Retortamonads from vertebrate hosts share features of anaerobic metabolism and pre-adaptations to parasitism with diplomonads

. 2021 Jun ; 82 () : 102308. [epub] 20210221

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33626397
Odkazy

PubMed 33626397
PubMed Central PMC7985675
DOI 10.1016/j.parint.2021.102308
PII: S1383-5769(21)00027-1
Knihovny.cz E-zdroje

Although the mitochondria of extant eukaryotes share a single origin, functionally these organelles diversified to a great extent, reflecting lifestyles of the organisms that host them. In anaerobic protists of the group Metamonada, mitochondria are present in reduced forms (also termed hydrogenosomes or mitosomes) and a complete loss of mitochondrion in Monocercomonoides exilis (Metamonada:Preaxostyla) has also been reported. Within metamonads, retortamonads from the gastrointestinal tract of vertebrates form a sister group to parasitic diplomonads (e.g. Giardia and Spironucleus) and have also been hypothesized to completely lack mitochondria. We obtained transcriptomic data from Retortamonas dobelli and R. caviae and searched for enzymes of the core metabolism as well as mitochondrion- and parasitism-related proteins. Our results indicate that retortamonads have a streamlined metabolism lacking pathways for metabolites they are probably capable of obtaining from prey bacteria or their environment, reminiscent of the biochemical arrangement in other metamonads. Retortamonads were surprisingly found do encode homologs of components of Giardia's remarkable ventral disk, as well as homologs of regulatory NEK kinases and secreted lytic enzymes known for involvement in host colonization by Giardia. These can be considered pre-adaptations of these intestinal microorganisms to parasitism. Furthermore, we found traces of the mitochondrial metabolism represented by iron‑sulfur cluster assembly subunits, subunits of mitochondrial translocation and chaperone machinery and, importantly, [FeFe]‑hydrogenases and hydrogenase maturases (HydE, HydF and HydG). Altogether, our results strongly suggest that a remnant mitochondrion is still present.

Zobrazit více v PubMed

Kulda J., Nohýnková E., Čepička I. Handbook of the Protists. 2017. Retortamonadida (with notes on Carpediemonas-like organisms and Caviomonadidae) pp. 1–32. (ISBN 978-3-319-32669-6)

Kolísko M., Čepička I., Hampl V., Leigh J., Roger A.J., Kulda J., Simpson A.G.B., Flegr J. Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: implications for the evolutionary history of the double karyomastigont of diplomonads. BMC Evol. Biol. 2008;8:1–14. doi: 10.1186/1471-2148-8-205. PubMed DOI PMC

Hendarto J., Mizuno T., Hidayati A.P.N., Rozi I.E., Asih P.B.S., Syafruddin D., Yoshikawa H., Matsubayashi M., Tokoro M. Three monophyletic clusters in Retortamonas species isolated from vertebrates. Parasitol. Int. 2019;69:93–98. doi: 10.1016/j.parint.2018.12.004. PubMed DOI

Smejkalová B.P. Charles University; 2010. Evolution of the Group Retortamonadida (Eukaryota: Excavata: Fornicata) [Diploma Thesis, in Czech]

Hampl V., Simpson A.G.B. Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes. Springer; Berlin, Heidelberg: 2006. Possible mitochondria-related organelles in poorly-studied “amitochondriate” eukaryotes; pp. 265–282.

Müller M., Mentel M., van Hellemond J.J., Henze K., Woehle C., Gould S.B., Yu R.-Y., van der Giezen M., Tielens A.G.M., Martin W.F. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 2012;76:444–495. doi: 10.1128/MMBR.05024-11. PubMed DOI PMC

Stairs C.W., Leger M.M., Roger A.J. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2015;370 doi: 10.1098/rstb.2014.0326. PubMed DOI PMC

Leger M.M., Kolisko M., Kamikawa R., Stairs C.W., Kume K., Čepička I., Silberman J.D., Andersson J.O., Xu F., Yabuki A. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat. Ecol. Evol. 2017;1:1–15. doi: 10.1038/s41559-017-0092. PubMed DOI PMC

Igamberdiev A.U., Kleczkowski L.A. Magnesium and cell energetics in plants under anoxia. Biochem. J. 2011;437:373–379. doi: 10.1042/BJ20110213. PubMed DOI

Slamovits C.H., Keeling P.J. Pyruvate-phosphate dikinase of oxymonads and parabasalia and the evolution of pyrophosphate-dependent glycolysis in anaerobic eukaryotes. Eukaryot. Cell. 2006;5:148–154. doi: 10.1128/EC.5.1.148-154.2006. PubMed DOI PMC

Berg J., Tymoczko J., Stryer L. Biochemistry. 5th edition. W H Freeman; New York: 2002. Section 16.4, Gluconeogenesis and glycolysis are reciprocally regulated.

Schofield P.J., Costello M., Edwards M.R., O’sullivan W.J. The arginine dihydrolase pathway is present in Giardia intestinalis. Int. J. Parasitol. 1990;20:697–699. doi: 10.1016/0020-7519(90)90133-8. PubMed DOI

Biagini G.A., McIntyre P.S., Finlay B.J., Lloyd D. Carbohydrate and amino acid fermentation in the free-living primitive protozoon Hexamita sp. Appl. Environ. Microbiol. 1998;64:203–207. doi: 10.1128/aem.64.1.203-207.1998. PubMed DOI PMC

Yarlett N., Martinez M.P., Moharrami M.A., Tachezy J. The contribution of the arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis. Mol. Biochem. Parasitol. 1996;78:117–125. doi: 10.1016/S0166-6851(96)02616-3. PubMed DOI

Xu F., Jerlström-Hultqvist J., Einarsson E., Ástvaldsson Á., Svärd S.G., Andersson J.O. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet. 2014;10 doi: 10.1371/journal.pgen.1004053. PubMed DOI PMC

Koendjbiharie J.G., Hon S., Pabst M., Hooftman R., Stevenson D.M., Cui J., Amador-Noguez D., Lynd L.R., Olson D.G., van Kranenburg R. The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase. J. Biol. Chem. 2020;295:1867–1878. doi: 10.1074/jbc.RA119.011239. PubMed DOI PMC

Yichoy M., Duarte T.T., De Chatterjee A., Mendez T.L., Aguilera K.Y., Roy D., Roychowdhury S., Aley S.B., Das S. Lipid metabolism in Giardia: a post-genomic perspective. Parasitology. 2011;138:267–278. doi: 10.1017/S0031182010001277. PubMed DOI PMC

Jordan I.K., Henze K., Fedorova N.D., Koonin E.V., Galperin M.Y. Phylogenomic analysis of the Giardia intestinalis transcarboxylase reveals multiple instances of domain fusion and fission in the evolution of biotin-dependent enzymes. J. Mol. Microbiol. Biotechnol. 2003;5:172–189. doi: 10.1159/000070268. PubMed DOI

Garat B., Musto H. Trends of amino acid usage in the proteins from the unicellular parasite Giardia lamblia. Biochem. Biophys. Res. Commun. 2000;279:996–1000. doi: 10.1006/bbrc.2000.4051. PubMed DOI

Davids B.J., Reiner D.S., Birkeland S.R., Preheim S.P., Cipriano M.J., McArthur A.G., Gillin F.D. A new family of giardial cysteine-rich non-VSP protein genes and a novel cyst protein. PLoS One. 2006;1 doi: 10.1371/journal.pone.0000044. PubMed DOI PMC

Aurrecoechea C., Brestelli J., Brunk B.P., Carlton J.M., Dommer J., Fischer S., Gajria B., Gao X., Gingle A., Grant G. GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res. 2009;37:526–530. doi: 10.1093/nar/gkn631. PubMed DOI PMC

Xu F., Jerlström-Hultqvist J., Kolisko M., Simpson A.G.B., Roger A.J., Svärd S.G., Andersson J.O. On the reversibility of parasitism: adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. BMC Biol. 2016;14:1–15. doi: 10.1186/s12915-016-0284-z. PubMed DOI PMC

Šmíd O., Matušková A., Harris S.R., Kučera T., Novotný M., Horváthová L., Hrdý I., Kutějová E., Hirt R.P., Embley T.M. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog. 2008;4 doi: 10.1371/journal.ppat.1000243. PubMed DOI PMC

Pyrih J., Pyrihová E., Kolísko M., Stojanovová D., Basu S., Harant K., Haindrich A.C., Doležal P., Lukeš J., Roger A. Minimal cytosolic iron-sulfur cluster assembly machinery of Giardia intestinalis is partially associated with mitosomes. Mol. Microbiol. 2016;102:701–714. doi: 10.1111/mmi.13487. PubMed DOI

Pyrihová E., Motyčková A., Voleman L., Wandyszewska N., Fišer R., Seydlová G., Roger A., Kolísko M., Doležal P. A single Tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Genome Biol. Evol. 2018;10:2813–2822. doi: 10.1093/gbe/evy215. PubMed DOI PMC

Jedelský P.L., Doležal P., Rada P., Pyrih J., Šmíd O., Hrdý I., Šedinová M., Marcinčiková M., Voleman L., Perry A.J. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One. 2011;6:15–21. doi: 10.1371/journal.pone.0017285. PubMed DOI PMC

Martincová E., Voleman L., Pyrih J., Žárský V., Vondráčková P., Kolísko M., Tachezy J., Doležal P. Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol. Cell. Biol. 2015;35:2864–2874. doi: 10.1128/mcb.00448-15. PubMed DOI PMC

Brugerolle G. The symbiotic fauna of the African termite Hodotermes mossambicus identification of four flagellate species of the genera Spironympha, Trichomonoides and Retortamonas. Parasitol. Res. 2006;98:257–263. doi: 10.1007/s00436-005-0002-1. PubMed DOI

Matthews R.G., Green J.M. Folate biosynthesis, reduction, and polyglutamylation and the interconversion of folate derivatives. EcoSal Plus. 2007;2 doi: 10.1128/ecosalplus.3.6.3.6. PubMed DOI

Chiba Y., Terada T., Kameya M., Shimizu K., Arai H., Ishii M., Igarashi Y. Mechanism for folate-independent aldolase reaction catalyzed by serine hydroxymethyltransferase. FEBS J. 2012;279:504–514. doi: 10.1111/j.1742-4658.2011.08443.x. PubMed DOI

Emery S.J., Mirzaei M., Vuong D., Pascovici D., Chick J.M., Lacey E., Haynes P.A. Induction of virulence factors in Giardia duodenalis independent of host attachment. Sci. Rep. 2016;6:1–16. doi: 10.1038/srep20765. PubMed DOI PMC

Liu J., Ma’ayeh S., Peirasmaki D., Lundström-Stadelmann B., Hellman L., Svärd S.G. Secreted Giardia intestinalis cysteine proteases disrupt intestinal epithelial cell junctional complexes and degrade chemokines. Virulence. 2018;9:879–894. doi: 10.1080/21505594.2018.1451284. PubMed DOI PMC

Krasity B.C., Troll J.V., Weiss J.P., McFall-Ngai M.J. LBP/BPI proteins and their relatives: conservation over evolution and roles in mutualism. Biochem. Soc. Trans. 2011;39:1039–1044. doi: 10.1042/BST0391039. PubMed DOI PMC

Xu F., Jiménez-González A., Einarsson E., Ástvaldsson Á., Peirasmaki D., Eckmann L., Andersson J.O., Svärd S.G., Jerlström-Hultqvist J. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microb. Genomics. 2020;6 doi: 10.1099/mgen.0.000402. PubMed DOI PMC

Manning G., Reiner D.S., Lauwaet T., Dacre M., Smith A., Zhai Y., Svard S., Gillin F.D. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol. 2011;12:R66. doi: 10.1186/gb-2011-12-7-r66. PubMed DOI PMC

Das S., Gillin F.D. Giardia lamblia: increased UDP-N-acetyl-D-glucosamine and N-acetyl-D-galactosamine transferase activities during encystation. Exp. Parasitol. 1996;83:19–29. doi: 10.1006/expr.1996.0045. PubMed DOI

Park J.S., Kolisko M., Heiss A.A., Simpson A.G.B. Light microscopic observations, ultrastructure, and molecular phylogeny of Hicanonectes teleskopos n. g., n. sp., a deep-branching relative of diplomonads. J. Eukaryot. Microbiol. 2009;56:373–384. doi: 10.1111/j.1550-7408.2009.00412.x. PubMed DOI

Yubuki N., Zadrobílková E., Čepička I. Ultrastructure and molecular phylogeny of Iotanema spirale gen. nov. et sp. nov., a new lineage of endobiotic Fornicata with strikingly simplified ultrastructure. J. Eukaryot. Microbiol. 2017;64:422–433. doi: 10.1111/jeu.12376. PubMed DOI

Adam R.D. Diplomonadida. In: Archibald J.M., Simpson A.G.B., Slamovits C.H., Margulis L., Melkonian M., Chapman D.J., Corliss J.O., editors. Handbook of the Protists. Springer International Publishing; Cham: 2017. pp. 1–28. (ISBN 978-3-319-32669-6)

Dacks J.B., Davis L.A.M., Sjögren Å.M., Andersson J.O., Roger A.J., Doolittle W.F. Evidence for Golgi bodies in proposed “Golgi-lacking” lineages. Proc. R. Soc. B Biol. Sci. 2003;270:168–171. doi: 10.1098/rsbl.2003.0058. PubMed DOI PMC

Simpson A.G.B., Patterson D.J. The ultrastructure of Carpediemonas membranifera (Eukaryota) with reference to the “excavate hypothesis”. Eur. J. Protistol. 1999;35:353–370. doi: 10.1016/S0932-4739(99)80044-3. DOI

Hagen K.D., Hirakawa M.P., House S.A., Schwartz C.L., Pham J.K., Cipriano M.J., de la Torre M.J., Sek A.C., Du G., Forsythe B.M. Novel structural components of the ventral disc and lateral crest in Giardia intestinalis. PLoS Negl. Trop. Dis. 2011;5 doi: 10.1371/journal.pntd.0001442. PubMed DOI PMC

Louca S., Parfrey L.W., Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–1277. doi: 10.1126/science.aaf4507. (80) PubMed DOI

Füssy Z., Záhonová K., Tomčala A., Krajčovič J., Yurchenko V., Oborník M., Eliáš M. The cryptic plastid of Euglena longa defines a new type of non-photosynthetic plastid organelle. mSphere. 2020;5 PubMed PMC

Liapounova N.A., Hampl V., Gordon P.M.K., Sensen C.W., Gedamu L., Dacks J.B. Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides. Eukaryot. Cell. 2006;5:2138–2146. doi: 10.1128/EC.00258-06. PubMed DOI PMC

Stechmann A., Baumgartner M., Silberman J.D., Roger A.J. The glycolytic pathway of Trimastix pyriformis is an evolutionary mosaic. BMC Evol. Biol. 2006;6:1–17. doi: 10.1186/1471-2148-6-101. PubMed DOI PMC

Carlton J.M., Hirt R.P., Silva J.C., Delcher A.L., Schatz M., Zhao Q., Wortman J.R., Bidwell S.L., Alsmark U.C.M., Besteiro S. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315:207–212. doi: 10.1126/science.1132894. (80) PubMed DOI PMC

Denoeud F., Roussel M., Noel B., Wawrzyniak I., Da Silva C., Diogon M., Viscogliosi E., Brochier-Armanet C., Couloux A., Poulain J. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biol. 2011;12 doi: 10.1186/gb-2011-12-3-r29. PubMed DOI PMC

Tanifuji G., Takabayashi S., Kume K., Takagi M., Nakayama T., Kamikawa R., Inagaki Y., Hashimoto T. The draft genome of Kipferlia bialata reveals reductive genome evolution in fornicate parasites. PLoS One. 2018;13:1–18. doi: 10.1371/journal.pone.0194487. PubMed DOI PMC

Karnkowska A., Treitli S.C., Brzoň O., Novák L., Vacek V., Soukal P., Barlow L.D., Herman E.K., Pipaliya S.V., Pánek T. The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol. Biol. Evol. 2019;36:2292–2312. doi: 10.1093/molbev/msz147. PubMed DOI PMC

Nash T.E. Antigenic variation in Giardia lamblia and the host’s immune response. Philos. Trans. R. Soc. B Biol. Sci. 1997;352:1369–1375. doi: 10.1098/rstb.1997.0122. PubMed DOI PMC

Wein T., Romero Picazo D., Blow F., Woehle C., Jami E., Reusch T.B.H., Martin W.F., Dagan T. Currency, exchange, and inheritance in the evolution of symbiosis. Trends Microbiol. 2019;27:836–849. doi: 10.1016/j.tim.2019.05.010. PubMed DOI

Fu H., Uchimiya M., Gore J., Moran M.A. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc. Natl. Acad. Sci. U. S. A. 2020;117:3656–3662. doi: 10.1073/pnas.1917265117. PubMed DOI PMC

Dobell C., Laidlaw P.P. On the cultivation of Entamoeba histolytica and some other entozoic amoebae. Parasitology. 1926;18:283–318. doi: 10.1017/S0031182000005278. DOI

Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC

Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Richter D., Berney C., Strassert J., Burki F., de Vargas C. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotic life. bioRxiv. 2020:1–11. doi: 10.1101/2020.06.30.180687. DOI

Saier M.H., Reddy V.S., Tsu B.V., Ahmed M.S., Li C., Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): Recent advances. Nucleic Acids Res. 2016;44:D372–D379. doi: 10.1093/nar/gkv1103. PubMed DOI PMC

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI

Jones P., Binns D., Chang H.-Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 1647–1649;2012:28. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Fukasawa Y., Tsuji J., Fu S.-C., Tomii K., Horton P., Imai K. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics. 2015;14:1113–1126. doi: 10.1074/mcp.M114.043083. PubMed DOI PMC

Emanuelsson O., Brunak S., von Heijne G., Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007;2:953–971. doi: 10.1038/nprot.2007.131. PubMed DOI

Blum T., Briesemeister S., Kohlbacher O. MultiLoc2: integrating phylogeny and gene ontology terms improves subcellular protein localization prediction. BMC Bioinforma. 2009;10:274. doi: 10.1186/1471-2105-10-274. PubMed DOI PMC

Kume K., Amagasa T., Hashimoto T., Kitagawa H. NommPred: prediction of mitochondrial and mitochondrion-related organelle proteins of nonmodel organisms. Evol. Bioinforma. 2018;14 doi: 10.1177/1176934318819835. PubMed DOI PMC

Yu C.-S., Chen Y.-C., Lu C.-H., Hwang J.-K. Prediction of protein subcellular localization. Proteins Struct. Funct. Bioinforma. 2006;64:643–651. doi: 10.1002/prot.21018. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace