G2/M-checkpoint activation in fasciata1 rescues an aberrant S-phase checkpoint but causes genome instability
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34618100
PubMed Central
PMC8331141
DOI
10.1093/plphys/kiab201
PII: 6270794
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika fyziologie MeSH
- ATM protein genetika metabolismus MeSH
- fyziologický stres MeSH
- genom rostlinný MeSH
- nestabilita genomu MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- protoonkogenní proteiny c-myb genetika metabolismus MeSH
- replikace DNA * MeSH
- signální transdukce * MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ATM protein, Arabidopsis MeSH Prohlížeč
- ATM protein MeSH
- ATR1 protein, Arabidopsis MeSH Prohlížeč
- FAS protein, Arabidopsis MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- proteiny huseníčku MeSH
- protoonkogenní proteiny c-myb MeSH
- SOG1 protein, Arabidopsis MeSH Prohlížeč
- transkripční faktory MeSH
- WEE1 protein, Arabidopsis MeSH Prohlížeč
The WEE1 and ATM AND RAD3-RELATED (ATR) kinases are important regulators of the plant intra-S-phase checkpoint; consequently, WEE1KO and ATRKO roots are hypersensitive to replication-inhibitory drugs. Here, we report on a loss-of-function mutant allele of the FASCIATA1 (FAS1) subunit of the chromatin assembly factor 1 (CAF-1) complex that suppresses the phenotype of WEE1- or ATR-deficient Arabidopsis (Arabidopsis thaliana) plants. We demonstrate that lack of FAS1 activity results in the activation of an ATAXIA TELANGIECTASIA MUTATED (ATM)- and SUPPRESSOR OF GAMMA-RESPONSE 1 (SOG1)-mediated G2/M-arrest that renders the ATR and WEE1 checkpoint regulators redundant. This ATM activation accounts for the telomere erosion and loss of ribosomal DNA that are described for fas1 plants. Knocking out SOG1 in the fas1 wee1 background restores replication stress sensitivity, demonstrating that SOG1 is an important secondary checkpoint regulator in plants that fail to activate the intra-S-phase checkpoint.
Center for Plant Systems Biology VIB 9052 Gent Belgium
Department of Plant Biotechnology and Bioinformatics Ghent University 9052 Gent Belgium
Zobrazit více v PubMed
Amiard S, Da Ines O, Gallego ME, White CI (2014) Responses to telomere erosion in plants. PLoS ONE 9:e86220. PubMed PMC
Amiard S, Depeiges A, Allain E, White CI, Gallego ME (2011) Arabidopsis ATM and ATR kinases prevent propagation of genome damage caused by telomere dysfunction. Plant Cell 23:4254–4265 PubMed PMC
Beck H, Nähse-Kumpf V, Larsen MSY, O’Hanlon KA, Patzke S, Holmberg C, Mejlvang J, Groth A, Nielsen O, Syljuåsen RG. , et al. (2012) Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption. Mol. Cell. Biol 32:4226–4236 PubMed PMC
Boltz KA, Leehy K, Song X, Nelson AD, Shippen DE (2012) ATR cooperates with CTC1 and STN1 to maintain telomeres and genome integrity in Arabidopsis. Mol Biol Cell 23:1558–1568 PubMed PMC
Bourbousse C, Vegesna N, Law JA (2018) SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis. Proc Natl Acad Sci USA 115:E12453–E12462 PubMed PMC
Cools T, Iantcheva A, Weimer AK, Boens S, Takahashi N, Maes S, Van den Daele H, Van Isterdael G, Schnittger A, De Veylder L (2011) The Arabidopsis thaliana checkpoint kinase WEE1 protects against premature vascular differentiation during replication stress. Plant Cell 23:1435–1448 PubMed PMC
Culligan K, Tissier A, Britt A (2004) ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16:1091–1104 PubMed PMC
De Schutter K, Joubès J, Cools T, Verkest A, Corellou F, Babiychuk E, Van Der Schueren E, Beeckman T, Kushnir S, Inzé D. , et al. (2007) Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19:211–225 PubMed PMC
De Veylder L, Beeckman T, Beemster GT, Krols L, Terras F, Landrieu I, van der Schueren E, Maes S, Naudts M, Inze D (2001) Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13:1653–1668 PubMed PMC
Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21
Duc C, Benoit M, Le Goff S, Simon L, Poulet A, Cotterell S, Tatout C, Probst AV (2015) The histone chaperone complex HIR maintains nucleosome occupancy and counterbalances impaired histone deposition in CAF-1 complex mutants. Plant J 81:707–722 PubMed
Dvořáčková M, Fojtová M, Fajkus J (2015) Chromatin dynamics of plant telomeres and ribosomal genes. Plant J 83:18–37 PubMed
Eekhout T, Kalhorzadeh P, De Veylder L (2015) Lack of RNase H2 activity rescues HU-sensitivity of WEE1 deficient plants. Plant Signal Behav 10:e1001226. PubMed PMC
Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya H, Araki T, Shibahara K-i, Abe K, Ichikawa H, Valentine L. , et al. (2006) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25:5579–5590 PubMed PMC
Exner V, Taranto P, Schönrock N, Gruissem W, Hennig L (2006) Chromatin assembly factor CAF-1 is required for cellular differentiation during plant development. Development 133:4163–4172 PubMed
Garcia V, Bruchet H, Camescasse D, Granier F, Bouchez D, Tissier A (2003) AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 15:119–132 PubMed PMC
Hayashi K, Hasegawa J, Matsunaga S (2013) The boundary of the meristematic and elongation zones in roots: endoreduplication precedes rapid cell expansion. Sci Rep 3:2723. PubMed PMC
Hisanaga T, Ferjani A, Horiguchi G, Ishikawa N, Fujikura U, Kubo M, Demura T, Fukuda H, Ishida T, Sugimoto K. , et al. (2013) The ATM-dependent DNA damage response acts as an upstream trigger for compensation in the fas1 mutation during Arabidopsis leaf development. Plant Physiol 162:831–841 PubMed PMC
Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG) n generated by PCR. Nucleic Acids Res 19:4780. PubMed PMC
Jacob Y, Bergamin E, Donoghue MTA, Mongeon V, LeBlanc C, Voigt P, Underwood CJ, Brunzelle JS, Michaels SD, Reinberg D. , et al. (2014) Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Sci. Adv 343:1249–1253 PubMed PMC
Jaške K, Mokroš P, Mozgová I, Fojtová M, Fajkus J (2013) A telomerase-independent component of telomere loss in chromatin assembly factor 1 mutants of Arabidopsis thaliana. Chromosoma 122:285–293 PubMed
Kalhorzadeh P, Hu Z, Cools T, Amiard S, Willing E-M, De Winne N, Gevaert K, De Jaeger G, Schneeberger K, White CI. , et al. (2014) Arabidopsis thaliana RNase H2 deficiency counteracts the needs for the WEE1 checkpoint kinase but triggers genome instability. Plant Cell 26:3680–3692 PubMed PMC
Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11:345–357 PubMed
Kaufman PD, Kobayashi R, Kessler N, Stillman B (1995) The p150 and p60 subunits of chromatin assembly factor-I: a molecular link between newly synthesized histones and DNA replication. Cell 81:1105–1114 PubMed
Kaya H, Shibahara K-i, Taoka K-i, Iwabuchi M, Stillman B, Araki T (2001) FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104:131–142 PubMed
Kirik A, Pecinka A, Wendeler E, Reiss B (2006) The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell 18:2431–2442 PubMed PMC
Kolarova K, Dadejova MN, Loja T, Lochmanova G, Sykorova E, Dvorackova M (2020) Disruption of NAP1 genes in Arabidopsis thaliana suppresses the fas1 mutant phenotype, enhances genome stability and changes the chromatin compaction. Plant J 83:78–95 PubMed
Korsholm LM, Gál Z, Lin L, Quevedo O, Ahmad DA, Dulina E, Luo Y, Bartek J, Larsen DH (2019) Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair. Nucleic Acids Res 47: 8019–8035 PubMed PMC
Leyser HMO, Furner IJ (1992) Characterization of three shoot apical meristem mutants of Arabidopsis thaliana. Development 116:397–403
Mozgová I, Mokroš P, Fajkus J (2010) Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. 22: 2768–2780 PubMed PMC
Mozgová I, Wildhaber T, Trejo-Arellano MS, Fajkus J, Roszak P, Kohler C, Hennig L (2018) Transgenerational phenotype aggravation in CAF-1 mutants reveals parent-of-origin specific epigenetic inheritance. New Phytol 220:908–921 PubMed
Mozgová I, Wildhaber T, Liu Q, Abou-Mansour W, L’Haridon F, Metraux J-P, Gruissem W, Hofius D, Hennig L (2015) Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nat. Plants 1:15127. PubMed
Muchová V, Amiard S, Mozgová I, Dvořáčková M, Gallego ME, White C, Fajkus J (2015) Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants. Plant J 81:198–209 PubMed PMC
Ogita N, Okushima Y, Tokizawa M, Yamamoto YY, Tanaka M, Seki M, Makita Y, Matsui M, Okamoto-Yoshiyama K, Sakamoto T. , et al. (2018) Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis. Plant J 94:439–453 PubMed
Olovnikov AM (1971) Principle of marginotomy in template synthesis of polynucleotides. Dokl Akad nauk SSSR 201:1496–1499 PubMed
Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18:2024–2033 PubMed PMC
Pan T, Qin Q, Nong C, Gao S, Wang L, Cai B, Zhang M, Wu C, Chen H, Li T. , et al. (2021) A novel WEE1 pathway for replication stress responses. Nat Plants 7:208–218 PubMed
Pavlištová V, Dvořáčková M, Jež M, Mozgová I, Mokroš P, Fajkus J (2016) Phenotypic reversion in fas mutants of Arabidopsis thaliana by reintroduction of FAS genes: variable recovery of telomeres with major spatial rearrangements and transcriptional reprogramming of 45S rDNA genes. Plant J 88:411–424 PubMed
Ramirez-Parra E, Gutierrez C (2007) E2F regulates FASCIATA1, a chromatin assembly gene whose loss switches on the endocycle and activates gene expression by changing the epigenetic status. Plant Physiol 144:105–120 PubMed PMC
Roldán-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res-Rev Mutat Res 681:169–179 PubMed
Růčková E, Friml J, Procházková Schrumpfová P, Fajkus J (2008) Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants. Plant Mol Biol 66:637–646 PubMed
Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jørgensen J-E, Weigel D, Andersen SU (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat. Methods 6:550–551 PubMed
Schönrock N, Exner V, Probst A, Gruissem W, Hennig L (2006) Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana. J Biol Chem 281:9560–9568 PubMed
Serra H, Da Ines O, Degroote F, Gallego ME, White CI (2013) Roles of XRCC2, RAD51B and RAD51D in RAD51-independent SSA recombination. PLoS Genet 9:e1003971. PubMed PMC
Sjogren CA, Bolaris SC, Larsen PB (2015) Aluminum-dependent terminal differentiation of the Arabidopsis root tip is mediated through an ATR-, ALT2-, and SOG1-regulated transcriptional response. Plant Cell 27:2501–2515 PubMed PMC
Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25 PubMed
Takahashi N, Ogita N, Takahashi T, Taniguchi S, Tanaka M, Seki M, Umeda M (2019) A regulatory module controlling stress-induced cell cycle arrest in Arabidopsis. eLife 8:e43944. PubMed PMC
Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556 PubMed
Varas J, Santos JL, Pradillo M (2017) The absence of the Arabidopsis chaperone complex CAF-1 produces mitotic chromosome abnormalities and changes in the expression profiles of genes involved in DNA repair. Front Plant Sci 8:525. PubMed PMC
Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87:95–104 PubMed
Vespa L, Couvillion M, Spangler E, Shippen DE (2005) ATM and ATR make distinct contributions to chromosome end protection and the maintenance of telomeric DNA in Arabidopsis. Genes Dev 19:2111–2115 PubMed PMC
Wang L, Zhan L, Zhao Y, Huang Y, Wu C, Pan T, Qin Q, Xu Y, Deng Z, Li J. et al. (2021) The ATR-WEE1 kinase module inhibits the MAC complex to regulate replication stress response. Nucleic Acids Res 49 PubMed PMC
Weinert TA, Hartwell LH (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322 PubMed
Yi D, Lessa Alvim Kamei C, Cools T, Vanderauwera S, Takahashi N, Okushima Y, Eekhout T, Yoshiyama KO, Larkin J, Van den Daele H. , et al. (2014) The Arabidopsis SIAMESE-RELATED cyclin-dependent kinase inhibitors SMR5 and SMR7 regulate the DNA damage checkpoint in response to reactive oxygen species. Plant Cell 26:296–309 PubMed PMC
Yoshiyama K, Conklin PA, Huefner ND, Britt AB (2009) Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc Natl Acad Sci USA 106:12843–12848 PubMed PMC
Yoshiyama KO, Kobayashi J, Ogita N, Ueda M, Kimura S, Maki H, Umeda M (2013) ATM-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis. EMBO Rep 14:817–822 PubMed PMC
Zachová D, Fojtová M, Dvořáčková M, Mozgová I, Lermontova I, Peška V, Schubert I, Fajkus J, Sýkorová E (2013) Structure–function relationships during transgenic telomerase expression in Arabidopsis. Physiol Plant 149:114–126 PubMed
Zhou B-B, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439 PubMed
Zhu Y, Dong A, Meyer D, Pichon O, Renou J-P, Cao K, Shen W-H (2006) Arabidopsis NRP1 and NRP2 encode histone chaperones and are required for maintaining postembryonic root growth. Plant Cell 18:2879–2892 PubMed PMC
Zhu Y, Weng M, Yang Y, Zhang C, Li Z, Shen W-H, Dong A (2011) Arabidopsis homologues of the histone chaperone ASF1 are crucial for chromatin replication and cell proliferation in plant development. Plant J 66:443–455 PubMed