A telomerase-independent component of telomere loss in chromatin assembly factor 1 mutants of Arabidopsis thaliana

. 2013 Aug ; 122 (4) : 285-93. [epub] 20130406

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23564254

Dysfunction of chromatin assembly factor 1 in FASCIATA mutants (fas) of Arabidopsis thaliana results in progressive loss of telomeric DNA. Although replicative telomere shortening is typically associated with incomplete resynthesis of their ends by telomerase, no change in telomerase activity could be detected in vitro in extracts from fas mutants. Besides a possible telomerase malfunction, the telomere shortening in fas mutants could presumably be due to problems with conventional replication of telomeres. To distinguish between the possible contribution of suboptimal function of telomerase in fas mutants under in vivo conditions and problems in conventional telomere replication, we crossed fas and tert (telomerase reverse transcriptase) knockout mutants and analyzed telomere shortening in segregated fas mutants, tert mutants, and double fas tert mutants in parallel. We demonstrate that fas tert knockouts show greater replicative telomere shortening than that observed even in the complete absence of telomerase (tert mutants). While the effect of tert and fas mutations on telomere lengths in double mutants is additive, manifestations of telomere dysfunction in double fas tert mutants (frequency of anaphase bridges, onset of chromosome end fusions, and common involvement of 45S rDNA in chromosome fusion sites) are similar to those in tert mutants. We conclude that in addition to possible impairment of telomerase action, a further mechanism contributes to telomere shortening in fas mutants.

Zobrazit více v PubMed

Mol Gen Genet. 1998 Dec;260(5):470-4 PubMed

Cell. 1999 Feb 19;96(4):575-85 PubMed

Plant Cell. 1998 Oct;10(10):1691-8 PubMed

Mol Cell Biol. 2001 Oct;21(19):6574-84 PubMed

Nat Rev Genet. 2008 Jan;9(1):15-26 PubMed

Plant Mol Biol. 1999 May;40(1):99-110 PubMed

Nucleic Acids Res. 2012 Dec;40(22):11229-39 PubMed

Plant Cell. 2008 Oct;20(10):2559-70 PubMed

Plant Cell. 2010 Aug;22(8):2768-80 PubMed

Chromosoma. 2003 Oct;112(3):116-23 PubMed

Chromosome Res. 2005;13(5):481-91 PubMed

J Biol Chem. 2006 Apr 7;281(14):9560-8 PubMed

Trends Cell Biol. 2005 Jun;15(6):295-302 PubMed

Genes Cells. 2006 Feb;11(2):153-62 PubMed

Development. 2008 Jan;135(1):65-73 PubMed

Science. 2001 Mar 2;291(5509):1797-800 PubMed

Curr Genomics. 2012 Mar;13(1):65-73 PubMed

Trends Plant Sci. 2007 Dec;12(12):570-6 PubMed

Genes Dev. 1997 Feb 1;11(3):345-57 PubMed

Plant Cell. 2006 Oct;18(10):2431-42 PubMed

Plant Mol Biol. 2008 Apr;66(6):637-46 PubMed

Chromosoma. 2012 Oct;121(5):465-74 PubMed

Development. 2006 Nov;133(21):4163-72 PubMed

Nucleic Acids Res. 2006;34(15):4147-53 PubMed

Cell. 2009 Jul 10;138(1):90-103 PubMed

Mech Ageing Dev. 2008 Jan-Feb;129(1-2):79-90 PubMed

Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14813-8 PubMed

Curr Biol. 2001 Apr 3;11(7):463-73 PubMed

J Exp Bot. 2011 Nov;62(15):5531-45 PubMed

Cell. 1996 Sep 20;86(6):887-96 PubMed

Genes Dev. 2010 Jul 15;24(14):1546-58 PubMed

EMBO J. 2004 Jun 2;23(11):2304-13 PubMed

Genome. 2006 Aug;49(8):1036-42 PubMed

EMBO J. 1993 Apr;12(4):1475-85 PubMed

Mol Cell. 2011 Dec 23;44(6):978-88 PubMed

Cell. 1989 Jul 14;58(1):15-25 PubMed

J Mol Biol. 1998 Mar 27;277(2):249-56 PubMed

Mol Cell Biol. 1996 Mar;16(3):810-7 PubMed

EMBO J. 2003 Sep 15;22(18):4804-14 PubMed

EMBO J. 2012 Aug 29;31(17):3537-49 PubMed

Nucleic Acids Res. 2012 Nov 1;40(20):10139-49 PubMed

Cell. 2001 Jan 12;104(1):131-42 PubMed

J Cell Biol. 2009 Nov 2;187(3):385-98 PubMed

EMBO Rep. 2002 Apr;3(4):329-34 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace