In-section Click-iT detection and super-resolution CLEM analysis of nucleolar ultrastructure and replication in plants

. 2024 Mar 19 ; 15 (1) : 2445. [epub] 20240319

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38503728

Grantová podpora
20-01331X Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
23-06643S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
LM2023050 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2023050 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/16_013/0001775 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/18_046/0016045 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.01.01/00/23_015/0008205 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)

Odkazy

PubMed 38503728
PubMed Central PMC10950858
DOI 10.1038/s41467-024-46324-6
PII: 10.1038/s41467-024-46324-6
Knihovny.cz E-zdroje

Correlative light and electron microscopy (CLEM) is an important tool for the localisation of target molecule(s) and their spatial correlation with the ultrastructural map of subcellular features at the nanometre scale. Adoption of these advanced imaging methods has been limited in plant biology, due to challenges with plant tissue permeability, fluorescence labelling efficiency, indexing of features of interest throughout the complex 3D volume and their re-localization on micrographs of ultrathin cross-sections. Here, we demonstrate an imaging approach based on tissue processing and embedding into methacrylate resin followed by imaging of sections by both, single-molecule localization microscopy and transmission electron microscopy using consecutive CLEM and same-section CLEM correlative workflow. Importantly, we demonstrate that the use of a particular type of embedding resin is not only compatible with single-molecule localization microscopy but shows improvements in the fluorophore blinking behavior relative to the whole-mount approaches. Here, we use a commercially available Click-iT ethynyl-deoxyuridine cell proliferation kit to visualize the DNA replication sites of wild-type Arabidopsis thaliana seedlings, as well as fasciata1 and nucleolin1 plants and apply our in-section CLEM imaging workflow for the analysis of S-phase progression and nucleolar organization in mutant plants with aberrant nucleolar phenotypes.

Zobrazit více v PubMed

Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc. Natl Acad. Sci. USA. 2012;109:6136–6141. doi: 10.1073/pnas.1121558109. PubMed DOI PMC

Johnson E, et al. Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins. Sci. Rep. 2015;5:9583. doi: 10.1038/srep09583. PubMed DOI PMC

Kim D, et al. Correlative stochastic optical reconstruction microscopy and electron microscopy. PLoS ONE. 2015;10:e0124581. doi: 10.1371/journal.pone.0124581. PubMed DOI PMC

Wurm CA, et al. Correlative STED super-resolution light and electron microscopy on resin sections. J. Phys. D. Appl. Phys. 2019;52:374003. doi: 10.1088/1361-6463/ab2b31. DOI

Osuga M, Nishimura T, Suetsugu S. Development of a green reversibly photoswitchable variant of Eos fluorescent protein with fixation resistance. Mol. Biol. Cell. 2021;32:br7. doi: 10.1091/mbc.E21-01-0044. PubMed DOI PMC

Paez-Segala MG, et al. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat. Methods. 2015;12:215–21. doi: 10.1038/nmeth.3225. PubMed DOI PMC

Watanabe S, et al. Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods. 2011;8:80–U117. doi: 10.1038/nmeth.1537. PubMed DOI PMC

Hoffman DP, et al. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science. 2020;367:eaaz5357. doi: 10.1126/science.aaz5357. PubMed DOI PMC

Tuijtel MW, Koster AJ, Jakobs S, Faas FGA, Sharp TH. Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci. Rep. 2019;9:1369. doi: 10.1038/s41598-018-37728-8. PubMed DOI PMC

Sauer M, Paciorek T, Benková E, Friml J. Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat. Protoc. 2006;1:98–103. doi: 10.1038/nprot.2006.15. PubMed DOI

Pasternak T, et al. Protocol: an improved and universal procedure for whole-mount immunolocalization in plants. Plant Methods. 2015;11:50. doi: 10.1186/s13007-015-0094-2. PubMed DOI PMC

Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319:810–813. doi: 10.1126/science.1153529. PubMed DOI PMC

Thevathasan JV, et al. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat. Methods. 2019;16:1045. doi: 10.1038/s41592-019-0574-9. PubMed DOI PMC

Dvorácková M, et al. Replication of ribosomal DNA in Arabidopsis occurs both inside and outside the nucleolus during S phase progression. J. Cell Sci. 2018;131:jcs202416. PubMed

Kutashev KO, et al. Nucleolar rDNA folds into condensed foci with a specific combination of epigenetic marks. Plant J. 2021;105:1534–1548. doi: 10.1111/tpj.15130. PubMed DOI

Concia L, et al. Genome-wide analysis of the Arabidopsis replication timing program. Plant Physiol. 2018;176:2166–2185. doi: 10.1104/pp.17.01537. PubMed DOI PMC

Wear EE, et al. Genomic analysis of the DNA replication timing program during mitotic S phasein maize (Zea mays) root tips. Plant Cell. 2017;29:2126–2149. doi: 10.1105/tpc.17.00037. PubMed DOI PMC

Durut N, et al. A duplicated NUCLEOLIN gene with antagonistic activity is required for chromatin organization of silent 45S rDNA in plant. Cell. 2014;26:1330–1344. PubMed PMC

Pontvianne F, et al. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana. PLoS Genet. 2010;6:e1001225. doi: 10.1371/journal.pgen.1001225. PubMed DOI PMC

Pontvianne F, et al. Characterization of AtNUC-L1 reveals a central role of nucleolin in nucleolus organization and silencing of AtNUC-L2 gene in Arabidopsis. Mol. Biol. Cell. 2007;18:369–379. doi: 10.1091/mbc.e06-08-0751. PubMed DOI PMC

Kolárová K, et al. Disruption of NAP1 genes in Arabidopsis thaliana suppresses the fas1 mutant phenotype, enhances genome stability and changes chromatin compaction. Plant J. 2021;106:56–73. doi: 10.1111/tpj.15145. PubMed DOI

Mozgova I, Mokros P, Fajkus J. Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell. 2010;22:2768–2780. doi: 10.1105/tpc.110.076182. PubMed DOI PMC

Wu S, Baskin TI, Gallagher KL. Mechanical fixation techniques for processing and orienting delicate samples, such as the root of Arabidopsis thaliana, for light or electron microscopy. Nat. Protoc. 2012;7:1113–1124. doi: 10.1038/nprot.2012.056. PubMed DOI

Paul-Gilloteaux P, et al. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat. Methods. 2017;14:102–103. doi: 10.1038/nmeth.4170. PubMed DOI

Wu YL, Tschanz A, Krupnik L, Ries J. Quantitative data analysis in single-molecule localization microscopy. Trends Cell Biol. 2020;30:837–851. doi: 10.1016/j.tcb.2020.07.005. PubMed DOI

Dong B, Yang X, Zhu S, Bassham DC, Fang N. Stochastic optical reconstruction microscopy imaging of microtubule arrays in intact Arabidopsis thaliana seedling roots. Sci. Rep. 2015;5:15694. doi: 10.1038/srep15694. PubMed DOI PMC

Mass L, Holtmannspotter M, Zachgo S. Dual-color 3D-dSTORM colocalization and quantification of ROXY1 and RNAPII variants throughout the transcription cycle in root meristem nuclei. Plant J. 2020;104:1423–1436. doi: 10.1111/tpj.14986. PubMed DOI

Kubalová I, Nemecková A, Weisshart K, Hribová E, Schubert V. Comparing super-resolution microscopy techniques to analyze chromosomes. Int. J. Mol. Sci. 2021;22:1903. doi: 10.3390/ijms22041903. PubMed DOI PMC

Schnorrenberg S, et al. Live-cell RESOLFT nanoscopy of transgenic. Plant Direct. 2020;4:e00261. doi: 10.1002/pld3.261. PubMed DOI PMC

Schubert V. Super-resolution microscopy—applications in plant cell research. Front Plant Sci. 2017;8:531. doi: 10.3389/fpls.2017.00531. PubMed DOI PMC

Bell K, Mitchell S, Paultre D, Posch M, Oparka K. Correlative imaging of fluorescent proteins in resin-embedded plant material. Plant Physiol. 2013;161:1595–1603. doi: 10.1104/pp.112.212365. PubMed DOI PMC

Sletten EM, Bertozzi CR. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 2009;48:6974–6998. doi: 10.1002/anie.200900942. PubMed DOI PMC

Best MD. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry. 2009;48:6571–6584. doi: 10.1021/bi9007726. PubMed DOI

Nikic I, Kang JH, Girona GE, Aramburu IV, Lemke EA. Labeling proteins on live mammalian cells using click chemistry. Nat. Protoc. 2015;10:780–791. doi: 10.1038/nprot.2015.045. PubMed DOI

Parker CG, Pratt MR. Click chemistry in proteomic investigations. Cell. 2020;180:605–632. doi: 10.1016/j.cell.2020.01.025. PubMed DOI PMC

Andrian T, et al. Super-resolution correlative light-electron microscopy using a click-chemistry approach for studying intracellular trafficking. Method Cell Biol. 2021;162:303–331. doi: 10.1016/bs.mcb.2020.09.001. PubMed DOI

Peters S, et al. Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria. Sci. Rep. 2021;11:4300. doi: 10.1038/s41598-021-83813-w. PubMed DOI PMC

Chen, M. M., Kopittke, P. M., Zhao, F. J. & Wang, P. Applications and opportunities of click chemistry in plant science. Trends Plant Sci. 29, 167–178 (2024). PubMed

Pavlistová V, et al. Phenotypic reversion in fas mutants of Arabidopsis thaliana by reintroduction of FAS genes: variable recovery of telomeres with major spatial rearrangements and transcriptional reprogramming of 45S rDNA genes. Plant J. 2016;88:411–424. doi: 10.1111/tpj.13257. PubMed DOI

Eekhout T, et al. G2/M-checkpoint activation in fasciata1 rescues an aberrant S-phase checkpoint but causes genome instability. Plant Physiol. 2021;186:1893–1907. doi: 10.1093/plphys/kiab201. PubMed DOI PMC

Stierhof YD, Schwarz H. Labeling properties of sucrose-infiltrated cryosections. Scanning Microsc. 1989;3:35–46. PubMed

Iwatate RJ, et al. Covalent self-labeling of tagged proteins with chemical fluorescent dyes in BY-2 cells and Arabidopsis seedlings. Plant Cell. 2020;32:3081–3094. doi: 10.1105/tpc.20.00439. PubMed DOI PMC

Li ZA, Cho JH, Woodhams LG, Hughes JW. Fluorescence imaging of beta cell primary cilia. Front Endocrinol. 2022;13:1004136. doi: 10.3389/fendo.2022.1004136. PubMed DOI PMC

Fang T, et al. Nanobody immunostaining for correlated light and electron microscopy with preservation of ultrastructure. Nat. Methods. 2018;15:1029–102. doi: 10.1038/s41592-018-0177-x. PubMed DOI PMC

de Beer MA, Giepmans BNG. Nanobody-based probes for subcellular protein identification and visualization. Front Cell Neurosci. 2020;14:573278. doi: 10.3389/fncel.2020.573278. PubMed DOI PMC

Sanada T, et al. In-resin CLEM of Epon-embedded cells using proximity labeling. Sci. Rep. 2022;12:11130. doi: 10.1038/s41598-022-15438-6. PubMed DOI PMC

Tanner H, Sherwin O, Verkade P. Labelling strategies for correlative light electron microscopy. Microsc. Res. Tech. 2023;86:901–910. doi: 10.1002/jemt.24304. PubMed DOI

Kirik A, Pecinka A, Wendeler E, Reiss B. The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell. 2006;18:2431–2442. doi: 10.1105/tpc.106.045088. PubMed DOI PMC

Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152:36–51. doi: 10.1016/j.jsb.2005.07.007. PubMed DOI

Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996;116:71–76. doi: 10.1006/jsbi.1996.0013. PubMed DOI

Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–2390. doi: 10.1093/bioinformatics/btu202. PubMed DOI PMC

Culley S, et al. Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat. Methods. 2018;15:263–26. doi: 10.1038/nmeth.4605. PubMed DOI PMC

Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Ries J. SMAP: a modular super-resolution microscopy analysis platform for SMLM data. Nat. Methods. 2020;17:870–872. doi: 10.1038/s41592-020-0938-1. PubMed DOI

Caetano FA, et al. MIiSR: molecular interactions in super-resolution imaging enables the analysis of protein interactions, dynamics and formation of multi-protein structures. PLoS Comput. Biol. 2015;11:e1004634. doi: 10.1371/journal.pcbi.1004634. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace