Combined nanometric and phylogenetic analysis of unique endocytic compartments in Giardia lamblia sheds light on the evolution of endocytosis in Metamonada
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36127707
PubMed Central
PMC9490929
DOI
10.1186/s12915-022-01402-3
PII: 10.1186/s12915-022-01402-3
Knihovny.cz E-zdroje
- Klíčová slova
- Convergent evolution, Endocytosis, Giardia, Metamonada, Peripheral endocytic compartments (PECs), Peripheral vacuoles, Spironucleus, Super-resolution microscopy (SRM), Tritrichomonas, Volumetric electron microscopy,
- MeSH
- endocytóza MeSH
- fylogeneze MeSH
- Giardia lamblia * genetika metabolismus MeSH
- klathrin - lehké řetězce metabolismus MeSH
- klathrin - těžké řetězce genetika metabolismus MeSH
- klathrin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- klathrin - lehké řetězce MeSH
- klathrin - těžké řetězce MeSH
- klathrin MeSH
BACKGROUND: Giardia lamblia, a parasitic protist of the Metamonada supergroup, has evolved one of the most diverged endocytic compartment systems investigated so far. Peripheral endocytic compartments, currently known as peripheral vesicles or vacuoles (PVs), perform bulk uptake of fluid phase material which is then digested and sorted either to the cell cytosol or back to the extracellular space. RESULTS: Here, we present a quantitative morphological characterization of these organelles using volumetric electron microscopy and super-resolution microscopy (SRM). We defined a morphological classification for the heterogenous population of PVs and performed a comparative analysis of PVs and endosome-like organelles in representatives of phylogenetically related taxa, Spironucleus spp. and Tritrichomonas foetus. To investigate the as-yet insufficiently understood connection between PVs and clathrin assemblies in G. lamblia, we further performed an in-depth search for two key elements of the endocytic machinery, clathrin heavy chain (CHC) and clathrin light chain (CLC), across different lineages in Metamonada. Our data point to the loss of a bona fide CLC in the last Fornicata common ancestor (LFCA) with the emergence of a protein analogous to CLC (GlACLC) in the Giardia genus. Finally, the location of clathrin in the various compartments was quantified. CONCLUSIONS: Taken together, this provides the first comprehensive nanometric view of Giardia's endocytic system architecture and sheds light on the evolution of GlACLC analogues in the Fornicata supergroup and, specific to Giardia, as a possible adaptation to the formation and maintenance of stable clathrin assemblies at PVs.
Amt für Lebensmittelsicherheit und Tiergesundheit Graubünden Chur Switzerland
Department of Cell and Molecular Biology University of Uppsala Husargatan 3 752 37 Uppsala Sweden
Department of Microbiology National Veterinary Institute 751 23 Uppsala Sweden
Division of Infectious Diseases Department of Medicine University of Alberta Edmonton Alberta Canada
Institute of Anatomy University of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
Institute of Cell Biology University of Bern Bern Switzerland
Institute of Parasitology University of Zürich Winterthurerstrasse 266a 8057 Zürich Switzerland
Multidisciplinary Center for Infectious Diseases Vetsuisse University of Bern Bern Switzerland
Zobrazit více v PubMed
Heimerl T, Flechsler J, Pickl C, Heinz V, Salecker B, Zweck J, et al. A complex endomembrane system in the archaeon Ignicoccus hospitalis tapped by Nanoarchaeum equitans. Front Microbiol. 2017;8:1–13. doi: 10.3389/fmicb.2017.01072. PubMed DOI PMC
Kaksonen M, Roux AAA. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2018;19:313–326. doi: 10.1038/nrm.2017.132. PubMed DOI
Robinson MS. Forty years of clathrin-coated vesicles. Traffic. 2015;16:1210–1238. doi: 10.1111/tra.12335. PubMed DOI
Naslavsky N, Caplan S. The enigmatic endosome–sorting the ins and outs of endocytic trafficking. J Cell Sci. 2018;131(13):jcs216499. PubMed PMC
Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30:3481–3500. doi: 10.1038/emboj.2011.286. PubMed DOI PMC
Jaiswal JK, Rivera VM, Simon SM. Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. Cell. 2009;137:1308–1319. doi: 10.1016/j.cell.2009.04.064. PubMed DOI PMC
Radulescu AE, Siddhanta A, Shields D. A role for clathrin in reassembly of the Golgi apparatus. Mol Biol Cell. 2007;18:94–105. doi: 10.1091/mbc.e06-06-0532. PubMed DOI PMC
Poulin R, Randhawa HS. Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology. 2015;142:S6–15. doi: 10.1017/S0031182013001674. PubMed DOI PMC
Dacks JB, Field MC. Evolutionary origins and specialisation of membrane transport. Curr Opin Cell Biol. 2018;53:70–76. doi: 10.1016/j.ceb.2018.06.001. PubMed DOI PMC
Jackson AP, Otto TD, Aslett M, Armstrong SD, Bringaud F, Schlacht A, et al. Kinetoplastid hylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016;26:161–172. doi: 10.1016/j.cub.2015.11.055. PubMed DOI PMC
Pipaliya S, Santos R, Salas-Leiva D, Balmer EA, Wirdnam CD, Roger AJ, et al. Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata. BMC Biol. 2021;19:1–23. doi: 10.1186/s12915-021-01077-2. PubMed DOI PMC
Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups.”. PNAS. 2009;106:3859–3864. doi: 10.1073/pnas.0807880106. PubMed DOI PMC
Burki F, Roger AJ, Brown MW, Simpson AGB. The new tree of eukaryotes. Trends Ecol Evol. 2020;35:43–55. doi: 10.1016/j.tree.2019.08.008. PubMed DOI
Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y. A new view of the tree of life. Nature Microbiol. 2016;1(5):1–6. PubMed
Caccì OSM, Ryan U. Molecular epidemiology of giardiasis. Mol Biochem Parasitol. 2008;160:75–80. doi: 10.1016/j.molbiopara.2008.04.006. PubMed DOI
Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382:209–222. doi: 10.1016/S0140-6736(13)60844-2. PubMed DOI
Lanata CF, Fischer-Walker CL, Olascoaga AC, Torres CX, Aryee MJ, Black RE, et al. Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One. 2013;8:e72788. doi: 10.1371/journal.pone.0072788. PubMed DOI PMC
Allain T, Amat CB, Motta JP, Manko A, Buret AG. Interactions of Giardia sp. with the intestinal barrier: epithelium, mucus, and microbiota. Tissue Barriers. 2017;5:1–16. doi: 10.1080/21688370.2016.1274354. PubMed DOI PMC
Fekete E, Allain T, Siddiq A, Sosnowski O, Buret AG. Giardia spp. and the gut microbiota: dangerous liaisons. Front Microbiol. 2021;11:618106. PubMed PMC
Faso C, Hehl AB. Membrane trafficking and organelle biogenesis in Giardia lamblia: use it or lose it. Int J Parasitol. 2011;41:471–480. doi: 10.1016/j.ijpara.2010.12.014. PubMed DOI
Benchimol M. The nuclei of Giardia lamblia - new ultrastructural observations. Arch Microbiol. 2005;183:160–168. doi: 10.1007/s00203-004-0751-8. PubMed DOI
Soltys BJ, Falah M, Gupta RS. Identification of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to BiP. J Cell Sci. 1996;109:1909–1917. doi: 10.1242/jcs.109.7.1909. PubMed DOI
Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, Van Der Giezen M, et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426:172–176. doi: 10.1038/nature01945. PubMed DOI
Lanfredi-Rangel A, Attias M, de Carvalho TM, Kattenbach WM, de Souza W. The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and to lysosomes. J Struct Biol. 1998;123:225–235. doi: 10.1006/jsbi.1998.4035. PubMed DOI
Marti M, Regös A, Li Y, Schraner EM, Wild P, Müller N, et al. An ancestaral secretory apparatus in the protozoan parasite Giardia intestinalis. J Biol Chem. 2003;278:24837–24848. doi: 10.1074/jbc.M302082200. PubMed DOI
Cernikova L, Faso C, Hehl AB. Phosphoinositide-binding proteins mark, shape and functionally modulate highly-diverged endocytic compartments in the parasitic protist Giardia lamblia. 2020. PubMed PMC
Zumthor JP, Cernikova L, Rout S, Kaech A, Faso C, Hehl AB. Static clathrin assemblies at the peripheral vacuole plasma membrane interface of the parasitic protozoan Giardia lamblia. PLoS Pathog. 2016;12:1–33. doi: 10.1371/journal.ppat.1005756. PubMed DOI PMC
Rivero MR, Miras SL, Quiroga R, Rópolo AS, Touz MC. Giardia lamblia low-density lipoprotein receptor-related protein is involved in selective lipoprotein endocytosis and parasite replication. Mol Microbiol. 2011;79:1204–1219. doi: 10.1111/j.1365-2958.2010.07512.x. PubMed DOI PMC
Frontera LS, Moyano S, Quassollo G, Lanfredi-Rangel A, Rópolo AS, Touz MC. Lactoferrin and lactoferricin endocytosis halt Giardia cell growth and prevent infective cyst production. Sci Rep. 2018;8:18020. doi: 10.1038/s41598-018-36563-1. PubMed DOI PMC
Abodeely M, DuBois KN, Hehl A, Stefanic S, Sajid M, DeSouza W, et al. A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell. 2009;8:1665–1676. doi: 10.1128/EC.00123-09. PubMed DOI PMC
Titze B, Genoud C. Volume scanning electron microscopy for imaging biological ultrastructure. Biol Cell. 2016;108:307–323. doi: 10.1111/boc.201600024. PubMed DOI
Kizilyaprak C, Daraspe J, Humbel BM. Focused ion beam scanning electron microscopy in biology. J Microsc. 2014;254:109–114. doi: 10.1111/jmi.12127. PubMed DOI
Wei D, Jacobs S, Modla S, Zhang S, Young CL, Cirino R, et al. High-resolution three-dimensional reconstruction of a whole yeast cell using focused-ion beam scanning electron microscopy. BioTechniques. 2012;53:41–48. doi: 10.2144/000113850. PubMed DOI
Tůmová P, Nohýnková E, Klingl A, Wanner G. A rapid workflow for the characterization of small numbers of unicellular eukaryotes by using correlative light and electron microscopy. J Microbiol Methods. 2020;172:105888. PubMed
Dawson SC. An insider’s guide to the microtubule cytoskeleton of Giardia. Cell Microbiol. 2010;12:588–598. doi: 10.1111/j.1462-5822.2010.01458.x. PubMed DOI
Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ. TrakEM2 software for neural circuit reconstruction. PloS One. 2012;7(6):e38011. PubMed PMC
Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, et al. ilastik: interactive machine learning for (bio)image analysis. Nat Methods. 2019;16:1226–1232. doi: 10.1038/s41592-019-0582-9. PubMed DOI
Sommer C, Straehle C, Koethe U, Hamprecht FA. Ilastik: Interactive learning and segmentation toolkit. In2011 IEEE international symposium on biomedical imaging: From nano to macro 2011 Mar 30 (pp. 230-233). IEEE.
Kan A. Machine learning applications in cell image analysis. Immunol Cell Biol. 2017;95:525–530. doi: 10.1038/icb.2017.16. PubMed DOI
Sommer C, Gerlich DW. Machine learning in cell biology – teaching computers to recognize phenotypes. J Cell Sci. 2013;126(126):5529–5539. PubMed
Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. Identification of the switch in early-to-late endosome transition. Cell. 2010;141:497–508. doi: 10.1016/j.cell.2010.03.011. PubMed DOI
Suresh B, Saminathan A, Chakraborty K, Cui C, Krishnan Y. Tubular lysosomes harbor active ion gradients and poise macrophages for phagocytosis. PNAS. 2020;18:2020.12.05.413229. PubMed PMC
Hipolito VEB, Ospina-Escobar E, Botelho RJ. Lysosome remodelling and adaptation during phagocyte activation. Cell Microbiol. 2018;20:1–8. doi: 10.1111/cmi.12824. PubMed DOI
Combs CA, Shroff H. Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci. 2017;2017:2.1.1–2.1.25. PubMed
Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A. 2000;97:8206–8210. doi: 10.1073/pnas.97.15.8206. PubMed DOI PMC
Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature. 2006;440:935–939. doi: 10.1038/nature04592. PubMed DOI
Kao HP, Kao HP, Verkman a S, Verkman a S. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J. 1994;67:1291–1300. doi: 10.1016/S0006-3495(94)80601-0. PubMed DOI PMC
Jones SA, Shim S-H, He J, Zhuang X. Fast, three-dimensional super-resolution imaging of live cells. Nat Methods. 2011;8:499–505. doi: 10.1038/nmeth.1605. PubMed DOI PMC
Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution reconstruction microscopy. Science (1979) 2008;319:810–813. PubMed PMC
Olivier N, Keller D, Rajan VS, Gönczy P, Manley S. Simple buffers for 3D STORM microscopy. Biomed Opt Express. 2013;4:885. doi: 10.1364/BOE.4.000885. PubMed DOI PMC
Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods. 2011;8:1027–1036. doi: 10.1038/nmeth.1768. PubMed DOI PMC
Ovesný M, Křížek P, Borkovec J, Švindrych Z, Hagen GM. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–2390. doi: 10.1093/bioinformatics/btu202. PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Brown JR, Schwartz CL, Heumann JM, Dawson SC, Hoenger A. A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. J Struct Biol. 2016;194:38–48. doi: 10.1016/j.jsb.2016.01.011. PubMed DOI PMC
Jørgensen A, Sterud E. Phylogeny of Spironucleus (Eopharyngia: Diplomonadida: Hexamitinae) Protist. 2007;158:247–254. doi: 10.1016/j.protis.2006.12.003. PubMed DOI
Kolisko M, Cepicka I, Hampl V, Leigh J, Roger AJ, Kulda J, et al. Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: implications for the evolutionary history of the double karyomastigont of diplomonads. BMC Evol Biol. 2008;8:1–14. doi: 10.1186/1471-2148-8-205. PubMed DOI PMC
Xu F, Jerlström-Hultqvist J, Kolisko M, Simpson AGB, Roger AJ, Svärd SG, et al. On the reversibility of parasitism: adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. BMC Biol. 2016;14:1–15. doi: 10.1186/s12915-015-0223-4. PubMed DOI PMC
Paull GC, Matthews RA. Spironucleus vortens, a possible cause of hole-in-the-head disease in cichlids. Dis Aquat Organ. 2001;45:197–202. doi: 10.3354/dao045197. PubMed DOI
Xu F, Jerlström-Hultqvist J, Einarsson E, Astvaldsson A, Svärd SG, Andersson JO. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet. 2014;10(2):e1004053. PubMed PMC
Sterud E, Poynton SL. Spironucleus vortens (Diplomonadida) in the Ide, Leuciscus idus (L.)(Cyprinidae): a warm water hexamitid flagellate found in northern Europe. J Eukaryot Microbiol. 2002;49(2):137–45. PubMed
Ástvaldsson Á, Hultenby K, Svärd SG, Jerlström-Hultqvist J. Proximity staining using enzymatic protein tagging in diplomonads. mSphere. 2019;4:1–15. doi: 10.1128/mSphereDirect.00153-19. PubMed DOI PMC
Day KJ, Casler JC, Glick BS. Budding yeast has a minimal endomembrane system. Dev Cell. 2018;44:56–72.e4. doi: 10.1016/j.devcel.2017.12.014. PubMed DOI PMC
Lealda N, Silva C, Elias CA. Tritrichomonas foetus: ultrastructure of endocytosis and cytochemistry. Exp Parasitol. 1986;62:405–415. doi: 10.1016/0014-4894(86)90049-4. PubMed DOI
Rosa IDA, Caruso MB, Rodrigues SP, Geraldo RB, Kist LW, Bogo MR, et al. New insights on the Golgi complex of Tritrichomonas foetus. Parasitology. 2014;141:241–253. doi: 10.1017/S0031182013001455. PubMed DOI
Schlacht A, Herman EK, Klute MJ, Field MC, Dacks JB. Missing pieces of an ancient puzzle: evolution of the eukaryotic membrane-trafficking system. Cold Spring Harbor Perspect Biol. 2014;6(10):a016048. PubMed PMC
Midlej V, Pereira-Neves A, Kist LW, Bogo MR, Benchimol M. Ultrastructural features of Tritrichomonas mobilensis and comparison with Tritrichomonas foetus. Vet Parasitol. 2011;182:171–180. doi: 10.1016/j.vetpar.2011.05.015. PubMed DOI
Traub LM. Regarding the amazing choreography of clathrin coats. PLoS Biol. 2011;9:3–7. doi: 10.1371/journal.pbio.1001037. PubMed DOI PMC
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7(10):e1002195. PubMed PMC
Kirchhausen T, Owen D, Harrison SC. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harbor Perspect Biol. 2014;6(5):a016725. PubMed PMC
Morgan GW, Allen CL, Jeffries TR, Hollinshead M, Field MC. Developmental and morphological regulation of clathrin-mediated endocytosis in Trypanosoma brucei. J Cell Sci. 2001;114:2605–2615. doi: 10.1242/jcs.114.14.2605. PubMed DOI
Adung’a VO, Gadelha C, Field MC. Proteomic analysis of clathrin interactions in trypanosomes reveals dynamic evolution of endocytosis. Traffic. 2013;14:440–457. doi: 10.1111/tra.12040. PubMed DOI
Kaksonen M, Toret CP, Drubin DG. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell. 2005;123:305–320. doi: 10.1016/j.cell.2005.09.024. PubMed DOI
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P. A eukaryote without a mitochondrial organelle. Curr Biol. 2016;26(10):1274–84. PubMed
Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V, Soukal P, et al. The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol Biol Evol. 2019. 10.1093/molbev/msz147. PubMed PMC
Füssy Z, Vinopalová M, Treitli SC, Pánek T, Smejkalová P, Čepička I, Doležal P, Hampl V. Retortamonads from vertebrate hosts share features of anaerobic metabolism and pre-adaptations to parasitism with diplomonads. Parasitol Int. 2021;82:102308. PubMed PMC
Cheon S, Zhang J, Park C. Is phylotranscriptomics as reliable as phylogenomics? Mol Biol Evol. 2020;37:3672–3683. doi: 10.1093/molbev/msaa181. PubMed DOI PMC
Woo YH, Ansari H, Otto TD, Linger CMK, Olisko MK, Michálek J, et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife. 2015;4:1–41. doi: 10.7554/eLife.06974. PubMed DOI PMC
Richardson E, Dacks JB. Distribution of membrane trafficking system components across ciliate diversity highlights heterogenous organelle-associated machinery. Traffic. 2022. 10.1111/tra.12834. PubMed
Fotin A, Cheng Y, Grigorieff N, Walz T, Harrison SC, Kirchhausen T. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature. 2004;429:2004. PubMed
Rapoport I, Boll W, Yu A, Bocking T, Kirchhausen T. A motif in the clathrin heavy chain required for the Hsc70/auxilin uncoating reaction. Mol Biol Cell. 2008;19:3250–3263. doi: 10.1091/mbc.e07-09-0870. PubMed DOI PMC
Suga H, Chen Z, De Mendoza A, Sebé-Pedrós A, Brown MW, Kramer E, et al. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun. 2013;4:1–9. doi: 10.1038/ncomms3325. PubMed DOI PMC
King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008;451:783–788. doi: 10.1038/nature06617. PubMed DOI PMC
Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S, Robertson HM, et al. Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol. 2013;14:1–15. doi: 10.1186/gb-2013-14-2-r15. PubMed DOI PMC
Tanifuji G, Takabayashi S, Kume K, Takagi M, Nakayama T, Kamikawa R, et al. The draft genome of Kipferlia bialata reveals reductive genome evolution in fornicate parasites. PLoS One. 2018. 10.1371/journal.pone.0194487. PubMed PMC
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, Silberman JD, Andersson JO, Xu F, Yabuki A, Eme L. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 2017;1(4):1–7. PubMed PMC
Salas-Leiva DE, Tromer EC, Curtis BA, Jerlström-Hultqvist J, Kolisko M, Yi Z, et al. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat Commun. 2021;12:1–13. doi: 10.1038/s41467-020-20314-w. PubMed DOI PMC
Manna PT, Obado SO, Boehm C, Gadelha C, Sali A, Chait BT, et al. Lineage-specific proteins essential for endocytosis in trypanosomes. J Cell Sci. 2017;130:1379–1392. PubMed PMC
Aurrecoechea C, Brestelli J, Brunk BP, Carlton JM, Dommer J, Fischer S, et al. GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res. 2009;37(SUPPL. 1):526–530. doi: 10.1093/nar/gkn631. PubMed DOI PMC
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science (1979) 2007;315:207–213. PubMed PMC
Lax G, Eglit Y, Eme L, Bertrand EM, Roger AJ, Simpson AGB. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature. 2018;564:410–414. doi: 10.1038/s41586-018-0708-8. PubMed DOI
Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2017;430:1–7. PubMed
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021;596:590–596. doi: 10.1038/s41586-021-03828-1. PubMed DOI PMC
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005;33:2302–2309. doi: 10.1093/nar/gki524. PubMed DOI PMC
Kufareva I, Abagyan R. Methods of protein structure comparison. Methods Mol Biol. 2012;857:231–257. doi: 10.1007/978-1-61779-588-6_10. PubMed DOI PMC
Wilbur JD, Hwang PK, Ybe JA, Lane M, Sellers BD, Jacobson MP, et al. Conformation switching of clathrin light chain regulates clathrin lattice assembly. Dev Cell. 2010;18:841–848. doi: 10.1016/j.devcel.2010.04.007. PubMed DOI PMC
Jerlström-Hultqvist J, Einarsson E, Svärd SG. Stable transfection of the diplomonad parasite Spironucleus salmonicida. Eukaryot Cell. 2012;11:1353–1361. doi: 10.1128/EC.00179-12. PubMed DOI PMC
Barash NR, Nosala C, Pham JK, Mcinally SG, Gourguechon S, Dawson SC. Giardia colonizes and encysts in high-density foci in the murine small intestine. mSphere. 2017;2:1–20. doi: 10.1128/mSphere.00343-16. PubMed DOI PMC
Adam RD. Biology of Giardia lamblia. Clin Microbiol Rev. 2001;14:447–469. doi: 10.1128/CMR.14.3.447-475.2001. PubMed DOI PMC
Carranza PG, Lujan HD. New insights regarding the biology of Giardia lamblia. Microbes Infect. 2009;12:71–80. doi: 10.1016/j.micinf.2009.09.008. PubMed DOI
Cotton JA, Beatty JK, Buret AG. Host parasite interactions and pathophysiology in Giardia infections. Int J Parasitol. 2011;41:925–933. doi: 10.1016/j.ijpara.2011.05.002. PubMed DOI
Touz M, Feliziani C, Rópolo A. Membrane-associated proteins in Giardia lamblia. Genes (Basel) 2018;9:404. doi: 10.3390/genes9080404. PubMed DOI PMC
Jacquemet G, Carisey AF, Hamidi H, Henriques R, Leterrier C. The cell biologist's guide to super-resolution microscopy. J Cell Sci. 2020;133(11):jcs240713. PubMed
Hamann E, Tegetmeyer HE, Di R, Littmann S, Ahmerkamp S, Chen J, et al. Syntrophic linkage between predatory Carpediemonas and specific prokaryotic populations. ISME J. 2017;11:1205–1217. doi: 10.1038/ismej.2016.197. PubMed DOI PMC
Yubuki N, Simpson AGB, Leander BS. Comprehensive ultrastructure of Kipferlia bialata provides evidence for character evolution within the Fornicata (Excavata) Protist. 2013;164:423–439. doi: 10.1016/j.protis.2013.02.002. PubMed DOI
