Histone Chaperone Deficiency in Arabidopsis Plants Triggers Adaptive Epigenetic Changes in Histone Variants and Modifications

. 2024 Jul ; 23 (7) : 100795. [epub] 20240605

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38848995
Odkazy

PubMed 38848995
PubMed Central PMC11263794
DOI 10.1016/j.mcpro.2024.100795
PII: S1535-9476(24)00085-9
Knihovny.cz E-zdroje

At the molecular scale, adaptive advantages during plant growth and development rely on modulation of gene expression, primarily provided by epigenetic machinery. One crucial part of this machinery is histone posttranslational modifications, which form a flexible system, driving transient changes in chromatin, and defining particular epigenetic states. Posttranslational modifications work in concert with replication-independent histone variants further adapted for transcriptional regulation and chromatin repair. However, little is known about how such complex regulatory pathways are orchestrated and interconnected in cells. In this work, we demonstrate the utility of mass spectrometry-based approaches to explore how different epigenetic layers interact in Arabidopsis mutants lacking certain histone chaperones. We show that defects in histone chaperone function (e.g., chromatin assembly factor-1 or nucleosome assembly protein 1 mutations) translate into an altered epigenetic landscape, which aids the plant in mitigating internal instability. We observe changes in both the levels and distribution of H2A.W.7, altogether with partial repurposing of H3.3 and changes in the key repressive (H3K27me1/2) or euchromatic marks (H3K36me1/2). These shifts in the epigenetic profile serve as a compensatory mechanism in response to impaired integration of the H3.1 histone in the fas1 mutants. Altogether, our findings suggest that maintaining genome stability involves a two-tiered approach. The first relies on flexible adjustments in histone marks, while the second level requires the assistance of chaperones for histone variant replacement.

Zobrazit více v PubMed

Khadka J., Pesok A., Grafi G. Plant histone HTB (H2B) variants in regulating chromatin structure and function. Plants (Basel) 2020;9:1435. PubMed PMC

Jiang D., Berger F. Histone variants in plant transcriptional regulation. Biochim. Biophys. Acta Gene Regul. Mech. 2017;1860:123–130. PubMed

Mao Z., Wei X., Li L., Xu P., Zhang J., Wang W., et al. Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A.Z deposition. Plant Cell. 2021;33:1961–1979. PubMed PMC

Sura W., Kabza M., Karlowski W.M., Bieluszewski T., Kus-Slowinska M., Pawełoszek Ł., et al. Dual role of the histone variant H2A.Z in transcriptional regulation of stress-response genes. Plant Cell. 2017;29:791–807. PubMed PMC

Dai X., Bai Y., Zhao L., Dou X., Liu Y., Wang L., et al. H2A.Z represses gene expression by modulating promoter nucleosome structure and enhancer histone modifications in Arabidopsis. Mol. Plant. 2018;11:635. PubMed

Weber C.M., Ramachandran S., Henikoff S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol. Cell. 2014;53:819–830. PubMed

Coleman-Derr D., Zilberman D. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet. 2012;8 PubMed PMC

Wollmann H., Stroud H., Yelagandula R., Tarutani Y., Jiang D., Jing L., et al. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana. Genome Biol. 2017;18:94. PubMed PMC

Zhao F., Xue M., Zhang H., Li H., Zhao T., Jiang D. Coordinated histone variant H2A.Z eviction and H3.3 deposition control plant thermomorphogenesis. New Phytol. 2023;238:750–764. PubMed

Benoit M., Simon L., Desset S., Duc C., Cotterell S., Poulet A., et al. Replication-coupled histone H3.1 deposition determines nucleosome composition and heterochromatin dynamics during Arabidopsis seedling development. New Phytol. 2019;221:385–398. PubMed

Bourguet P., Picard C.L., Yelagandula R., Pélissier T., Lorković Z.J., Feng S., et al. The histone variant H2A.W and linker histone H1 co-regulate heterochromatin accessibility and DNA methylation. Nat. Commun. 2021;12:2683. PubMed PMC

Osakabe A., Jamge B., Axelsson E., Montgomery S.A., Akimcheva S., Kuehn A.L., et al. The chromatin remodeler DDM1 prevents transposon mobility through deposition of histone variant H2A.W. Nat. Cell Biol. 2021;23:391–400. PubMed

Yelagandula R., Stroud H., Holec S., Zhou K., Feng S., Zhong X., et al. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell. 2014;158:98–109. PubMed PMC

Lorković Z.J., Park C., Goiser M., Jiang D., Kurzbauer M.-T., Schlögelhofer P., et al. Compartmentalization of DNA damage response between heterochromatin and euchromatin is mediated by distinct H2A histone variants. Curr. Biol. 2017;27:1192–1199. PubMed

Schmücker A., Lei B., Lorković Z.J., Capella M., Braun S., Bourguet P., et al. Crosstalk between H2A variant-specific modifications impacts vital cell functions. PLoS Genet. 2021;17 PubMed PMC

Friesner J.D., Liu B., Culligan K., Britt A.B. Ionizing radiation-dependent gamma-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Mol. Biol. Cell. 2005;16:2566–2576. PubMed PMC

Lermontova I., Koroleva O., Rutten T., Fuchs J., Schubert V., Moraes I., et al. Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. Plant J. 2011;68:40–50. PubMed

Lermontova I., Schubert V., Fuchs J., Klatte S., Macas J., Schubert I. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell. 2006;18:2443–2451. PubMed PMC

Stroud H., Otero S., Desvoyes B., Ramírez-Parra E., Jacobsen S.E., Gutierrez C. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 2012;109:5370–5375. PubMed PMC

Kolářová K., Nešpor Dadejová M., Loja T., Lochmanová G., Sýkorová E., Dvořáčková M. Disruption of NAP1 genes in Arabidopsis thaliana suppresses the fas1 mutant phenotype, enhances genome stability and changes chromatin compaction. Plant J. 2021;106:56–73. PubMed

Muchová V., Amiard S., Mozgová I., Dvořáčková M., Gallego M.E., White C., et al. Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants. Plant J. 2015;81:198–209. PubMed PMC

Kamakaka R.T., Bulger M., Kaufman P.D., Stillman B., Kadonaga J.T. Postreplicative chromatin assembly by Drosophila and human chromatin assembly factor 1. Mol. Cell Biol. 1996;16:810–817. PubMed PMC

Shibahara K., Stillman B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell. 1999;96:575–585. PubMed

Jiang D., Berger F. DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science. 2017;357:1146–1149. PubMed

Otero S., Desvoyes B., Peiró R., Gutierrez C. Histone H3 dynamics reveal domains with distinct proliferation potential in the Arabidopsis root. Plant Cell. 2016;28:1361–1371. PubMed PMC

Mozgová I., Wildhaber T., Liu Q., Abou-Mansour E., L’Haridon F., Métraux J.-P., et al. Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nat. Plants. 2015;1 PubMed

Kirik A., Pecinka A., Wendeler E., Reiss B. The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell. 2006;18:2431–2442. PubMed PMC

Mozgová I., Mokros P., Fajkus J. Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell. 2010;22:2768–2780. PubMed PMC

Ramirez-Parra E., Gutierrez C. E2F regulates FASCIATA1, a chromatin assembly gene whose loss switches on the endocycle and activates gene expression by changing the epigenetic status. Plant Physiol. 2007;144:105–120. PubMed PMC

Picart-Picolo A., Grob S., Picault N., Franek M., Llauro C., Halter T., et al. Large tandem duplications affect gene expression, 3D organization, and plant-pathogen response. Genome Res. 2020;30:1583–1592. PubMed PMC

Duc C., Benoit M., Détourné G., Simon L., Poulet A., Jung M., et al. Arabidopsis ATRX modulates H3.3 occupancy and fine-tunes gene expression. Plant Cell. 2017;29:1773–1793. PubMed PMC

Zhong Z., Wang Y., Wang M., Yang F., Thomas Q.A., Xue Y., et al. Histone chaperone ASF1 mediates H3.3-H4 deposition in Arabidopsis. Nat. Commun. 2022;13:6970. PubMed PMC

Zhou W., Gao J., Ma J., Cao L., Zhang C., Zhu Y., et al. Distinct roles of the histone chaperones NAP1 and NRP and the chromatin-remodeling factor INO80 in somatic homologous recombination in Arabidopsis thaliana. Plant J. 2016;88:397–410. PubMed

Liu Z.-Q., Gao J., Dong A.-W., Shen W.-H. A truncated Arabidopsis NUCLEOSOME ASSEMBLY PROTEIN 1, AtNAP1;3T, alters plant growth responses to abscisic acid and salt in the Atnap1;3-2 mutant. Mol. Plant. 2009;2:688–699. PubMed

Jamge B., Lorković Z.J., Axelsson E., Osakabe A., Shukla V., Yelagandula R., et al. Histone variants shape chromatin states in Arabidopsis. Elife. 2023;12 PubMed PMC

Johnson L., Mollah S., Garcia B.A., Muratore T.L., Shabanowitz J., Hunt D.F., et al. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res. 2004;32:6511–6518. PubMed PMC

Jacob Y., Bergamin E., Donoghue M.T.A., Mongeon V., LeBlanc C., Voigt P., et al. Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science. 2014;343:1249–1253. PubMed PMC

Sequeira-Mendes J., Aragüez I., Peiró R., Mendez-Giraldez R., Zhang X., Jacobsen S.E., et al. The functional topography of the Arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell. 2014;26:2351–2366. PubMed PMC

Yang H., Howard M., Dean C. Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC. Curr. Biol. 2014;24:1793–1797. PubMed PMC

Jenuwein T., Allis C.D. Translating the histone code. Science. 2001;293:1074–1080. PubMed

Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705. PubMed

Bergamin E., Sarvan S., Malette J., Eram M.S., Yeung S., Mongeon V., et al. Molecular basis for the methylation specificity of ATXR5 for histone H3. Nucleic Acids Res. 2017;45:6375–6387. PubMed PMC

Desvoyes B., Sequeira-Mendes J., Vergara Z., Madeira S., Gutierrez C. Sequential ChIP protocol for profiling bivalent epigenetic modifications (ReChIP) Methods Mol. Biol. 2018;1675:83–97. PubMed

Ledvinová D., Mikulášek K., Kuchaříková H., Brabencová S., Fojtová M., Zdráhal Z., et al. Filter-aided sample preparation procedure for mass spectrometric analysis of plant histones. Front. Plant Sci. 2018;9:1373. PubMed PMC

Kuchaříková H., Dobrovolná P., Lochmanová G., Zdráhal Z. Trimethylacetic anhydride-based derivatization facilitates quantification of histone marks at the MS1 level. Mol. Cell. Proteomics. 2021;20:100114. PubMed PMC

Lochmanová G., Ihnatová I., Kuchaříková H., Brabencová S., Zachová D., Fajkus J., et al. Different modes of action of genetic and chemical downregulation of histone deacetylases with respect to plant development and histone modifications. Int. J. Mol. Sci. 2019;20:5093. PubMed PMC

Kutashev K.O., Franek M., Diamanti K., Komorowski J., Olšinová M., Dvořáčková M. Nucleolar rDNA folds into condensed foci with a specific combination of epigenetic marks. Plant J. 2021;105:1534–1548. PubMed

Nešpor Dadejová M., Franek M., Dvořáčková M. Laser microirradiation as a versatile system for probing protein recruitment and protein-protein interactions at DNA lesions in plants. New Phytol. 2022;234:1891–1900. PubMed

Citovsky V., Lee L.-Y., Vyas S., Glick E., Chen M.-H., Vainstein A., et al. Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J. Mol. Biol. 2006;362:1120–1131. PubMed

Fulnečková J., Dokládal L., Kolářová K., Nešpor Dadejová M., Procházková K., Gomelská S., et al. Telomerase interaction partners-insight from plants. Int. J. Mol. Sci. 2021;23:368. PubMed PMC

Talbert P.B., Ahmad K., Almouzni G., Ausió J., Berger F., Bhalla P.L., et al. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin. 2012;5:7. PubMed PMC

Dronamraju R., Ramachandran S., Jha D.K., Adams A.T., DiFiore J.V., Parra M.A., et al. Redundant functions for Nap1 and Chz1 in H2A.Z deposition. Sci. Rep. 2017;7 PubMed PMC

Luk E., Vu N.-D., Patteson K., Mizuguchi G., Wu W.-H., Ranjan A., et al. Chz1, a nuclear chaperone for histone H2AZ. Mol. Cell. 2007;25:357–368. PubMed

Wang Y., Zhong Z., Zhang Y., Xu L., Feng S., Rayatpisheh S., et al. NAP1-RELATED PROTEIN1 and 2 negatively regulate H2A.Z abundance in chromatin in Arabidopsis. Nat. Commun. 2020;11:2887. PubMed PMC

Liu Z., Zhu Y., Gao J., Yu F., Dong A., Shen W.-H. Molecular and reverse genetic characterization of NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) genes unravels their function in transcription and nucleotide excision repair in Arabidopsis thaliana. Plant J. 2009;59:27–38. PubMed

Kuchaříková H., Plšková Z., Zdráhal Z., Fojtová M., Kerchev P., Lochmanová G. Quantitative analysis of post-translational modifications of plant histones. Methods Mol. Biol. 2022;2526:241–257. PubMed

Shi L., Wang J., Hong F., Spector D.L., Fang Y. Four amino acids guide the assembly or disassembly of Arabidopsis histone H3.3-containing nucleosomes. Proc. Natl. Acad. Sci. U. S. A. 2011;108:10574–10578. PubMed PMC

Pontvianne F., Blevins T., Chandrasekhara C., Mozgová I., Hassel C., Pontes O.M.F., et al. Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes Dev. 2013;27:1545–1550. PubMed PMC

Lei B., Berger F. H2A variants in Arabidopsis: versatile regulators of genome activity. Plant Commun. 2020;1 PubMed PMC

Gómez-Zambrano Á., Crevillén P., Franco-Zorrilla J.M., López J.A., Moreno-Romero J., Roszak P., et al. Arabidopsis SWC4 binds DNA and recruits the SWR1 complex to modulate histone H2A.Z deposition at key regulatory genes. Mol. Plant. 2018;11:815–832. PubMed

Zilberman D., Coleman-Derr D., Ballinger T., Henikoff S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature. 2008;456:125–129. PubMed PMC

March-Díaz R., Reyes J.C. The beauty of being a variant: H2A.Z and the SWR1 complex in plants. Mol. Plant. 2009;2:565–577. PubMed

Luo Y.-X., Hou X.-M., Zhang C.-J., Tan L.-M., Shao C.-R., Lin R.-N., et al. A plant-specific SWR1 chromatin-remodeling complex couples histone H2A.Z deposition with nucleosome sliding. EMBO J. 2020;39 PubMed PMC

Zhang C., Cao L., Rong L., An Z., Zhou W., Ma J., et al. The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability maintenance and in plant development. Plant J. 2015;82:655–668. PubMed

Gao J., Zhu Y., Zhou W., Molinier J., Dong A., Shen W.-H. NAP1 family histone chaperones are required for somatic homologous recombination in Arabidopsis. Plant Cell. 2012;24:1437–1447. PubMed PMC

Tagami H., Ray-Gallet D., Almouzni G., Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 2004;116:51–61. PubMed

Filipescu D., Szenker E., Almouzni G. Developmental roles of histone H3 variants and their chaperones. Trends Genet. 2013;29:630–640. PubMed

McKittrick E., Gafken P.R., Ahmad K., Henikoff S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl. Acad. Sci. U. S. A. 2004;101:1525–1530. PubMed PMC

Soria G., Polo S.E., Almouzni G. Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol. Cell. 2012;46:722–734. PubMed

Price B.D., D’Andrea A.D. Chromatin remodeling at DNA double-strand breaks. Cell. 2013;152:1344–1354. PubMed PMC

Stadler J., Richly H. Regulation of DNA repair mechanisms: how the chromatin environment regulates the DNA damage response. Int. J. Mol. Sci. 2017;18:1715. PubMed PMC

Adam S., Polo S.E., Almouzni G. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell. 2013;155:94–106. PubMed

Luijsterburg M.S., de Krijger I., Wiegant W.W., Shah R.G., Smeenk G., de Groot A.J.L., et al. PARP1 links CHD2-mediated chromatin expansion and H3.3 deposition to DNA repair by non-homologous end-joining. Mol. Cell. 2016;61:547–562. PubMed PMC

An Z., Yin L., Liu Y., Peng M., Shen W.-H., Dong A. The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in fine-tuning Arabidopsis flowering time. Plant J. 2020;103:1010–1024. PubMed

Xu Y., Gan E.-S., Zhou J., Wee W.-Y., Zhang X., Ito T. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res. 2014;42:10960–10974. PubMed PMC

Roudier F., Ahmed I., Bérard C., Sarazin A., Mary-Huard T., Cortijo S., et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 2011;30:1928–1938. PubMed PMC

Pai C.-C., Deegan R.S., Subramanian L., Gal C., Sarkar S., Blaikley E.J., et al. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice. Nat. Commun. 2014;5:4091. PubMed PMC

Fnu S., Williamson E.A., De Haro L.P., Brenneman M., Wray J., Shaheen M., et al. Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining. Proc. Natl. Acad. Sci. U. S. A. 2011;108:540–545. PubMed PMC

Sun Z., Zhang Y., Jia J., Fang Y., Tang Y., Wu H., et al. H3K36me3, message from chromatin to DNA damage repair. Cell Biosci. 2020;10:9. PubMed PMC

Downs J.A., Allard S., Jobin-Robitaille O., Javaheri A., Auger A., Bouchard N., et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell. 2004;16:979–990. PubMed

Murr R., Loizou J.I., Yang Y.-G., Cuenin C., Li H., Wang Z.-Q., et al. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat. Cell Biol. 2006;8:91–99. PubMed

Drury G.E., Dowle A.A., Ashford D.A., Waterworth W.M., Thomas J., West C.E. Dynamics of plant histone modifications in response to DNA damage. Biochem. J. 2012;445:393–401. PubMed

Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...