Telomerase Interaction Partners-Insight from Plants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-07027S
Czech Science Foundation
SYMBIT CZ.02.1.01/0.0/0.0/15_003/0000477
ERDF
LTC18048
Ministry of Education, Youth and Sports of the Czech Republic
LTC20003
Ministry of Education, Youth and Sports of the Czech Republic
ATCZ40
Interreg V-A Austria-Czech Republic
PubMed
35008793
PubMed Central
PMC8745574
DOI
10.3390/ijms23010368
PII: ijms23010368
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, chromatin, folding, mitochondria, protein–protein interaction, replication, telomerase, transport,
- MeSH
- Arabidopsis metabolismus MeSH
- genetická transkripce MeSH
- Golgiho aparát metabolismus MeSH
- homeostáza telomer MeSH
- mapy interakcí proteinů MeSH
- mitochondrie metabolismus MeSH
- multiproteinové komplexy metabolismus MeSH
- nukleozomy metabolismus MeSH
- peptidy metabolismus MeSH
- posttranskripční úpravy RNA genetika MeSH
- proteiny huseníčku chemie metabolismus MeSH
- proteiny vázající telomery metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- replikace DNA MeSH
- restrukturace chromatinu MeSH
- ribozomy metabolismus MeSH
- telomerasa metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- multiproteinové komplexy MeSH
- nukleozomy MeSH
- peptidy MeSH
- proteiny huseníčku MeSH
- proteiny vázající telomery MeSH
- telomerasa MeSH
Telomerase, an essential enzyme that maintains chromosome ends, is important for genome integrity and organism development. Various hypotheses have been proposed in human, ciliate and yeast systems to explain the coordination of telomerase holoenzyme assembly and the timing of telomerase performance at telomeres during DNA replication or repair. However, a general model is still unclear, especially pathways connecting telomerase with proposed non-telomeric functions. To strengthen our understanding of telomerase function during its intracellular life, we report on interactions of several groups of proteins with the Arabidopsis telomerase protein subunit (AtTERT) and/or a component of telomerase holoenzyme, POT1a protein. Among these are the nucleosome assembly proteins (NAP) and the minichromosome maintenance (MCM) system, which reveal new insights into the telomerase interaction network with links to telomere chromatin assembly and replication. A targeted investigation of 176 candidate proteins demonstrated numerous interactions with nucleolar, transport and ribosomal proteins, as well as molecular chaperones, shedding light on interactions during telomerase biogenesis. We further identified protein domains responsible for binding and analyzed the subcellular localization of these interactions. Moreover, additional interaction networks of NAP proteins and the DOMINO1 protein were identified. Our data support an image of functional telomerase contacts with multiprotein complexes including chromatin remodeling and cell differentiation pathways.
Zobrazit více v PubMed
Chan H., Wang Y., Feigon J. Progress in Human and Tetrahymena Telomerase Structure Determination. Annu. Rev. Biophys. 2017;46:199–225. doi: 10.1146/annurev-biophys-062215-011140. PubMed DOI PMC
Schmidt J.C., Cech T.R. Human telomerase: Biogenesis, trafficking, recruitment, and activation. Genes Dev. 2015;29:1095–1105. doi: 10.1101/gad.263863.115. PubMed DOI PMC
Wellinger R.J., Zakian V.A. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: Beginning to end. Genetics. 2012;191:1073–1105. doi: 10.1534/genetics.111.137851. PubMed DOI PMC
Jeong S.A., Kim K., Lee J.H., Cha J.S., Khadka P., Cho H.S., Chung I.K. Akt-mediated phosphorylation increases the binding affinity of hTERT for importin alpha to promote nuclear translocation. J. Cell Sci. 2015;128:2951. doi: 10.1242/jcs.176453. PubMed DOI
Jeong Y.Y., Her J., Oh S.Y., Chung I.K. Hsp90-binding immunophilin FKBP52 modulates telomerase activity by promoting the cytoplasmic retrotransport of hTERT. Biochem. J. 2016;473:3517–3532. doi: 10.1042/BCJ20160344. PubMed DOI
Fitzgerald M.S., Riha K., Gao F., Ren S., McKnight T.D., Shippen D.E. Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc. Natl. Acad. Sci. USA. 1999;96:14813–14818. doi: 10.1073/pnas.96.26.14813. PubMed DOI PMC
Fajkus P., Peska V., Zavodnik M., Fojtova M., Fulneckova J., Dobias S., Kilar A., Dvorackova M., Zachova D., Necasova I., et al. Telomerase RNAs in land plants. Nucleic Acids Res. 2019;47:9842–9856. doi: 10.1093/nar/gkz695. PubMed DOI PMC
Greider C.W. Regulating telomere length from the inside out: The replication fork model. Genes Dev. 2016;30:1483–1491. doi: 10.1101/gad.280578.116. PubMed DOI PMC
Pennock E., Buckley K., Lundblad V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell. 2001;104:387–396. doi: 10.1016/S0092-8674(01)00226-4. PubMed DOI
Nandakumar J., Bell C.F., Weidenfeld I., Zaug A.J., Leinwand L.A., Cech T.R. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature. 2012;492:285–289. doi: 10.1038/nature11648. PubMed DOI PMC
De Lange T. How telomeres solve the end-protection problem. Science. 2009;326:948–952. doi: 10.1126/science.1170633. PubMed DOI PMC
Majerska J., Schrumpfova P.P., Dokladal L., Schorova S., Stejskal K., Oboril M., Honys D., Kozakova L., Polanska P.S., Sykorova E. Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo. Protoplasma. 2017;254:1547–1562. doi: 10.1007/s00709-016-1042-3. PubMed DOI
Rossignol P., Collier S., Bush M., Shaw P., Doonan J.H. Arabidopsis POT1A interacts with TERT-V(I8), an N-terminal splicing variant of telomerase. J. Cell Sci. 2007;120:3678–3687. doi: 10.1242/jcs.004119. PubMed DOI
Surovtseva Y.V., Shakirov E.V., Vespa L., Osbun N., Song X., Shippen D.E. Arabidopsis POT1 associates with the telomerase RNP and is required for telomere maintenance. EMBO J. 2007;26:3653–3661. doi: 10.1038/sj.emboj.7601792. PubMed DOI PMC
Schrumpfova P.P., Vychodilova I., Dvorackova M., Majerska J., Dokladal L., Schorova S., Fajkus J. Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. Plant J. 2014;77:770–781. doi: 10.1111/tpj.12428. PubMed DOI PMC
Romaniuk A., Paszel-Jaworska A., Toton E., Lisiak N., Holysz H., Krolak A., Grodecka-Gazdecka S., Rubis B. The non-canonical functions of telomerase: To turn off or not to turn off. Mol. Biol. Rep. 2019;46:1401–1411. doi: 10.1007/s11033-018-4496-x. PubMed DOI
Blackburn E.H., Epel E.S., Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350:1193–1198. doi: 10.1126/science.aab3389. PubMed DOI
Saretzki G. Extra-telomeric functions of human telomerase: Cancer, mitochondria and oxidative stress. Curr. Pharm. Des. 2014;20:6386–6403. doi: 10.2174/1381612820666140630095606. PubMed DOI
Lin K.W., McDonald K.R., Guise A.J., Chan A., Cristea I.M., Zakian V.A. Proteomics of yeast telomerase identified Cdc48-Npl4-Ufd1 and Ufd4 as regulators of Est1 and telomere length. Nat. Commun. 2015;6:8290. doi: 10.1038/ncomms9290. PubMed DOI PMC
Fu D., Collins K. Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol. Cell. 2007;28:773–785. doi: 10.1016/j.molcel.2007.09.023. PubMed DOI PMC
Ungar L., Yosef N., Sela Y., Sharan R., Ruppin E., Kupiec M. A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res. 2009;37:3840–3849. doi: 10.1093/nar/gkp259. PubMed DOI PMC
Zachova D., Fojtova M., Dvorackova M., Mozgova I., Lermontova I., Peska V., Schubert I., Fajkus J., Sykorova E. Structure-function relationships during transgenic telomerase expression in Arabidopsis. Physiol. Plant. 2013;149:114–126. doi: 10.1111/ppl.12021. PubMed DOI
Dokladal L., Benkova E., Honys D., Duplakova N., Lee L.Y., Gelvin S.B., Sykorova E. An armadillo-domain protein participates in a telomerase interaction network. Plant Mol. Biol. 2018;97:407–420. doi: 10.1007/s11103-018-0747-4. PubMed DOI
Schrumpfova P.P., Fajkus J. Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes. Biomolecules. 2020;10:1425. doi: 10.3390/biom10101425. PubMed DOI PMC
Gao J., Zhu Y., Zhou W., Molinier J., Dong A., Shen W.H. NAP1 family histone chaperones are required for somatic homologous recombination in Arabidopsis. Plant Cell. 2012;24:1437–1447. doi: 10.1105/tpc.112.096792. PubMed DOI PMC
Kolarova K., Nespor Dadejova M., Loja T., Lochmanova G., Sykorova E., Dvorackova M. Disruption of NAP1 genes in Arabidopsis thaliana suppresses the fas1 mutant phenotype, enhances genome stability and changes chromatin compaction. Plant J. 2021;106:56–73. doi: 10.1111/tpj.15145. PubMed DOI
Zhou W., Gao J., Ma J., Cao L., Zhang C., Zhu Y., Dong A., Shen W.H. Distinct roles of the histone chaperones NAP1 and NRP and the chromatin-remodeling factor INO80 in somatic homologous recombination in Arabidopsis thaliana. Plant J. 2016;88:397–410. doi: 10.1111/tpj.13256. PubMed DOI
Charbonnel C., Rymarenko O., Da Ines O., Benyahya F., White C.I., Butter F., Amiard S. The Linker Histone GH1-HMGA1 Is Involved in Telomere Stability and DNA Damage Repair. Plant Physiol. 2018;177:311–327. doi: 10.1104/pp.17.01789. PubMed DOI PMC
Bieluszewski T., Galganski L., Sura W., Bieluszewska A., Abram M., Ludwikow A., Ziolkowski P.A., Sadowski J. AtEAF1 is a potential platform protein for Arabidopsis NuA4 acetyltransferase complex. BMC Plant Biol. 2015;15:75. doi: 10.1186/s12870-015-0461-1. PubMed DOI PMC
Sacharowski S.P., Gratkowska D.M., Sarnowska E.A., Kondrak P., Jancewicz I., Porri A., Bucior E., Rolicka A.T., Franzen R., Kowalczyk J., et al. SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development. Plant Cell. 2015;27:1889–1906. doi: 10.1105/tpc.15.00233. PubMed DOI PMC
Liu Z., Zhu Y., Gao J., Yu F., Dong A., Shen W.H. Molecular and reverse genetic characterization of NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) genes unravels their function in transcription and nucleotide excision repair in Arabidopsis thaliana. Plant J. 2009;59:27–38. doi: 10.1111/j.1365-313X.2009.03844.x. PubMed DOI
Liu Z.Q., Gao J., Dong A.W., Shen W.H. A truncated Arabidopsis NUCLEOSOME ASSEMBLY PROTEIN 1, AtNAP1;3T, alters plant growth responses to abscisic acid and salt in the Atnap1;3-2 mutant. Mol. Plant. 2009;2:688–699. doi: 10.1093/mp/ssp026. PubMed DOI
Schorova S., Fajkus J., Zaveska Drabkova L., Honys D., Schrumpfova P.P. The plant Pontin and Reptin homologues, RuvBL1 and RuvBL2a, colocalize with TERT and TRB proteins in vivo, and participate in telomerase biogenesis. Plant J. 2019;98:195–212. doi: 10.1111/tpj.14306. PubMed DOI
