Arg-C Ultra Simplifies Histone Preparation for LC-MS/MS
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40505065
PubMed Central
PMC12199229
DOI
10.1021/acs.analchem.5c02238
Knihovny.cz E-zdroje
- MeSH
- arginin metabolismus chemie MeSH
- chromatografie kapalinová metody MeSH
- histony * chemie metabolismus izolace a purifikace MeSH
- kapalinová chromatografie-hmotnostní spektrometrie MeSH
- lidé MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- trypsin metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arginin MeSH
- histony * MeSH
- trypsin MeSH
Arginine-specific cleavage is the primary method used to prepare lysine-rich histone proteins in bottom-up proteomics. As the Arg-C enzyme has demonstrated suboptimal specificity, cleavage at the carboxyl side of arginine residues is typically achieved through the chemical derivatization of lysines followed by trypsin digestion. Recent improvements in proteolytic enzymes are reflected in the introduction of Arg-C Ultra, a recombinant proteinase with a substantially improved digestion specificity. Here, using mammalian histone extract, we demonstrate that Arg-C Ultra facilitates histone preparation for LC-MS/MS. We show the performance of Arg-C Ultra in terms of digestion specificity, number of modified forms identified, and yield of quantitative information compared with Arg-C and trypsin digestion combined with chemical derivatization with trimethylacetic anhydride. Importantly, we show that chemical derivatization at the peptide level, i.e., after Arg-C Ultra digestion, is still necessary to improve the quantification of short histone peptidoforms as well as positional isomers.
Zobrazit více v PubMed
Sokolova V., Sarkar S., Tan D.. Histone Variants and Chromatin Structure, Update of Advances. Comput. Struct. Biotechnol. J. 2023;21:299–311. doi: 10.1016/j.csbj.2022.12.002. PubMed DOI PMC
Sequeira-Mendes J., Aragüez I., Peiró R., Mendez-Giraldez R., Zhang X., Jacobsen S. E., Bastolla U., Gutierrez C.. The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States. Plant Cell. 2014;26(6):2351–2366. doi: 10.1105/tpc.114.124578. PubMed DOI PMC
Foroozani M., Holder D. H., Deal R. B.. Histone Variants in the Specialization of Plant Chromatin. Annu. Rev. Plant Biol. 2022;73(1):149–172. doi: 10.1146/annurev-arplant-070221-050044. PubMed DOI PMC
Wu X., Zhang X., Huang B., Han J., Fang H.. Advances in Biological Functions and Mechanisms of Histone Variants in Plants. Front. Genet. 2023;14:1229782. doi: 10.3389/fgene.2023.1229782. PubMed DOI PMC
Liu R., Wu J., Guo H., Yao W., Li S., Lu Y., Jia Y., Liang X., Tang J., Zhang H.. Post-translational Modifications of Histones: Mechanisms, Biological Functions, and Therapeutic Targets. MedComm. 2023;4(3):e292. doi: 10.1002/mco2.292. PubMed DOI PMC
Ramazi S., Allahverdi A., Zahiri J.. Evaluation of Post-Translational Modifications in Histone Proteins: A Review on Histone Modification Defects in Developmental and Neurological Disorders. J. Biosci. 2020;45:135. doi: 10.1007/s12038-020-00099-2. PubMed DOI
Pírek P., Kryštofová K., Kováčová I., Kromerová A., Zachová D., Helia O., Panzarová K., Fajkus J., Zdráhal Z., Lochmanová G., Fojtová M.. Unraveling Epigenetic Changes in A. Thaliana Calli: Impact of HDAC Inhibitors. Plants. 2023;12(24):4177. doi: 10.3390/plants12244177. PubMed DOI PMC
Franek M., Nešpor Dadejová́ M., Pírek P., Kryštofová K., Dobisová T., Zdráhal Z., Dvořáčková M., Lochmanová G.. Histone Chaperone Deficiency in Arabidopsis Plants Triggers Adaptive Epigenetic Changes in Histone Variants and Modifications. Mol. Cell. Proteomics. 2024;23(7):100795. doi: 10.1016/j.mcpro.2024.100795. PubMed DOI PMC
Kolářová K., Nešpor Dadejová M. N., Loja T., Lochmanová G., Sýkorová E., Dvořáčková M.. Disruption of NAP1 Genes in Arabidopsis Thaliana Suppresses the Fas1Mutant Phenotype, Enhances Genome Stability and Changes Chromatin Compaction. Plant J. 2021;106(1):56–73. doi: 10.1111/tpj.15145. PubMed DOI
Garcia B. A., Mollah S., Ueberheide B. M., Busby S. A., Muratore T. L., Shabanowitz J., Hunt D. F.. Chemical Derivatization of Histones for Facilitated Analysis by Mass Spectrometry. Nat. Protoc. 2007;2(4):933–938. doi: 10.1038/nprot.2007.106. PubMed DOI PMC
Noberini R., Savoia E. O., Brandini S., Greco F., Marra F., Bertalot G., Pruneri G., McDonnell L. A., Bonaldi T.. Spatial Epi-Proteomics Enabled by Histone Post-Translational Modification Analysis from Low-Abundance Clinical Samples. Clin. Epigenet. 2021;13(1):145. doi: 10.1186/s13148-021-01120-7. PubMed DOI PMC
Maile T. M., Izrael-Tomasevic A., Cheung T., Guler G. D., Tindell C., Masselot A., Liang J., Zhao F., Trojer P., Classon M., Arnott D.. Mass Spectrometric Quantification of Histone Post-Translational Modifications by a Hybrid Chemical Labeling Method. Mol. Cell. Proteomics. 2015;14(4):1148–1158. doi: 10.1074/mcp.O114.046573. PubMed DOI PMC
Kuchaříková H., Dobrovolná P., Lochmanová G., Zdráhal Z.. Trimethylacetic Anhydride-Based Derivatization Facilitates Quantification of Histone Marks at the MS1 Level. Mol. cell. proteomics. 2021;20:100114. doi: 10.1016/j.mcpro.2021.100114. PubMed DOI PMC
Sidoli S., Yuan Z.-F., Lin S., Karch K., Wang X., Bhanu N., Arnaudo A. M., Britton L.-M., Cao X.-J., Gonzales-Cope M., Han Y., Liu S., Molden R. C., Wein S., Afjehi-Sadat L., Garcia B. A.. Drawbacks in the Use of Unconventional Hydrophobic Anhydrides for Histone Derivatization in Bottom-up Proteomics PTM Analysis. Proteomics. 2015;15(9):1459–1469. doi: 10.1002/pmic.201400483. PubMed DOI PMC
Daled S., Willems S., Van Puyvelde B., Corveleyn L., Verhelst S., De Clerck L., Deforce D., Dhaenens M.. Histone Sample Preparation for Bottom-Up Mass Spectrometry: A Roadmap to Informed Decisions. Proteomes. 2021;9(2):17. doi: 10.3390/proteomes9020017. PubMed DOI PMC
Zahn E., Xie Y., Liu X., Karki R., Searfoss R. M., Vitorino F. N., de L., Lempiäinen J. K., Gongora J., Lin Z., Zhao C., Yuan Z.-F., Garcia B. A.. Development of a High-Throughput Platform for Quantitation of Histone Modifications on a New QTOF Instrument. Mol. Cell. Proteomics. 2025;24(1):100897. doi: 10.1016/j.mcpro.2024.100897. PubMed DOI PMC
Cole J., Hanson E. J., James D. C., Dockrell D. H., Dickman M. J.. Comparison of Data-Acquisition Methods for the Identification and Quantification of Histone Post-Translational Modifications on a Q Exactive HF Hybrid Quadrupole Orbitrap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2019;33(10):897–906. doi: 10.1002/rcm.8401. PubMed DOI PMC
Yuan Z.-F., Sidoli S., Marchione D. M., Simithy J., Janssen K. A., Szurgot M. R., Garcia B. A.. EpiProfile 2.0: A Computational Platform for Processing Epi-Proteomics Mass Spectrometry Data. J. Proteome Res. 2018;17(7):2533–2541. doi: 10.1021/acs.jproteome.8b00133. PubMed DOI PMC
Činčárová L., Lochmanová G., Nováková K., Šultesová P., Konečná H., Fajkusová L., Fajkus J., Zdráhal Z.. A Combined Approach for the Study of Histone Deacetylase Inhibitors. Mol. Biosyst. 2012;8(11):2937–2945. doi: 10.1039/c2mb25136a. PubMed DOI
Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D. J., Prakash A., Frericks-Zipper A., Eisenacher M., Walzer M., Wang S., Brazma A., Vizcaíno J. A.. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022;50(D1):D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC
Lochmanová G., Ihnatová I., Kuchaříková H., Brabencová S., Zachová D., Fajkus J., Zdráhal Z., Fojtová M.. Different Modes of Action of Genetic and Chemical Downregulation of Histone Deacetylases with Respect to Plant Development and Histone Modifications. Int. J. Mol. Sci. 2019;20(20):5093. doi: 10.3390/ijms20205093. PubMed DOI PMC
Lu C., Coradin M., Porter E. G., Garcia B. A.. Accelerating the Field of Epigenetic Histone Modification Through Mass Spectrometry–Based Approaches. Mol. Cell. Proteomics. 2021;20:100006. doi: 10.1074/mcp.R120.002257. PubMed DOI PMC
Rothbart S. B., Dickson B. M., Raab J. R., Grzybowski A. T., Krajewski K., Guo A. H., Shanle E. K., Josefowicz S. Z., Fuchs S. M., Allis C. D., Magnuson T. R., Ruthenburg A. J., Strahl B. D.. An Interactive Database for the Assessment of Histone Antibody Specificity. Mol. Cell. 2015;59(3):502–511. doi: 10.1016/j.molcel.2015.06.022. PubMed DOI PMC
Noberini R., Robusti G., Bonaldi T.. Mass Spectrometry-Based Characterization of Histones in Clinical Samples: Applications, Progress, and Challenges. FEBS J. 2022;289(5):1191–1213. doi: 10.1111/febs.15707. PubMed DOI PMC
Thomas S. P., Haws S. A., Borth L. E., Denu J. M.. A Practical Guide for Analysis of Histone Post-Translational Modifications by Mass Spectrometry: Best Practices and Pitfalls. Methods. 2020;184:53–60. doi: 10.1016/j.ymeth.2019.12.001. PubMed DOI
Zrimšek M., Kuchaříková H., Draganić K., Dobrovolná P., Spornberger V. H., Winkelmayer L., Hassler M. R., Lochmanová G., Zdráhal Z., Egger G.. Quantitative Acetylomics Uncover Acetylation-Mediated Pathway Changes Following Histone Deacetylase Inhibition in Anaplastic Large Cell Lymphoma. Cells. 2022;11(15):2380. doi: 10.3390/cells11152380. PubMed DOI PMC
Frohlich J., Liorni N., Mangoni M., Lochmanová G., Pírek P., Kaštánková N., Pata P., Kucera J., Chaldakov G. N., Tonchev A. B., Pata I., Gorbunova V., Leire E., Zdráhal Z., Mazza T., Vinciguerra M.. Epigenetic and Transcriptional Control of Adipocyte Function by Centenarian-Associated SIRT6 N308K/A313S Mutant. Clin. Epigenet. 2024;16(1):96. doi: 10.1186/s13148-024-01710-1. PubMed DOI PMC
Wang H., Helin K.. Roles of H3K4Methylation in Biology and Disease. Trends Cell Biol. 2025;35(2):115–128. doi: 10.1016/j.tcb.2024.06.001. PubMed DOI