A Single Tim Translocase in the Mitosomes of Giardia intestinalis Illustrates Convergence of Protein Import Machines in Anaerobic Eukaryotes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dopisy, práce podpořená grantem
Grantová podpora
MOP-142349
CIHR - Canada
PubMed
30265292
PubMed Central
PMC6200312
DOI
10.1093/gbe/evy215
PII: 5110072
Knihovny.cz E-zdroje
- MeSH
- anaerobióza MeSH
- Giardia lamblia enzymologie MeSH
- mitochondrie enzymologie MeSH
- molekulární evoluce * MeSH
- sekvence aminokyselin MeSH
- transportní proteiny mitochondriální membrány metabolismus MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transportní proteiny mitochondriální membrány MeSH
Mitochondria have evolved diverse forms across eukaryotic diversity in adaptation to anoxia. Mitosomes are the simplest and the least well-studied type of anaerobic mitochondria. Transport of proteins via TIM complexes, composed of three proteins of the Tim17 protein family (Tim17/22/23), is one of the key unifying aspects of mitochondria and mitochondria-derived organelles. However, multiple experimental and bioinformatic attempts have so far failed to identify the nature of TIM in mitosomes of the anaerobic metamonad protist, Giardia intestinalis, one of the few experimental models for mitosome biology. Here, we present the identification of a single G. intestinalis Tim17 protein (GiTim17), made possible only by the implementation of a metamonad-specific hidden Markov model. While very divergent in primary sequence and in predicted membrane topology, experimental data suggest that GiTim17 is an inner membrane mitosomal protein, forming a disulphide-linked dimer. We suggest that the peculiar GiTim17 sequence reflects adaptation to the unusual, detergent resistant, inner mitosomal membrane. Specific pull-down experiments indicate interaction of GiTim17 with mitosomal Tim44, the tethering component of the import motor complex. Analysis of TIM complexes across eukaryote diversity suggests that a "single Tim" translocase is a convergent adaptation of mitosomes in anaerobic protists, with Tim22 and Tim17 (but not Tim23), providing the protein backbone.
Biology Centre CAS České Budějovice Czech Republic
Department of Genetics and Microbiology Charles University Praha 2 Czech Republic
Department of Parasitology Faculty of Science Charles University Vestec Czech Republic
Zobrazit více v PubMed
Alva V, Nam S-Z, Söding J, Lupas AN.. 2016. The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res. 44(W1):W410–W415. PubMed PMC
Aurrecoechea C, et al. 2017. EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Res. 45(D1):D581–D591. PubMed PMC
Burri L, Williams BAP, Bursac D, Lithgow T, Keeling PJ.. 2006. Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc Natl Acad Sci U S A. 103(43):15916–15920. PubMed PMC
Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N.. 2009. Importing mitochondrial proteins: machineries and mechanisms. Cell 138(4):628–644. PubMed PMC
Collins LJ, Poole AM, Penny D.. 2003. Using ancestral sequences to uncover potential gene homologues. Appl Bioinformatics 2(3 Suppl):S85–S95. PubMed
Cox J, et al. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13(9):2513–2526. PubMed PMC
Dagley MJ, et al. 2009. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol. 26(9):1941–1947. PubMed PMC
Dawson SC, et al. 2007. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell 6(12):2354–2364. PubMed PMC
Demishtein-Zohary K, et al. 2017. Role of Tim17 in coupling the import motor to the translocation channel of the mitochondrial presequence translocase. Elife 6:1–11. PubMed PMC
Dolezal P, et al. 2005. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A. 102(31):10924–10929. PubMed PMC
Dolezal P, Likic V, Tachezy J, Lithgow T.. 2006. Evolution of the molecular machines for protein import into mitochondria. Science 313(5785):314–318. PubMed
Dudek J, Rehling P, van der Laan M.. 2013. Mitochondrial protein import: common principles and physiological networks. Biochim Biophys Acta-Mol Cell Res. 1833(2):274–285. PubMed
Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol. 7(10):e1002195.. PubMed PMC
Fukasawa Y, Oda T, Tomii K, Imai K.. 2017. Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol Biol Evol. 34(7):1574–1586. PubMed PMC
Garg S, et al. 2015. Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol Evol. 7(9):2716–2726. PubMed PMC
Gasteiger E, et al. 2005. Protein identification and analysis tools on the ExPASy server In: The proteomics protocols handbook. Totowa (NJ: ): Humana Press; p. 571–607.
Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW.. 2005. The unusual mitochondrial compartment of Cryptosporidium parvum. Trends Parasitol. 21(2):68–74. PubMed
Hildebrand A, Remmert M, Biegert A, Soding J.. 2009. Fast and accurate automatic structure prediction with HHpred. Proteins 77 (Suppl 9):128–132. PubMed
Ishihama Y, Rappsilber J, Mann M.. 2006. Modular stop and go extraction tips with stacked disks for parallel and multidimensional peptide fractionation in proteomics. J Proteome Res. 5(4):988–994. PubMed
Jakobs S, Wurm CA.. 2014. Super-resolution microscopy of mitochondria. Curr Opin Chem Biol. 20:9–15. PubMed
Jedelský PL, et al. 2011. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS ONE. 6(2):e17285. PubMed PMC
Käll L, Krogh A, Sonnhammer ELL.. 2007. Advantages of combined transmembrane topology and signal peptide prediction – the Phobius web server. Nucleic Acids Res. 35(Web Server):W429–W432. PubMed PMC
Katoh K, Standley DM.. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780. PubMed PMC
Keister DB. 1983. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg. 77(4):487–488. PubMed
Kovermann P, et al. 2002. Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol Cell. 9(2):363–373. PubMed
Krogh A, Larsson B, von Heijne G, Sonnhammer EL.. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 305(3):567–580. PubMed
Kronidou NG, et al. 1994. Dynamic interaction between Isp45 and mitochondrial hsp70 in the protein import system of the yeast mitochondrial inner membrane. Proc Natl Acad Sci USA. 91(26):12818–12822. PubMed PMC
Leger MM, et al. 2017. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 1(4):0092. PubMed PMC
Leitsch D, Müller J, Müller N.. 2016. Evaluation of Giardia lamblia thioredoxin reductase as drug activating enzyme and as drug target. Int J Parasitol Drugs Drug Resist. 6(3):148–153. PubMed PMC
Likic VA, Dolezal P, Celik N, Dagley M, Lithgow T.. 2010. Using hidden markov models to discover new protein transport machines. Methods Mol Biol. 619:271–284. PubMed
Lithgow T, Schneider A.. 2010. Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond B Biol Sci. 365(1541):799–817. PubMed PMC
Martincová E, et al. 2012. Live imaging of mitosomes and hydrogenosomes by HaloTag technology. PLoS One. 7(4):e36314. PubMed PMC
Martincová E, et al. 2015. Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol Cell Biol. 35(16):2864–2874. PubMed PMC
Martinez-Caballero S, Grigoriev SM, Herrmann JM, Campo ML, Kinnally KW.. 2007. Tim17p regulates the twin pore structure and voltage gating of the mitochondrial protein import complex TIM23. J Biol Chem. 282(6):3584–3593. PubMed
Masuda T, Tomita M, Ishihama Y.. 2008. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 7(2):731–740. PubMed
Mokranjac D, Neupert W.. 2010. The many faces of the mitochondrial TIM23 complex. Biochim Biophys Acta. 1797(6–7):1045–1054. PubMed
Morrison HG, et al. 2007. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317(5846):1921–1926. PubMed
Rehling P, et al. 2003. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299(5613):1747–1751. PubMed
Roger AJ, Muñoz-Gómez SA, Kamikawa R.. 2017. The origin and diversification of mitochondria. Curr Biol. 27(21):R1177–R1192. PubMed
Rout S, Zumthor JP, Schraner EM, Faso C, Hehl AB.. 2016. An interactome-centered protein discovery approach reveals novel components involved in mitosome function and homeostasis in Giardia lamblia. PLOS Pathog. 12(12):e1006036.. PubMed PMC
Schagger H, Pfeiffer K.. 2000. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 19(8):1777–1783. PubMed PMC
Schneider A, Bursać D, Lithgow T.. 2008. The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes. Trends Cell Biol. 18(1):12–18. PubMed
Schneider H-C, et al. 1994. Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371(6500):768–774. PubMed
Shiflett AM, Johnson PJ.. 2010. Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol. 64:409–429. PubMed PMC
Singha UK, et al. 2008. Characterization of the mitochondrial inner membrane protein translocator Tim17 from Trypanosoma brucei. Mol Biochem Parasitol. 159(1):30–43. PubMed PMC
Singha UK, et al. 2012. Protein translocase of mitochondrial inner membrane in Trypanosoma brucei. J Biol Chem. 287(18):14480–14493. PubMed PMC
Šmíd O, et al. 2008. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog. 4(12):e1000243. PubMed PMC
Sojo V, Dessimoz C, Pomiankowski A, Lane N.. 2016. Membrane proteins are dramatically less conserved than water-soluble proteins across the tree of life. Mol Biol Evol. 33(11):2874–2884. PubMed PMC
Ting S-Y, Yan NL, Schilke BA, Craig EA.. 2017. Dual interaction of scaffold protein Tim44 of mitochondrial import motor with channel-forming translocase subunit Tim23. Elife 6:1–22. PubMed PMC
Tovar J, et al. 2003. Mitochondrial remnant organelles of Giardia function in iron–sulphur protein maturation. Nature 426(6963):172–176. PubMed
Tyanova S, et al. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 13(9):731–740. PubMed
Vitali DG, et al. 2018. Independent evolution of functionally exchangeable mitochondrial outer membrane import complexes. Elife 7:1–22. PubMed PMC
Voleman L, et al. 2017. Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biol. 15:27. PubMed PMC
Žárský V, Doležal P.. 2016. Evolution of the Tim17 protein family. Biol Direct. 11(1):54.. PubMed PMC
A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis
Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria
Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes
Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis
Reduced mitochondria provide an essential function for the cytosolic methionine cycle
Evidence for an Independent Hydrogenosome-to-Mitosome Transition in the CL3 Lineage of Fornicates
High quality genome assembly of the amitochondriate eukaryote Monocercomonoides exilis
The Mastigamoeba balamuthi Genome and the Nature of the Free-Living Ancestor of Entamoeba
The evolution of the Puf superfamily of proteins across the tree of eukaryotes
Mitochondrial dynamics in parasitic protists