Comparative Genomics for Evolutionary Cell Biology Using AMOEBAE: Understanding the Golgi and Beyond

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36512230

Taking an evolutionary approach to cell biology can yield important new information about how the cell works and how it evolved to do so. This is true of the Golgi apparatus, as it is of all systems within the cell. Comparative genomics is one of the crucial first steps to this line of research, but comes with technical challenges that must be overcome for rigor and robustness. We here introduce AMOEBAE, a workflow for mid-range scale comparative genomic analyses. It allows for customization of parameters, queries, and taxonomic sampling of genomic and transcriptomics data. This protocol article covers the rationale for an evolutionary approach to cell biological study (i.e., when would AMOEBAE be useful), how to use AMOEBAE, and discussion of limitations. It also provides an example dataset, which demonstrates that the Golgi protein AP4 Epsilon is present as the sole retained subunit of the AP4 complex in basidiomycete fungi. AMOEBAE can facilitate comparative genomic studies by balancing reproducibility and speed with user-input and interpretation. It is hoped that AMOEBAE or similar tools will encourage cell biologists to incorporate an evolutionary context into their research.

Zobrazit více v PubMed

Lynch M, Field MC, Goodson HV et al (2014) Evolutionary cell biology: two origins, one objective. Proc Natl Acad Sci 111:16990–16994. https://doi.org/10.1073/pnas.1415861111 DOI

Horváthová L, Žárský V, Pánek T et al (2021) Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat Commun 12:2947. https://doi.org/10.1038/s41467-021-23046-7 DOI

Chan CJ, Le R, Burns K et al (2019) BioID performed on Golgi-enriched fractions identify C10orf76 as a GBF1-binding protein essential for Golgi maintenance and secretion. Mol Cell Proteomics 18:2285–2297. https://doi.org/10.1074/mcp.RA119.001645 DOI

McNally KE, Faulkner R, Steinberg F et al (2017) Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol 19:1214–1225. https://doi.org/10.1038/ncb3610 DOI

Stairs CW, Dharamshi JE, Tamarit D et al (2020) Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Sci Adv 6:eabb7258. https://doi.org/10.1126/sciadv.abb7258 DOI

Zaremba-Niedzwiedzka K, Caceres EF, Saw JH et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358. https://doi.org/10.1038/nature21031 DOI

Archuleta TL, Frazier MN, Monken AE et al (2017) Structure and evolution of ENTH and VHS/ENTH-like domains in tepsin. Traffic 18:590–603. https://doi.org/10.1111/tra.12499 DOI

Gershlick DC, Schindler C, Chen Y, Bonifacino JS (2016) TSSC1 is novel component of the endosomal retrieval machinery. Mol Biol Cell 27:2867–2878. https://doi.org/10.1091/mbc.e16-04-0209 DOI

Kirkham M, Nixon SJ, Howes MT et al (2008) Evolutionary analysis and molecular dissection of caveola biogenesis. J Cell Sci 121:2075–2086. https://doi.org/10.1242/jcs.024588 DOI

Leung KF, Dacks JB, Field MC (2008) Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9:1698–1716. https://doi.org/10.1111/j.1600-0854.2008.00797.x DOI

Hirst J, Schlacht A, Norcott JP et al (2014) Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife 3:e02866. https://doi.org/10.7554/eLife.02866 DOI

Hirst J, Barlow LD, Francisco GC et al (2011) The fifth adaptor protein complex. PLoS Biol 9:e1001170. https://doi.org/10.1371/journal.pbio.1001170 DOI

Hirst J, Edgar JR, Esteves T et al (2015) Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Hum Mol Genet 24:4984–4996. https://doi.org/10.1093/hmg/ddv220 DOI

Dacks JB, Field MC (2018) Evolutionary origins and specialisation of membrane transport. Curr Opin Cell Biol 53:70–76. https://doi.org/10.1016/j.ceb.2018.06.001 DOI

More K, Klinger CM, Barlow LD, Dacks JB (2020) Evolution and natural history of membrane trafficking in eukaryotes. Curr Biol 30:R553–R564. https://doi.org/10.1016/j.cub.2020.03.068 DOI

Archibald JM, Simpson AGB, Slamovits CH (2017) Handbook of the protists, 2nd edn. Springer DOI

Mowbrey K, Dacks JB (2009) Evolution and diversity of the Golgi body. FEBS Lett 583:3738–3745. https://doi.org/10.1016/j.febslet.2009.10.025 DOI

Klute MJ, Melaçon P, Dacks JB (2011) Evolution and diversity of the Golgi. Cold Spring Harb Perspect Biol 3:1–17. https://doi.org/10.1101/cshperspect.a007849 DOI

Cavalier-Smith T (1987) The origin of eukaryote and archaebacterial cells. Ann N Y Acad Sci 503:17–54. https://doi.org/10.1111/j.1749-6632.1987.tb40596.x DOI

Dacks JB, Davis LAM, Sjögren AM et al (2003) Evidence for Golgi bodies in proposed “Golgi-lacking” lineages. Proc Biol Sci 270(Suppl):S168–S171. https://doi.org/10.1098/rsbl.2003.0058 DOI

Marti M, Hehl AB (2003) Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends Parasitol 19:440–446. https://doi.org/10.1016/S1471-4922(03)00201-0 DOI

Talamás-Lara D, Acosta-Virgen K, Chávez-Munguía B et al (2021) Golgi apparatus components in Entamoeba histolytica and Entamoeba dispar after monensin treatment. Microsc Res Tech 84:1887–1896. https://doi.org/10.1002/jemt.23745 DOI

Beznoussenko GV, Ragnini-Wilson A, Wilson C, Mironov AA (2016) Three-dimensional and immune electron microscopic analysis of the secretory pathway in Saccharomyces cerevisiae. Histochem Cell Biol 146:515–527. https://doi.org/10.1007/s00418-016-1483-y DOI

Herman EK, Yiangou L, Cantoni DM et al (2018) Identification and characterisation of the cryptic Golgi apparatus in Naegleria gruberi:J Cell Sci, jcs.213306. https://doi.org/10.1242/jcs.213306

Kurz S, Tiedtke A (1993) The Golgi Apparatus of Tetrahymena Thermophila. J Eukaryot Microbiol 40:10–13. https://doi.org/10.1111/j.1550-7408.1993.tb04874.x DOI

Brugerolle G, Viscogliosi E (1994) Organization and composition of the striated roots supporting the Golgi apparatus, the so-called parabasal apparatus, in parabasalid flagellates. Biol Cell 81:277–285. https://doi.org/10.1016/0248-4900(94)90010-8 DOI

Barlow LD, Nývltová E, Aguilar M et al (2018) A sophisticated, differentiated Golgi in the ancestor of eukaryotes. BMC Biol 16. https://doi.org/10.1186/s12915-018-0492-9

Cantalapiedra CP, Hernández-Plaza A, Letunic I et al (2021) eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 38(12):5825–5829 DOI

Huerta-Cepas J, Szklarczyk D, Heller D et al (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/gky1085 DOI

Blum M, Chang H-Y, Chuguransky S et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49:D344–D354. https://doi.org/10.1093/nar/gkaa977 DOI

Li L (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189. https://doi.org/10.1101/gr.1224503 DOI

Cosentino S, Iwasaki W (2019) SonicParanoid: fast, accurate and easy orthology inference. Bioinformatics 35:149–151. https://doi.org/10.1093/bioinformatics/bty631 DOI

Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238. https://doi.org/10.1186/s13059-019-1832-y DOI

Burgos PV, Mardones GA, Rojas AL et al (2010) Sorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complex. Dev Cell 18:425–436. https://doi.org/10.1016/j.devcel.2010.01.015 DOI

Hirst J, Bright NA, Rous B, Robinson MS (1999) Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 10:2787–2802. https://doi.org/10.1091/mbc.10.8.2787 DOI

Davies AK, Itzhak DN, Edgar JR et al (2018) AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun 9:3958. https://doi.org/10.1038/s41467-018-06172-7 DOI

Barlow LD, Dacks JB, Wideman JG (2014) From all to (nearly) none: tracing adaptin evolution in Fungi. Cell Logist 4:e28114. https://doi.org/10.4161/cl.28114 DOI

Field MC, Gabernet-Castello C, Dacks JB (2007) Reconstructing the evolution of the endocytic system: insights from genomics and molecular cell biology. Adv Exp Med Biol 607:84–96. https://doi.org/10.1007/978-0-387-74021-8_7 DOI

Wilson G (2016) Software carpentry: lessons learned. F1000Research 3(62):10.12688/f1000research.3-62.v2

Ekblom R, Wolf JBW (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7:1026–1042. https://doi.org/10.1111/eva.12178 DOI

Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13:329–342. https://doi.org/10.1038/nrg3174 DOI

Pearson WR (2013) An Introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinforma 1:1286–1292. https://doi.org/10.1002/0471250953.bi0301s42.An DOI

Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421 DOI

Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763. https://doi.org/10.1093/bioinformatics/14.9.755 DOI

Altenhoff AM, Dessimoz C (2012) Inferring orthology and paralogy. In: Anisimova M (ed) Evolutionary genomics. Humana Press, Totowa, NJ, pp 259–279 DOI

Gabaldón T (2008) Large-scale assignment of orthology: back to phylogenetics? Genome Biol 9:235. https://doi.org/10.1186/gb-2008-9-10-235 DOI

Hooff JJE, Tromer E, Dam TJP et al (2019) Inferring the evolutionary history of your favorite protein: a guide for molecular biologists. BioEssays 41:1900006. https://doi.org/10.1002/bies.201900006 DOI

Barlow LD (2022) AMOEBAE v3.0. Zenodo. https://doi.org/10.5281/zenodo.5825385

Rivera MC, Jain R, Moore JE, Lake JA (1998) Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci 95:6239–6244. https://doi.org/10.1073/pnas.95.11.6239 DOI

Deutekom ES, Vosseberg J, van Dam TJP, Snel B (2019) Measuring the impact of gene prediction on gene loss estimates in Eukaryotes by quantifying falsely inferred absences. PLOS Comput Biol 15:e1007301. https://doi.org/10.1371/journal.pcbi.1007301 DOI

Larson RT, Dacks JB, Barlow LD (2019) Recent gene duplications dominate evolutionary dynamics of adaptor protein complex subunits in embryophytes. Traffic 20:961–973. https://doi.org/10.1111/tra.12698 DOI

Molder F, Jablonski KP, Letcher B et al (2021) Sustainable data analysis with Snakemake. F1000Res 10:33 DOI

Field HI, Coulson RM, Field MC (2013) An automated graphics tool for comparative genomics: the Coulson plot generator. BMC Bioinformatics 14:141. https://doi.org/10.1186/1471-2105-14-141 DOI

Steinegger M, Meier M, Mirdita M et al (2019) HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20:473. https://doi.org/10.1186/s12859-019-3019-7 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...