Yubuki N, Huang SSCC, Leander BS. Comparative ultrastructure of fornicate excavates, including a novel free-living relative of diplomonads: Aduncisulcus paluster gen. et sp. nov. Protist. 2016;167:584–596. doi: 10.1016/j.protis.2016.10.001. PubMed DOI
Ebneter JA, Hehl AB. The single epsin homolog in Giardia lamblia localizes to the ventral disk of trophozoites and is not associated with clathrin membrane coats. Mol Biochem Parasitol. 2014;197:24–27. doi: 10.1016/j.molbiopara.2014.09.008. PubMed DOI
Benchimol M. A new set of vesicles in Giardia lamblia. Exp Parasitol. 2002;102:30–37. doi: 10.1016/S0014-4894(02)00142-X. PubMed DOI
McCaffery JM, Gillin FD. Giardia lamblia: ultrastructural basis of protein transport during growth and encystation. Exp Parasitol. 1994;79:220–235. doi: 10.1006/expr.1994.1086. PubMed DOI
McCaffery JM, Faubert GM, Gillin FD. Traffic of a trophozoite variant surface protein and a major cyst wall epitope during growth, encystation, and antigenic switching. Exp Parasitol. 1994;79:236–249. doi: 10.1006/expr.1994.1087. PubMed DOI
Stefanic S, Palm D, Svärd SG, Hehl AB. Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia *. J Biol Chem. 2006;281:7595–7604. doi: 10.1074/jbc.M510940200. PubMed DOI
Stefanic S, Morf L, Kulangara C, Regös A, Sonda S, Schraner E, et al. Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J Cell Sci. 2009;122:2846–2856. doi: 10.1242/jcs.049411. PubMed DOI
Acosta-Virgen K, Chávez-Munguía B, Talamás-Lara D, Lagunes-Guillén A, Martínez-Higuera A, Lazcano A, et al. Giardia lamblia: identification of peroxisomal-like proteins. Exp Parasitol. 2018;191:36–43. doi: 10.1016/j.exppara.2018.06.006. PubMed DOI
Link F, Borges AR, Jones NG, Engstler M. To the surface and back: exo- and endocytic pathways in Trypanosoma brucei. Front Cell Dev Biol. 2021;9:1–15. doi: 10.3389/fcell.2021.720521. PubMed DOI PMC
Allen CL, Goulding D, Field MC. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 2003;22:4991–5002. doi: 10.1093/emboj/cdg481. PubMed DOI PMC
Morf L, Spycher C, Rehrauer H, Fournier CA, Morrison HG, Hehl AB. The transcriptional response to encystation stimuli in Giardia lamblia is restricted to a small set of genes. Eukaryot Cell. 2010;9:1566–1576. doi: 10.1128/EC.00100-10. PubMed DOI PMC
Gaechter V, Schraner E, Wild P, Hehl AB. The single dynamin family protein in the primitive protozoan giardia lamblia is essential for stage conversion and endocytic transport. Traffic. 2008;9:57–71. doi: 10.1111/j.1600-0854.2007.00657.x. PubMed DOI
Konrad C, Spycher C, Hehl AB. Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PLoS Pathog. 2010;6:e1000835. doi: 10.1371/journal.ppat.1000835. PubMed DOI PMC
Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, et al. Trainable Weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics. 2017;33:2424–2426. doi: 10.1093/bioinformatics/btx180. PubMed DOI
Mateos JM, Guhl B, Doehner J, Barmettler G, Kaech A, Ziegler U. Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy. Sci Rep. 2016;6:34062. doi: 10.1038/srep34062. PubMed DOI PMC
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004. 10.1093/nar/gkh340. PubMed PMC
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–D268. doi: 10.1093/nar/gkz991. PubMed DOI PMC
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49:D412–D419. doi: 10.1093/nar/gkaa913. PubMed DOI PMC
Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47:D351–D360. doi: 10.1093/nar/gky1100. PubMed DOI PMC
Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2017;46:493–496. doi: 10.1093/nar/gkx922. PubMed DOI PMC
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes