Frataxin, a conserved mitochondrial protein, in the hydrogenosome of Trichomonas vaginalis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 DK053953
NIDDK NIH HHS - United States
R37 DK053953
NIDDK NIH HHS - United States
060068
Wellcome Trust - United Kingdom
DK53953
NIDDK NIH HHS - United States
PubMed
17573543
PubMed Central
PMC1951141
DOI
10.1128/ec.00027-07
PII: EC.00027-07
Knihovny.cz E-zdroje
- MeSH
- frataxin MeSH
- genetická transkripce MeSH
- konzervovaná sekvence MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- organely metabolismus MeSH
- proteiny vázající železo genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- Trichomonas vaginalis genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- proteiny vázající železo MeSH
Recent data suggest that frataxin plays a key role in eukaryote cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (FeS) cluster biosynthesis. We have now identified a frataxin homologue (T. vaginalis frataxin) from the human parasite Trichomonas vaginalis. Instead of mitochondria, this unicellular eukaryote possesses hydrogenosomes, peculiar organelles that produce hydrogen but nevertheless share common ancestry with mitochondria. T. vaginalis frataxin contains conserved residues implicated in iron binding, and in silico, it is predicted to form a typical alpha-beta sandwich motif. The short N-terminal extension of T. vaginalis frataxin resembles presequences that target proteins to hydrogenosomes, a prediction confirmed by the results of overexpression of T. vaginalis frataxin in T. vaginalis. When expressed in the mitochondria of a frataxin-deficient Saccharomyces cerevisiae strain, T. vaginalis frataxin partially restored defects in heme and FeS cluster biosynthesis. Although components of heme synthesis or heme-containing proteins have not been found in T. vaginalis to date, T. vaginalis frataxin was also shown to interact with S. cerevisiae ferrochelatase by using a Biacore assay. The discovery of conserved iron-metabolizing pathways in mitochondria and hydrogenosomes provides additional evidence not only of their common evolutionary history, but also of the fundamental importance of this pathway for eukaryotes.
Zobrazit více v PubMed
Abrahamsen, M. S., T. J. Templeton, S. Enomoto, J. E. Abrahante, G. Zhu, C. A. Lancto, M. Deng, C. Liu, G. Widmer, S. Tzipori, G. A. Buck, P. Xu, A. T. Bankier, P. H. Dear, B. A. Konfortov, H. F. Spriggs, L. Iyer, V. Anantharaman, L. Aravind, and V. Kapur. 2004. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441-445. PubMed
Adinolfi, S., M. Trifuoggi, A. S. Politou, S. Martin, and A. Pastore. 2002. A structural approach to understanding the iron-binding properties of phylogenetically different frataxins. Hum. Mol. Genet. 11:1865-1877. PubMed
Agar, J. N., C. Krebs, J. Frazzon, B. H. Huynh, D. R. Dean, and M. K. Johnson. 2000. IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39:7856-7862. PubMed
Ali, V., Y. Shigeta, U. Tokumoto, Y. Takahashi, and T. Nozaki. 2004. An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions. J. Biol. Chem. 279:16863-16874. PubMed
Aloria, K., B. Schilke, A. Andrew, and E. A. Craig. 2004. Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo. EMBO Rep. 5:1096-1101. PubMed PMC
Babcock, M., D. de Silva, R. Oaks, S. Davis-Kaplan, S. Jiralerspong, L. Montermini, M. Pandolfo, and J. Kaplan. 1997. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709-1712. PubMed
Camadro, J. M., and P. Labbe. 1988. Purification and properties of ferrochelatase from the yeast Saccharomyces cerevisiae. Evidence for a precursor form of the protein. J. Biol. Chem. 263:11675-11682. PubMed
Campanella, A., G. Isaya, H. A. O'Neill, P. Santambrogio, A. Cozzi, P. Arosio, and S. Levi. 2004. The expression of human mitochondrial ferritin rescues respiratory function in frataxin-deficient yeast. Hum. Mol. Genet. 13:2279-2288. PubMed
Carlton, J. M., R. P. Hirt, J. C. Silva, A. L. Delcher, M. Schatz, Q. Zhao, J. R. Wortman, S. L. Bidwell, U. C. Alsmark, S. Besteiro, T. Sicheritz-Ponten, C. J. Noel, J. B. Dacks, P. G. Foster, C. Simillion, Y. Van de Peer, D. Miranda-Saavedra, G. J. Barton, G. D. Westrop, S. Müller, D. Dessi, P. L. Fiori, Q. Ren, I. Paulsen, H. Zhang, F. D. Bastida-Corcuera, A. Simoes-Barbosa, M. T. Brown, R. D. Hayes, M. Mukherjee, C. Y. Okumura, R. Schneider, A. J. Smith, S. Vanacova, M. Villalvazo, B. J. Haas, M. Pertea, T. V. Feldblyum, T. R. Utterback, C. L. Shu, K. Osoegawa, P. J. de Jong, I. Hrdy, L. Horvathova, Z. Zubacova, P. Dolezal, S. B. Malik, J. M. Logsdon, Jr., K. Henze, A. Gupta, C. C. Wang, R. L. Dunne, J. A. Upcroft, P. Upcroft, O. White, S. L. Salzberg, P. Tang, C. H. Chiu, Y. S. Lee, T. M. Embley, G. H. Coombs, J. C. Mottram, J. Tachezy, C. M. Fraser-Liggett, and P. J. Johnson. 2007. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207-212. PubMed PMC
Cho, S. J., M. G. Lee, J. K. Yang, J. Y. Lee, H. K. Song, and S. W. Suh. 2000. Crystal structure of Escherichia coli CyaY protein reveals a previously unidentified fold for the evolutionarily conserved frataxin family. Proc. Natl. Acad. Sci. USA 97:8932-8937. PubMed PMC
Condo, I., N. Ventura, F. Malisan, B. Tomassini, and R. Testi. 2006. A pool of extramitochondrial frataxin that promotes cell survival. J. Biol. Chem. 281:16750-16756. PubMed
Dhe-Paganon, S., R. Shigeta, Y. I. Chi, M. Ristow, and S. E. Shoelson. 2000. Crystal structure of human frataxin. J. Biol. Chem. 275:30753-30756. PubMed
Durr, A. 2002. Friedreich's ataxia: treatment within reach. Lancet Neurol. 1:370-374. PubMed
Gakh, O., J. Adamec, A. M. Gacy, R. D. Twesten, W. G. Owen, and G. Isaya. 2002. Physical evidence that yeast frataxin is an iron storage protein. Biochemistry 41:6798-6804. PubMed
Gerber, J., K. Neumann, C. Prohl, U. Mühlenhoff, and R. Lill. 2004. The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe/S proteins. Mol. Cell. Biol. 24:4848-4857. PubMed PMC
Gora, M., E. Grzybowska, J. Rytka, and R. Labbe-Bois. 1996. Probing the active-site residues in Saccharomyces cerevisiae ferrochelatase by directed mutagenesis. In vivo and in vitro analyses. J. Biol. Chem. 271:11810-11816. PubMed
Gordon, D. M., M. Kogan, S. A. Knight, A. Dancis, and D. Pain. 2001. Distinct roles for two N-terminal cleaved domains in mitochondrial import of the yeast frataxin homolog, Yfh1p. Hum. Mol. Genet. 10:259-269. PubMed
He, Y., S. L. Alam, S. V. Proteasa, Y. Zhang, E. Lesuisse, A. Dancis, and T. L. Stemmler. 2004. Yeast frataxin solution structure, iron binding, and ferrochelatase interaction. Biochemistry 43:16254-16262. PubMed PMC
Hrdy, I., R. P. Hirt, P. Dolezal, L. Bardonova, P. G. Foster, J. Tachezy, and T. M. Embley. 2004. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618-622. PubMed
Karthikeyan, G., J. H. Santos, M. A. Graziewicz, W. C. Copeland, G. Isaya, B. Van Houten, and M. A. Resnick. 2003. Reduction in frataxin causes progressive accumulation of mitochondrial damage. Hum. Mol. Genet. 12:3331-3342. PubMed
Katinka, M. D., S. Duprat, E. Cornillot, G. Metenier, F. Thomarat, G. Prensier, V. Barbe, E. Peyretaillade, P. Brottier, P. Wincker, F. Delbac, A. H. El Alaoui, P. Peyret, W. Saurin, M. Gouy, J. Weissenbach, and C. P. Vivares. 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450-453. PubMed
LaGier, M. J., J. Tachezy, F. Stejskal, K. Kutisova, and J. S. Keithly. 2003. Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. Microbiology 149:3519-3530. PubMed
Lesuisse, E., R. Santos, B. F. Matzanke, S. A. Knight, J. M. Camadro, and A. Dancis. 2003. Iron use for haeme synthesis is under control of the yeast frataxin homologue (Yfh1). Hum. Mol. Genet. 12:879-889. PubMed
Li, J., M. Kogan, S. A. Knight, D. Pain, and A. Dancis. 1999. Yeast mitochondrial protein, Nfs1p, coordinately regulates iron-sulfur cluster proteins, cellular iron uptake, and iron distribution. J. Biol. Chem. 274:33025-33034. PubMed
Lill, R., and G. Kispal. 2000. Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem. Sci. 25:352-356. PubMed
Liston, D. R., and P. J. Johnson. 1999. Analysis of a ubiquitous promoter element in a primitive eukaryote: early evolution of the initiator element. Mol. Cell. Biol. 19:2380-2388. PubMed PMC
Loftus, B., I. Anderson, R. Davies, U. C. Alsmark, J. Samuelson, P. Amedeo, P. Roncaglia, M. Berriman, R. P. Hirt, B. J. Mann, T. Nozaki, B. Suh, M. Pop, M. Duchene, J. Ackers, E. Tannich, M. Leippe, M. Hofer, I. Bruchhaus, U. Willhoeft, A. Bhattacharya, T. Chillingworth, C. Churcher, Z. Hance, B. Harris, D. Harris, K. Jagels, S. Moule, K. Mungall, D. Ormond, R. Squares, S. Whitehead, M. A. Quail, E. Rabbinowitsch, H. Norbertczak, C. Price, Z. Wang, N. Guillen, C. Gilchrist, S. E. Stroup, S. Bhattacharya, A. Lohia, P. G. Foster, T. Sicheritz-Ponten, C. Weber, U. Singh, C. Mukherjee, N. M. El-Sayed, W. A. Petri, Jr., C. G. Clark, T. M. Embley, B. Barrell, C. M. Fraser, and N. Hall. 2005. The genome of the protist parasite Entamoeba histolytica. Nature 433:865-868. PubMed
McAlister-Henn, L., and L. M. Thompson. 1987. Isolation and expression of the gene encoding yeast mitochondrial malate dehydrogenase. J. Bacteriol. 169:5157-5166. PubMed PMC
O'Neill, H. A., O. Gakh, S. Park, J. Cui, S. M. Mooney, M. Sampson, G. C. Ferreira, and G. Isaya. 2005. Assembly of human frataxin is a mechanism for detoxifying redox-active iron. Biochemistry 44:537-545. PubMed
Raguzzi, F., E. Lesuisse, and R. R. Crichton. 1988. Iron storage in Saccharomyces cerevisiae. FEBS Lett. 231:253-258. PubMed
Rouault, T. A. 2006. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2:406-414. PubMed
Santos, R., N. Buisson, S. A. Knight, A. Dancis, J. M. Camadro, and E. Lesuisse. 2004. Candida albicans lacking the frataxin homologue: a relevant yeast model for studying the role of frataxin. Mol. Microbiol. 54:507-519. PubMed
Santos, R., A. Dancis, D. Eide, J. M. Camadro, and E. Lesuisse. 2003. Zinc suppresses the iron-accumulation phenotype of Saccharomyces cerevisiae lacking the yeast frataxin homologue (Yfh1). Biochem. J. 375:247-254. PubMed PMC
Schilke, B., C. Voisine, H. Beinert, and E. Craig. 1999. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 96:10206-10211. PubMed PMC
Schwede, T., J. Kopp, N. Guex, and M. C. Peitsch. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31:3381-3385. PubMed PMC
Slapeta, J., and J. S. Keithly. 2004. Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria. Eukaryot. Cell 3:483-494. PubMed PMC
Smid, O., E. Horakova, V. Vilimova, I. Hrdy, R. Cammack, A. Horvath, J. Lukes, and J. Tachezy. 2006. Knock-downs of iron-sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei. J. Biol. Chem. 281:28679-28686. PubMed
Sutak, R., P. Dolezal, H. L. Fiumera, I. Hrdy, A. Dancis, M. Delgadillo-Correa, P. J. Johnson, M. Müller, and J. Tachezy. 2004. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 101:10368-10373. PubMed PMC
Tachezy, J., L. B. Sanchez, and M. Müller. 2001. Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol. Biol. Evol. 18:1919-1928. PubMed
Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. PubMed PMC
Tovar, J., G. Leon-Avila, L. B. Sanchez, R. Sutak, J. Tachezy, M. van der Giezen, M. Hernandez, M. Müller, and J. M. Lucocq. 2003. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172-178. PubMed
Vanacova, S., D. Rasoloson, J. Razga, I. Hrdy, J. Kulda, and J. Tachezy. 2001. Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology 147:53-62. PubMed
Vanacova, S., J. Tachezy, E. Ullu, and C. Tschudi. 2001. Unusual diversity in alpha-amanitin sensitivity of RNA polymerases in trichomonads. Mol. Biochem. Parasitol. 115:239-247. PubMed
van der Giezen, M., S. Cox, and J. Tovar. 2004. The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol. Biol. 4:7. PubMed PMC
Wilson, R. B., and D. M. Roof. 1997. Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nat. Genet. 16:352-357. PubMed
Yoon, T., and J. A. Cowan. 2003. Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J. Am. Chem. Soc. 125:6078-6084. PubMed
Yuvaniyama, P., J. N. Agar, V. L. Cash, M. K. Johnson, and D. R. Dean. 2000. NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc. Natl. Acad. Sci. USA 97:599-604. PubMed PMC
Zhang, Y., E. R. Lyver, S. A. Knight, E. Lesuisse, and A. Dancis. 2005. Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis. J. Biol. Chem. 280:19794-19807. PubMed
Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis
Fe-S cluster assembly in the supergroup Excavata
Live imaging of mitosomes and hydrogenosomes by HaloTag technology