Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37792908
PubMed Central
PMC10578589
DOI
10.1371/journal.ppat.1010773
PII: PPATHOGENS-D-22-01282
Knihovny.cz E-zdroje
- MeSH
- anaerobióza MeSH
- Giardia lamblia * genetika metabolismus MeSH
- lidé MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondrie metabolismus MeSH
- proteiny obsahující železo a síru * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- proteiny obsahující železo a síru * MeSH
Mitochondrial metabolism is entirely dependent on the biosynthesis of the [4Fe-4S] clusters, which are part of the subunits of the respiratory chain. The mitochondrial late ISC pathway mediates the formation of these clusters from simpler [2Fe-2S] molecules and transfers them to client proteins. Here, we characterized the late ISC pathway in one of the simplest mitochondria, mitosomes, of the anaerobic protist Giardia intestinalis that lost the respiratory chain and other hallmarks of mitochondria. In addition to IscA2, Nfu1 and Grx5 we identified a novel BolA1 homologue in G. intestinalis mitosomes. It specifically interacts with Grx5 and according to the high-affinity pulldown also with other core mitosomal components. Using CRISPR/Cas9 we were able to establish full bolA1 knock out, the first cell line lacking a mitosomal protein. Despite the ISC pathway being the only metabolic role of the mitosome no significant changes in the mitosome biology could be observed as neither the number of the mitosomes or their capability to form [2Fe-2S] clusters in vitro was affected. We failed to identify natural client proteins that would require the [2Fe-2S] or [4Fe-4S] cluster within the mitosomes, with the exception of [2Fe-2S] ferredoxin, which is itself part of the ISC pathway. The overall uptake of iron into the cellular proteins remained unchanged as also observed for the grx5 knock out cell line. The pull-downs of all late ISC components were used to build the interactome of the pathway showing specific position of IscA2 due to its interaction with the outer mitosomal membrane proteins. Finally, the comparative analysis across Metamonada species suggested that the adaptation of the late ISC pathway identified in G. intestinalis occurred early in the evolution of this supergroup of eukaryotes.
Department of Biology Lund University Lund Sweden
Department of Cell and Molecular Biology Biomedical Center Uppsala University Uppsala Sweden
Laboratory of Microbiology Wageningen University and Research Wageningen The Netherlands
Zobrazit více v PubMed
Adam RD. Giardia duodenalis: Biology and Pathogenesis. Clin Microbiol Rev. 2021;34. doi: 10.1128/CMR.00024-19 PubMed DOI PMC
Leger MM, Kolísko M, Stairs CW, Simpson AGB. Mitochondrion-related organelles in free-living protists. In: Tachezy J, editor. Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes Microbiology Monographs. 2019. pp. 287–308.
Martincová E, Voleman L, Pyrih J, Žárský V, Vondráčková P, Kolísko M, et al.. Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol Cell Biol. 2015;35: 2864–74. doi: 10.1128/MCB.00448-15 PubMed DOI PMC
Jedelský P, Doležal P, Rada P, Pyrih J, Smíd O, Hrdý I, et al.. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One. 2011;6: e17285. doi: 10.1371/journal.pone.0017285 PubMed DOI PMC
Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, et al.. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426: 172–176. doi: 10.1038/nature01945 PubMed DOI
Fuss JO, Tsai C-L, Ishida JP, Tainer JA. Emerging critical roles of Fe-S clusters in DNA replication and repair. Biochim Biophys Acta. 2015;176: 139–148. doi: 10.1016/j.bbamcr.2015.01.018 PubMed DOI PMC
Andreini C, Banci L, Rosato A. Exploiting bacterial operons to illuminate human iron-sulfur proteins. J Proteome Res. 2016;15: 1308–1322. doi: 10.1021/acs.jproteome.6b00045 PubMed DOI
Fontecave M. Iron-sulfur clusters: ever-expanding roles. Nat Chem Biol. 2006;2: 171–174. doi: 10.1038/nchembio0406-171 PubMed DOI
Braymer JJ, Lill R. Iron–sulfur cluster biogenesis and trafficking in mitochondria. Journal of Biological Chemistry. 2017;292: 12754–12763. doi: 10.1074/jbc.R117.787101 PubMed DOI PMC
Mühlenhoff U, Gerber J, Richhardt N, Lill R. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J. 2003;22: 4815–4825. doi: 10.1093/emboj/cdg446 PubMed DOI PMC
Shi R, Proteau A, Villarroya M, Moukadiri I, Zhang L, Trempe JF, et al.. Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. PLoS Biol. 2010;8. doi: 10.1371/journal.pbio.1000354 PubMed DOI PMC
Adam AC, Bornhövd C, Prokisch H, Neupert W, Hell K. The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria. EMBO Journal. 2006;25: 174–183. doi: 10.1038/sj.emboj.7600905 PubMed DOI PMC
Wiedemann N, Urzica E, Guiard B, Müller H, Lohaus C, Meyer HE, et al.. Essential role of Isd11 in mitochondrial iron-sulfur cluster synthesis on Isu scaffold proteins. EMBO Journal. 2006;25: 184–195. doi: 10.1038/sj.emboj.7600906 PubMed DOI PMC
Pandey A, Golla R, Yoon H, Dancis A, Pain D. Persulfide formation on mitochondrial cysteine desulfurase: Enzyme activation by a eukaryote-specific interacting protein and Fe-S cluster synthesis. Biochemical Journal. 2012;448: 171–187. doi: 10.1042/BJ20120951 PubMed DOI
Cory SA, van Vranken JG, Brignole EJ, Patra S, Winge DR, Drennan CL, et al.. Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions. Proc Natl Acad Sci U S A. 2017;114: E5325–E5334. doi: 10.1073/pnas.1702849114 PubMed DOI PMC
van Vranken JG, Jeong MY, Wei P, Chen YC, Gygi SP, Winge DR, et al.. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. Elife. 2016;5. doi: 10.7554/eLife.17828 PubMed DOI PMC
Maio N, Jain A, Rouault TA. Mammalian iron–sulfur cluster biogenesis: Recent insights into the roles of frataxin, acyl carrier protein and ATPase-mediated transfer to recipient proteins. Curr Opin Chem Biol. 2020;55: 34–44. doi: 10.1016/j.cbpa.2019.11.014 PubMed DOI PMC
Bridwell-Rabb J, Fox NG, Tsai CL, Winn AM, Barondeau DP. Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry. Biochemistry. 2014;53: 4904–4913. doi: 10.1021/bi500532e PubMed DOI PMC
Webert H, Freibert SA, Gallo A, Heidenreich T, Linne U, Amlacher S, et al.. Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nat Commun. 2014;5. doi: 10.1038/ncomms6013 PubMed DOI
Maio N, Rouault TA. Mammalian Fe-S proteins: Definition of a consensus motif recognized by the co-chaperone HSC20. Metallomics. 2016;8: 1032–1046. doi: 10.1039/c6mt00167j PubMed DOI PMC
Mühlenhoff U, Braymer JJ, Christ S, Rietzschel N, Uzarska MA, Weiler BD, et al.. Glutaredoxins and iron-sulfur protein biogenesis at the interface of redox biology and iron metabolism. Biol Chem. 2020;401: 1407–1428. doi: 10.1515/hsz-2020-0237 PubMed DOI
Gelling C, Dawes IW, Richhardt N, Lill R, Muhlenhoff U. Mitochondrial Iba57p is required for Fe/S Cluster formation on aconitase and activation of radical SAM enzymes. Mol Cell Biol. 2008;28: 1851–1861. doi: 10.1128/MCB.01963-07 PubMed DOI PMC
Brancaccio D, Gallo A, Mikolajczyk M, Zovo K, Palumaa P, Novellino E, et al.. Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery. J Am Chem Soc. 2014;136: 16240–16250. doi: 10.1021/ja507822j PubMed DOI
Cai K, Liu G, Frederick RO, Xiao R, Montelione GT, Markley JL. Structural/functional properties of human NFU1, an intermediate [4Fe-4S] carrier in human mitochondrial iron-sulfur cluster biogenesis. Structure. 2016;24: 2080–2091. doi: 10.1016/j.str.2016.08.020 PubMed DOI PMC
Melber A, Na U, Vashisht A, Weiler BD, Lill R, Wohlschlegel JA, et al.. Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients. Elife. 2016;5. doi: 10.7554/eLife.15991 PubMed DOI PMC
Bych K, Kerscher S, Netz DJA, Pierik AJ, Zwicker K, Huynen MA, et al.. The iron-sulphur protein Ind1 is required for effective complex I assembly. EMBO Journal. 2008;27: 1736–1746. doi: 10.1038/emboj.2008.98 PubMed DOI PMC
Uzarska MA, Nasta V, Weiler BD, Spantgar F, Ciofi-Baffoni S, Saviello MR, et al.. Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins. Elife. 2016;5. doi: 10.7554/eLife.16673 PubMed DOI PMC
Willems P, Wanschers BFJ, Esseling J, Szklarczyk R, Kudla U, Duarte I, et al.. BOLA1 Is an aerobic protein that prevents mitochondrial morphology changes induced by glutathione depletion. Antioxid Redox Signal. 2013;18: 129–138. doi: 10.1089/ars.2011.4253 PubMed DOI PMC
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Current Biology. 2017;27: R1177–R1192. doi: 10.1016/j.cub.2017.09.015 PubMed DOI
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, et al.. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 2017;1: 0092. doi: 10.1038/s41559-017-0092 PubMed DOI PMC
Rada P, Šmíd O, Sutak R, Doležal P, Pyrih J, Žárský V, et al.. The monothiol single-domain glutaredoxin is conserved in the highly reduced mitochondria of Giardia intestinalis. Eukaryot Cell. 2009;8: 1584–1591. doi: 10.1128/EC.00181-09 PubMed DOI PMC
Xu F, Jex A, Svärd SG. A chromosome-scale reference genome for Giardia intestinalis WB. Sci Data. 2020;7: 38. doi: 10.1038/s41597-020-0377-y PubMed DOI PMC
Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, et al.. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science. 2007;317: 1921–6. doi: 10.1126/science.1143837 PubMed DOI
Li H, Outten CE. Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis. Biochemistry. 2012;51: 4377–4389. doi: 10.1021/bi300393z PubMed DOI PMC
Kasai T, Inoue M, Koshiba S, Yabuki T, Aoki M, Nunokawa E, et al.. Solution structure of a BolA-like protein from Mus musculus. Protein Sci. 2004;13: 545–548. doi: 10.1110/PS.03401004 PubMed DOI PMC
Chin KH, Lin FY, Hu YC, Sze KH, Lyu PC, Chou SH. NMR structure note–Solution structure of a bacterial BolA-like protein XC975 from a plant pathogen Xanthomonas campestris pv. campestris. Journal of Biomolecular NMR 2005 31:2. 2005;31: 167–172. doi: 10.1007/S10858-004-7804-9 PubMed DOI
Kumánovics A, Chen OS, Li L, Bagley D, Adkins EM, Lin H, et al.. Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. Journal of Biological Chemistry. 2008;283: 10276–10286. doi: 10.1074/jbc.M801160200 PubMed DOI PMC
Cameron JM, Janer A, Levandovskiy V, MacKay N, Rouault TA, Tong WH, et al.. Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am J Hum Genet. 2011;89: 486–495. doi: 10.1016/j.ajhg.2011.08.011 PubMed DOI PMC
Li H, Mapolelo DT, Randeniya S, Johnson MK, Outten CE. Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2. Biochemistry. 2012;51: 1687–1696. doi: 10.1021/bi2019089 PubMed DOI PMC
Aurrecoechea C, Barreto A, Basenko EY, Brestelli J, Brunk BP, Cade S, et al.. EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Res. 2017;45: D581–D591. doi: 10.1093/nar/gkw1105 PubMed DOI PMC
