ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24771516
PubMed Central
PMC4207427
DOI
10.1093/bioinformatics/btu202
PII: btu202
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- fluorescenční mikroskopie metody MeSH
- metoda Monte Carlo MeSH
- mikroskopie metody MeSH
- počítačová grafika * MeSH
- počítačové zpracování obrazu metody MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
UNLABELLED: ThunderSTORM is an open-source, interactive and modular plug-in for ImageJ designed for automated processing, analysis and visualization of data acquired by single-molecule localization microscopy methods such as photo-activated localization microscopy and stochastic optical reconstruction microscopy. ThunderSTORM offers an extensive collection of processing and post-processing methods so that users can easily adapt the process of analysis to their data. ThunderSTORM also offers a set of tools for creation of simulated data and quantitative performance evaluation of localization algorithms using Monte Carlo simulations. AVAILABILITY AND IMPLEMENTATION: ThunderSTORM and the online documentation are both freely accessible at https://code.google.com/p/thunder-storm/.
Zobrazit více v PubMed
Betzig E, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–1645. PubMed
Huang B, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319:810–813. PubMed PMC
Huang F, et al. Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed. Opt. Express. 2011;2:1377–1393. PubMed PMC
Izeddin I, et al. Wavelet analysis for single molecule localization microscopy. Opt. Express. 2012;20:2081–2095. PubMed
Křížek P, et al. Minimizing detection errors in single molecule localization microscopy. Opt. Express. 2011;19:3226–3235. PubMed
Mlodzianoski MJ, et al. Sample drift correction in 3D fluorescence photoactivation localization microscopy. Opt. Express. 2011;19:15009–15019. PubMed
Mortensen KI, et al. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods. 2010;7:377–381. PubMed PMC
Parthasarathy R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat. Methods. 2012;9:724–726. PubMed
Quan T, et al. Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging. J. Biomed. Opt. 2010;15:066005. PubMed
Rust MJ, et al. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods. 2006;3:793–795. PubMed PMC
Scott DW. Averaged shifted histograms: effective nonparametric density estimators in several dimensions. Ann. Stat. 1985;13:1024–1040.
Thompson RE, et al. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 2002;82:2775–2783. PubMed PMC
Optimized molecule detection in localization microscopy with selected false positive probability
The Proteomic Composition and Organization of Constitutive Heterochromatin in Mouse Tissues
Nanoscale membrane curvature sorts lipid phases and alters lipid diffusion
Imaging cellular ultrastructures using expansion microscopy (U-ExM)
Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging
The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function