Mozgova I., Mokros P., Fajkus J. Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell. 2010;22:2768–2780. doi: 10.1105/tpc.110.076182. PubMed DOI PMC
Jaske K., Mokros P., Mozgova I., Fojtova M., Fajkus J. A telomerase-independent component of telomere loss in chromatin assembly factor 1 mutants of Arabidopsis thaliana. Chromosoma. 2013;122:285–293. doi: 10.1007/s00412-013-0400-6. PubMed DOI
Van Leene J., Hollunder J., Eeckhout D., Persiau G., Van De Slijke E., Stals H., Van Isterdael G., Verkest A., Neirynck S., Buffel Y., et al. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol. Syst. Biol. 2010;6:397. doi: 10.1038/msb.2010.53. PubMed DOI PMC
Takahashi N., Quimbaya M., Schubert V., Lammens T., Vandepoele K., Schubert I., Matsui M., Inze D., Berx G., De Veylder L. The MCM-binding protein ETG1 aids sister chromatid cohesion required for postreplicative homologous recombination repair. PLoS Genet. 2010;6:e1000817. doi: 10.1371/journal.pgen.1000817. PubMed DOI PMC
Tuteja N., Tran N.Q., Dang H.Q., Tuteja R. Plant MCM proteins: Role in DNA replication and beyond. Plant Mol. Biol. 2011;77:537–545. doi: 10.1007/s11103-011-9836-3. PubMed DOI
Froelich C.A., Kang S., Epling L.B., Bell S.P., Enemark E.J. A conserved MCM single-stranded DNA binding element is essential for replication initiation. eLife. 2014;3:e01993. doi: 10.7554/eLife.01993. PubMed DOI PMC
Li N., Zhai Y., Zhang Y., Li W., Yang M., Lei J., Tye B.K., Gao N. Structure of the eukaryotic MCM complex at 3.8 A. Nature. 2015;524:186–191. doi: 10.1038/nature14685. PubMed DOI
Lycka M., Peska V., Demko M., Spyroglou I., Kilar A., Fajkus J., Fojtova M. WALTER: An easy way to online evaluate telomere lengths from terminal restriction fragment analysis. BMC Bioinform. 2021;22:145. doi: 10.1186/s12859-021-04064-0. PubMed DOI PMC
Forsburg S.L. Eukaryotic MCM proteins: Beyond replication initiation. Microbiol. Mol. Biol. Rev. 2004;68:109–131. doi: 10.1128/MMBR.68.1.109-131.2004. PubMed DOI PMC
Drissi R., Dubois M.L., Douziech M., Boisvert F.M. Quantitative Proteomics Reveals Dynamic Interactions of the Minichromosome Maintenance Complex (MCM) in the Cellular Response to Etoposide Induced DNA Damage. Mol. Cell. Proteom. 2015;14:2002–2013. doi: 10.1074/mcp.M115.048991. PubMed DOI PMC
Dubois M.L., Bastin C., Levesque D., Boisvert F.M. Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry. J. Proteome Res. 2016;15:2924–2934. doi: 10.1021/acs.jproteome.5b01081. PubMed DOI
Osman K., Yang J., Roitinger E., Lambing C., Heckmann S., Howell E., Cuacos M., Imre R., Durnberger G., Mechtler K., et al. Affinity proteomics reveals extensive phosphorylation of the Brassica chromosome axis protein ASY1 and a network of associated proteins at prophase I of meiosis. Plant J. 2018;93:17–33. doi: 10.1111/tpj.13752. PubMed DOI PMC
Takashi Y., Kobayashi Y., Tanaka K., Tamura K. Arabidopsis replication protein A 70a is required for DNA damage response and telomere length homeostasis. Plant Cell Physiol. 2009;50:1965–1976. doi: 10.1093/pcp/pcp140. PubMed DOI
Aklilu B.B., Peurois F., Saintome C., Culligan K.M., Kobbe D., Leasure C., Chung M., Cattoor M., Lynch R., Sampson L., et al. Functional Diversification of Replication Protein A Paralogs and Telomere Length Maintenance in Arabidopsis. Genetics. 2020;215:989–1002. doi: 10.1534/genetics.120.303222. PubMed DOI PMC
Huang H., Stromme C.B., Saredi G., Hodl M., Strandsby A., Gonzalez-Aguilera C., Chen S., Groth A., Patel D.J. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 2015;22:618–626. doi: 10.1038/nsmb.3055. PubMed DOI PMC
Carrie C., Whelan J. Widespread dual targeting of proteins in land plants: When, where, how and why. Plant Signal. Behav. 2013;8:644–662. doi: 10.4161/psb.25034. PubMed DOI PMC
Edmondson A.C., Song D., Alvarez L.A., Wall M.K., Almond D., McClellan D.A., Maxwell A., Nielsen B.L. Characterization of a mitochondrially targeted single-stranded DNA-binding protein in Arabidopsis thaliana. Mol. Genet. Genom. 2005;273:115–122. doi: 10.1007/s00438-004-1106-5. PubMed DOI
Nelson B.K., Cai X., Nebenfuhr A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 2007;51:1126–1136. doi: 10.1111/j.1365-313X.2007.03212.x. PubMed DOI
Yoo H.H., Kwon C., Lee M.M., Chung I.K. Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis. Plant J. 2007;49:442–451. doi: 10.1111/j.1365-313X.2006.02974.x. PubMed DOI
Palm D., Simm S., Darm K., Weis B.L., Ruprecht M., Schleiff E., Scharf C. Proteome distribution between nucleoplasm and nucleolus and its relation to ribosome biogenesis in Arabidopsis thaliana. RNA Biol. 2016;13:441–454. doi: 10.1080/15476286.2016.1154252. PubMed DOI PMC
Farmer L.M., Book A.J., Lee K.H., Lin Y.L., Fu H., Vierstra R.D. The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis. Plant Cell. 2010;22:124–142. doi: 10.1105/tpc.109.072660. PubMed DOI PMC
Qi Y., Tsuda K., Nguyen le V., Wang X., Lin J., Murphy A.S., Glazebrook J., Thordal-Christensen H., Katagiri F. Physical association of Arabidopsis hypersensitive induced reaction proteins (HIRs) with the immune receptor RPS2. J. Biol. Chem. 2011;286:31297–31307. doi: 10.1074/jbc.M110.211615. PubMed DOI PMC
Koroleva O.A., Calder G., Pendle A.F., Kim S.H., Lewandowska D., Simpson C.G., Jones I.M., Brown J.W., Shaw P.J. Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: Fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell. 2009;21:1592–1606. doi: 10.1105/tpc.108.060434. PubMed DOI PMC
Gong Z., Dong C.H., Lee H., Zhu J., Xiong L., Gong D., Stevenson B., Zhu J.K. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell. 2005;17:256–267. doi: 10.1105/tpc.104.027557. PubMed DOI PMC
Palm D., Streit D., Shanmugam T., Weis B.L., Ruprecht M., Simm S., Schleiff E. Plant-specific ribosome biogenesis factors in Arabidopsis thaliana with essential function in rRNA processing. Nucleic Acids Res. 2019;47:1880–1895. doi: 10.1093/nar/gky1261. PubMed DOI PMC
Reichel M., Liao Y., Rettel M., Ragan C., Evers M., Alleaume A.M., Horos R., Hentze M.W., Preiss T., Millar A.A. In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings. Plant Cell. 2016;28:2435–2452. doi: 10.1105/tpc.16.00562. PubMed DOI PMC
Naprstkova A., Malinska K., Zaveska Drabkova L., Billey E., Naprstkova D., Sykorova E., Bousquet-Antonelli C., Honys D. Characterization of ALBA Family Expression and Localization in Arabidopsis thaliana Generative Organs. Int. J. Mol. Sci. 2021;22:1652. doi: 10.3390/ijms22041652. PubMed DOI PMC
Lahmy S., Guilleminot J., Cheng C.M., Bechtold N., Albert S., Pelletier G., Delseny M., Devic M. DOMINO1, a member of a small plant-specific gene family, encodes a protein essential for nuclear and nucleolar functions. Plant J. 2004;39:809–820. doi: 10.1111/j.1365-313X.2004.02166.x. PubMed DOI
Witkin K.L., Collins K. Holoenzyme proteins required for the physiological assembly and activity of telomerase. Genes Dev. 2004;18:1107–1118. doi: 10.1101/gad.1201704. PubMed DOI PMC
Dona M., Mittelsten Scheid O. DNA Damage Repair in the Context of Plant Chromatin. Plant Physiol. 2015;168:1206–1218. doi: 10.1104/pp.15.00538. PubMed DOI PMC
Fleurdepine S., Deragon J.M., Devic M., Guilleminot J., Bousquet-Antonelli C. A bona fide La protein is required for embryogenesis in Arabidopsis thaliana. Nucleic Acids Res. 2007;35:3306–3321. doi: 10.1093/nar/gkm200. PubMed DOI PMC
Fojtova M., Peska V., Dobsakova Z., Mozgova I., Fajkus J., Sykorova E. Molecular analysis of T-DNA insertion mutants identified putative regulatory elements in the AtTERT gene. J. Exp. Bot. 2011;62:5531–5545. doi: 10.1093/jxb/err235. PubMed DOI PMC
Perea-Resa C., Hernandez-Verdeja T., Lopez-Cobollo R., del Mar Castellano M., Salinas J. LSM proteins provide accurate splicing and decay of selected transcripts to ensure normal Arabidopsis development. Plant Cell. 2012;24:4930–4947. doi: 10.1105/tpc.112.103697. PubMed DOI PMC
Kandasamy M.K., Deal R.B., McKinney E.C., Meagher R.B. Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. Plant J. 2005;41:845–858. doi: 10.1111/j.1365-313X.2005.02345.x. PubMed DOI
Renfrew K.B., Song X., Lee J.R., Arora A., Shippen D.E. POT1a and components of CST engage telomerase and regulate its activity in Arabidopsis. PLoS Genet. 2014;10:e1004738. doi: 10.1371/journal.pgen.1004738. PubMed DOI PMC
Galati A., Micheli E., Cacchione S. Chromatin structure in telomere dynamics. Front. Oncol. 2013;3:46. doi: 10.3389/fonc.2013.00046. PubMed DOI PMC
Gentry M., Hennig L. Remodelling chromatin to shape development of plants. Exp. Cell Res. 2014;321:40–46. doi: 10.1016/j.yexcr.2013.11.010. PubMed DOI
Ghanim G.E., Fountain A.J., van Roon A.M., Rangan R., Das R., Collins K., Nguyen T.H.D. Structure of human telomerase holoenzyme with bound telomeric DNA. Nature. 2021;593:449–453. doi: 10.1038/s41586-021-03415-4. PubMed DOI PMC
Chuang H.W., Feng J.H., Feng Y.L., Wei M.J. An Arabidopsis WDR protein coordinates cellular networks involved in light, stress response and hormone signals. Plant Sci. 2015;241:23–31. doi: 10.1016/j.plantsci.2015.09.024. PubMed DOI
Trigg S.A., Garza R.M., MacWilliams A., Nery J.R., Bartlett A., Castanon R., Goubil A., Feeney J., O’Malley R., Huang S.C., et al. CrY2H-seq: A massively multiplexed assay for deep-coverage interactome mapping. Nat. Methods. 2017;14:819–825. doi: 10.1038/nmeth.4343. PubMed DOI PMC
Efroni I., Han S.K., Kim H.J., Wu M.F., Steiner E., Birnbaum K.D., Hong J.C., Eshed Y., Wagner D. Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses. Dev. Cell. 2013;24:438–445. doi: 10.1016/j.devcel.2013.01.019. PubMed DOI PMC
Kummari D., Palakolanu S.R., Kishor P.B.K., Bhatnagar-Mathur P., Singam P., Vadez V., Sharma K.K. An update and perspectives on the use of promoters in plant genetic engineering. J. Biosci. 2020;45:119. doi: 10.1007/s12038-020-00087-6. PubMed DOI
Lee L.Y., Wu F.H., Hsu C.T., Shen S.C., Yeh H.Y., Liao D.C., Fang M.J., Liu N.T., Yen Y.C., Dokladal L., et al. Screening a cDNA library for protein-protein interactions directly in planta. Plant Cell. 2012;24:1746–1759. doi: 10.1105/tpc.112.097998. PubMed DOI PMC
Citovsky V., Lee L.Y., Vyas S., Glick E., Chen M.H., Vainstein A., Gafni Y., Gelvin S.B., Tzfira T. Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J. Mol. Biol. 2006;362:1120–1131. doi: 10.1016/j.jmb.2006.08.017. PubMed DOI
Heinekamp T., Kuhlmann M., Lenk A., Strathmann A., Droge-Laser W. The tobacco bZIP transcription factor BZI-1 binds to G-box elements in the promoters of phenylpropanoid pathway genes in vitro, but it is not involved in their regulation in vivo. Mol. Genet. Genom. 2002;267:16–26. doi: 10.1007/s00438-001-0636-3. PubMed DOI
Curtis M.D., Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 2003;133:462–469. doi: 10.1104/pp.103.027979. PubMed DOI PMC
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Alonso J.M., Stepanova A.N., Leisse T.J., Kim C.J., Chen H., Shinn P., Stevenson D.K., Zimmerman J., Barajas P., Cheuk R., et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003;301:653–657. doi: 10.1126/science.1086391. PubMed DOI
Sessions A., Burke E., Presting G., Aux G., McElver J., Patton D., Dietrich B., Ho P., Bacwaden J., Ko C., et al. A high-throughput Arabidopsis reverse genetics system. Plant Cell. 2002;14:2985–2994. doi: 10.1105/tpc.004630. PubMed DOI PMC
Rosso M.G., Li Y., Strizhov N., Reiss B., Dekker K., Weisshaar B. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol. Biol. 2003;53:247–259. doi: 10.1023/B:PLAN.0000009297.37235.4a. PubMed DOI
Brunaud V., Balzergue S., Dubreucq B., Aubourg S., Samson F., Chauvin S., Bechtold N., Cruaud C., DeRose R., Pelletier G., et al. T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep. 2002;3:1152–1157. doi: 10.1093/embo-reports/kvf237. PubMed DOI PMC
Liu Q., Wang J., Miki D., Xia R., Yu W., He J., Zheng Z., Zhu J.K., Gong Z. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis. Plant Cell. 2010;22:2336–2352. doi: 10.1105/tpc.110.076349. PubMed DOI PMC
Ni D.A., Sozzani R., Blanchet S., Domenichini S., Reuzeau C., Cella R., Bergounioux C., Raynaud C. The Arabidopsis MCM2 gene is essential to embryo development and its over-expression alters root meristem function. New Phytol. 2009;184:311–322. doi: 10.1111/j.1469-8137.2009.02961.x. PubMed DOI
Herridge R.P., Day R.C., Macknight R.C. The role of the MCM2-7 helicase complex during Arabidopsis seed development. Plant Mol. Biol. 2014;86:69–84. doi: 10.1007/s11103-014-0213-x. PubMed DOI
Andreuzza S., Li J., Guitton A.E., Faure J.E., Casanova S., Park J.S., Choi Y., Chen Z., Berger F. DNA LIGASE I exerts a maternal effect on seed development in Arabidopsis thaliana. Development. 2010;137:73–81. doi: 10.1242/dev.041020. PubMed DOI
Griffith M.E., Mayer U., Capron A., Ngo Q.A., Surendrarao A., McClinton R., Jurgens G., Sundaresan V. The TORMOZ gene encodes a nucleolar protein required for regulated division planes and embryo development in Arabidopsis. Plant Cell. 2007;19:2246–2263. doi: 10.1105/tpc.106.042697. PubMed DOI PMC
Fojtova M., Fajkus P., Polanska P., Fajkus J. Terminal Restriction Fragments (TRF) Method to Analyze Telomere Lengths. Bio-protocols. 2015;5:e1671. doi: 10.21769/BioProtoc.1671. DOI
Wan X., Wang W., Liu J., Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014;14:135. doi: 10.1186/1471-2288-14-135. PubMed DOI PMC
Higgins J.P.T., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., Welch W.A., editors. Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. John Wiley & Sons; Chichester, UK: 2019.