Talib EA, Outten CE. Iron-sulfur cluster biogenesis, trafficking, and signaling: Roles for CGFS glutaredoxins and BolA proteins. Biochim Biophys Acta Mol Cell Res. 2021;1868. doi: 10.1016/j.bbamcr.2020.118847 PubMed DOI PMC
Horáčková V, Voleman L, Hagen KD, Petrů M, Vinopalová M, Weisz F, et al.. CRISPR/Cas9-mediated gene disruption in the tetraploid protist Giardia intestinalis. Open Biol. 2022; 2021.04.21.440745. doi: 10.1101/2021.04.21.440745 PubMed DOI PMC
Pain D, Dancis A. Roles of Fe–S proteins: from cofactor synthesis to iron homeostasis to protein synthesis. Curr Opin Genet Dev. 2016;38: 45–51. doi: 10.1016/j.gde.2016.03.006 PubMed DOI PMC
Van Vranken JG, Na U, Winge DR, Rutter J. Protein-mediated assembly of succinate dehydrogenase and its cofactors. Critical Reviews in Biochemistry and Molecular Biology. Informa Healthcare; 2015. pp. 168–180. doi: 10.3109/10409238.2014.990556 PubMed DOI PMC
Beinert H, Kennedy MC, Stout CD. Aconitase as iron−sulfur protein, enzyme, and iron-regulatory protein. Chem Rev. 1996;96: 2335–2373. doi: 10.1021/CR950040Z PubMed DOI
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron–sulfur proteins in plant mitochondria: roles and maturation. J Exp Bot. 2021;72: 2014–2044. doi: 10.1093/jxb/eraa578 PubMed DOI
Valasatava Y, Rosato A, Banci L, Andreini C. MetalPredator: A web server to predict iron-sulfur cluster binding proteomes. Bioinformatics. 2016;32: 2850–2852. doi: 10.1093/bioinformatics/btw238 PubMed DOI
Pyrih J, Pyrihová E, Kolísko M, Stojanovová D, Basu S, Harant K, et al.. Minimal cytosolic iron-sulfur cluster assembly machinery of Giardia intestinalis is partially associated with mitosomes. Mol Microbiol. 2016;102: 701–714. doi: 10.1111/mmi.13487 PubMed DOI
Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancis A, Delgadillo-Correa M, et al.. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A. 2004;101: 10368–73. doi: 10.1073/pnas.0401319101 PubMed DOI PMC
Webert H, Freibert SA, Gallo A, Heidenreich T, Linne U, Amlacher S, et al.. Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nature Communications 2014 5:1. 2014;5: 1–12. doi: 10.1038/ncomms6013 PubMed DOI
Gervason S, Larkem D, Mansour A Ben, Botzanowski T, Müller CS, Pecqueur L, et al.. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nature Communications 2019 10:1. 2019;10: 1–12. doi: 10.1038/s41467-019-11470-9 PubMed DOI PMC
Lesuisse E, Knight SAB, Courel M, Santos R, Camadro JM, Dancis A. Genome-wide screen for genes with effects on distinct iron uptake activities in Saccharomyces cerevisiae. Genetics. 2005;169: 107–122. doi: 10.1534/genetics.104.035873 PubMed DOI PMC
Rodríguez-Manzaneque MT, Tamarit J, Bellí G, Ros J, Herrero E. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell. 2002;13: 1109–1121. doi: 10.1091/mbc.01-10-0517 PubMed DOI PMC
Schilke B, Voisine C, Beinert H, Craig E. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1999;96: 10206–10211. doi: 10.1073/pnas.96.18.10206 PubMed DOI PMC
Jensen LT, Culotta VC. Role of Saccharomyces cerevisiae ISA1 and ISA2 in Iron Homeostasis. Mol Cell Biol. 2000;20: 3918–3927. doi: 10.1128/MCB.20.11.3918-3927.2000 PubMed DOI PMC
Yang J, Wagner SA, Beli P. Illuminating spatial and temporal organization of protein interaction networks by mass spectrometry-based proteomics. Front Genet. 2015;6: 344. doi: 10.3389/fgene.2015.00344 PubMed DOI PMC
Leitsch D, Müller J, Müller N. Evaluation of Giardia lamblia thioredoxin reductase as drug activating enzyme and as drug target. Int J Parasitol Drugs Drug Resist. 2016;6: 148–153. doi: 10.1016/j.ijpddr.2016.07.003 PubMed DOI PMC
Rout S, Zumthor JP, Schraner EM, Faso C, Hehl AB. An interactome-centered protein discovery approach reveals novel components involved in mitosome function and homeostasis in Giardia lamblia. PLoS Pathog. 2016;12: e1006036. doi: 10.1371/journal.ppat.1006036 PubMed DOI PMC
Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, Buchanan SK, et al.. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol. 2009;26: 1941–7. doi: 10.1093/molbev/msp117 PubMed DOI PMC
Stairs CW, Táborský P, Salomaki ED, Kolisko M, Pánek T, Eme L, et al.. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Current Biology. 2021;31: 5605–5612.e5. doi: 10.1016/j.cub.2021.10.010 PubMed DOI
Weiler BD, Brück MC, Kothe I, Bill E, Lill R, Mühlenhoff U. Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1–ISCA2 by electron flow from ferredoxin FDX2. Proc Natl Acad Sci U S A. 2020;117: 20555–20565. doi: 10.1073/pnas.2003982117 PubMed DOI PMC
Vargová R, Hanousková P, Salamonová J, Žihala D, Silberman JD, Eliáš M, Čepička I. Evidence for an Independent Hydrogenosome-to-Mitosome Transition in the CL3 Lineage of Fornicates. Front Microbiol. 2022. May 19;13:866459. doi: 10.3389/fmicb.2022.866459 PubMed DOI PMC
Goldberg A v., Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, et al.. Localization and functionality of microsporidian iron–sulphur cluster assembly proteins. Nature. 2008;452: 624–628. doi: 10.1038/nature06606 PubMed DOI
Lill R. From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biological Chemistry. De Gruyter; 2020. pp. 855–876. doi: 10.1515/hsz-2020-0117 PubMed DOI
Dolezal P, Dancis A, Lesuisse E, Sutak R, Hrdý I, Embley TM, et al.. Frataxin, a conserved mitochondrial protein, in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell. 2007;6: 1431–8. doi: 10.1128/EC.00027-07 PubMed DOI PMC
Tsaousis AD. On the origin of iron/sulfur cluster biosynthesis in eukaryotes. Front Microbiol. 2019;10. doi: 10.3389/fmicb.2019.02478 PubMed DOI PMC
Rouault TA. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech. 2012;5: 155–164. doi: 10.1242/dmm.009019 PubMed DOI PMC
Frey AG, Palenchar DJ, Wildemann JD, Philpott CC. A glutaredoxin·BolA complex serves as an iron-sulfur cluster chaperone for the cytosolic cluster assembly machinery. J Biol Chem. 2016;291: 22344. doi: 10.1074/JBC.M116.744946 PubMed DOI PMC
Sen S, Rao B, Wachnowsky C, Cowan JA. Cluster exchange reactivity of [2Fe-2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins. Metallomics. 2018;10: 1282–1290. doi: 10.1039/c8mt00128f PubMed DOI PMC
Voleman L, Najdrová V, Ástvaldsson Á, Tůmová P, Einarsson E, Švindrych Z, et al.. Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biol. 2017;15: 1–27. doi: 10.1186/s12915-017-0361-y PubMed DOI PMC
Jain A, Singh A, Maio N, Rouault TA. Assembly of the [4Fe–4S] cluster of NFU1 requires the coordinated donation of two [2Fe–2S] clusters from the scaffold proteins, ISCU2 and ISCA1. Hum Mol Genet. 2020;29: 3165–3182. doi: 10.1093/hmg/ddaa172 PubMed DOI PMC
Roland M, Przybyla-Toscano J, Vignols F, Berger N, Azam T, Christ L, et al.. The plastidial Arabidopsis thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins. Journal of Biological Chemistry. 2020;295: 1727–1742. doi: 10.1074/JBC.RA119.011034 PubMed DOI PMC
Rojas-López L, Krakovka S, Einarsson E, Ribacke U, Xu F, Jerlström-Hultqvist J, et al.. A Detailed Gene Expression Map of Giardia Encystation. Genes (Basel). 2021;12. doi: 10.3390/genes12121932 PubMed DOI PMC
Kispal G, Csere P, Prohl C, Lill R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 1999;18: 3981–3989. doi: 10.1093/emboj/18.14.3981 PubMed DOI PMC
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al.. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596:7873. 2021;596: 583–589. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC
Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, et al.. EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community Journal. 2022;2. doi: 10.24072/PCJOURNAL.173 DOI
Füssy Z, Vinopalová M, Treitli SC, Pánek T, Smejkalová P, Čepička I, et al.. Retortamonads from vertebrate hosts share features of anaerobic metabolism and pre-adaptations to parasitism with diplomonads. Parasitol Int. 2021;82: 102308. doi: 10.1016/j.parint.2021.102308 PubMed DOI PMC
Yazaki E, Kume K, Shiratori T, Eglit Y, Tanifuji G, Harada R, et al.. Barthelonids represent a deep-branching metamonad clade with mitochondrion-related organelles predicted to generate no ATP. Proc Biol Sci. 2020;287. doi: 10.1098/rspb.2020.1538 PubMed DOI PMC
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28: 3150–3152. doi: 10.1093/bioinformatics/bts565 PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30: 772–780. doi: 10.1093/molbev/mst010 PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25: 1972–1973. doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al.. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol. 2020;37: 1530–1534. doi: 10.1093/molbev/msaa015 PubMed DOI PMC
Dolezal P, Smíd O, Rada P, Zubácová Z, Bursać D, Suták R, et al.. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A. 2005;102: 10924–9. doi: 10.1073/pnas.0500349102 PubMed DOI PMC
Najdrová V, Stairs CW, Vinopalová M, Voleman L, Doležal P. The evolution of the Puf superfamily of proteins across the tree of eukaryotes. BMC Biol. 2020;18: 1–18. doi: 10.1186/s12915-020-00814-3 PubMed DOI PMC
Keister DB. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg. 1983;77: 487–488. doi: 10.1016/0035-9203(83)90120-7 PubMed DOI
Martincová E, Voleman L, Najdrová V, de Napoli M, Eshar S, Gualdron M, et al.. Live imaging of mitosomes and hydrogenosomes by HaloTag technology. PLoS One. 2012;7: e36314. doi: 10.1371/journal.pone.0036314 PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9: 671–675. doi: 10.1038/nmeth.2089 PubMed DOI PMC
Malych R, Stopka P, Mach J, Kotabová E, Prášil O, Sutak R. Flow cytometry-based study of model marine microalgal consortia revealed an ecological advantage of siderophore utilization by the dinoflagellate Amphidinium carterae. Comput Struct Biotechnol J. 2022;20: 287–295. doi: 10.1016/j.csbj.2021.12.023 PubMed DOI PMC
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26: 1367–1372. doi: 10.1038/nbt.1511 PubMed DOI
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen J v., Mann M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10: 1794–1805. doi: 10.1021/PR101065J/SUPPL_FILE/PR101065J_SI_002.ZIP PubMed DOI
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13: 731–740. doi: 10.1038/nmeth.3901 PubMed DOI
Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Scientific Reports 2020 10:1. 2020;10: 1–5. doi: 10.1038/s41598-020-76603-3 PubMed DOI PMC
Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43: W566–W570. doi: 10.1093/nar/gkv468 PubMed DOI PMC
Pyrihová E, Motyčková A, Voleman L, Wandyszewska N, Fišer R, Seydlová G, et al.. A single Tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Martin B, editor. Genome Biol Evol. 2018;10: 2813–2822. doi: 10.1093/gbe/evy215 PubMed DOI PMC