded in parabasalids
Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes
Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans