Trimethylacetic Anhydride-Based Derivatization Facilitates Quantification of Histone Marks at the MS1 Level
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34129942
PubMed Central
PMC8283018
DOI
10.1016/j.mcpro.2021.100114
PII: S1535-9476(21)00086-4
Knihovny.cz E-zdroje
- Klíčová slova
- bottom–up proteomics, chemical derivatization, histone post-translational modifications, microwave irradiation, trimethylacetic anhydride,
- MeSH
- acetanhydridy chemie MeSH
- acetylace MeSH
- chromatografie kapalinová MeSH
- histony chemie MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- posttranslační úpravy proteinů MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetanhydridy MeSH
- histony MeSH
Histone post-translational modifications (hPTMs) are epigenetic marks that strongly affect numerous processes, including cell cycling and protein interactions. They have been studied by both antibody- and MS-based methods for years, but the analyses are still challenging, mainly because of the diversity of histones and their modifications arising from high contents of reactive amine groups in their amino acid sequences. Here, we introduce use of trimethylacetic anhydride (TMA) as a new reagent for efficient histone derivatization, which is a requirement for bottom-up proteomic hPTM analysis. TMA can derivatize unmodified amine groups of lysine residues and amine groups generated at peptide N-termini by trypsin digestion. The derivatization is facilitated by microwave irradiation, which also reduces incubation times to minutes. We demonstrate that histone derivatization with TMA reliably provides high yields of fully derivatized peptides and thus is an effective alternative to conventional methods. TMA afforded more than 98% and 99% labeling efficiencies for histones H4 and H3, respectively, thereby enabling accurate quantification of peptide forms. Trimethylacetylation substantially improves chromatographic separation of peptide forms, which is essential for direct quantification based on signals extracted from MS1 data. For this purpose, software widely applied by the proteomics community can be used without additional computational development. Thorough comparison with widely applied propionylation highlights the advantages of TMA-based histone derivatization for monitoring hPTMs in biological samples.
Zobrazit více v PubMed
Bowman G.D., Poirier M.G. Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev. 2015;115:2274–2295. PubMed PMC
Chen Z., Li S., Subramaniam S., Shyy J.Y.J., Chien S. Epigenetic regulation: A new frontier for biomedical engineers. Annu. Rev. Biomed. Eng. 2017;19:195–219. PubMed
Portela A., Esteller M. Epigenetic modifications and human disease. Nat. Biotechnol. 2010;28:1057–1068. PubMed
Noberini R., Sigismondo G., Bonaldi T. The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics. 2016;8:429–445. PubMed
Cheng Y., He C., Wang M., Ma X., Mo F., Yang S., Han J., Wei X. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 2019;4:62. PubMed PMC
Zhang K., Williams K.E., Huang L., Yau P., Siino J.S., Bradbury E.M., Jones P.R., Minch M.J., Burlingame A.L. Histone acetylation and deacetylation: Identification of acetylation and methylation sites of HeLa histone H4 by mass spectrometry. Mol. Cell. Proteomics. 2002;1:500–508. PubMed
Zhang L., Eugeni E.E., Parthun M.R., Freitas M.A. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma. 2003;112:77–86. PubMed
Beck H.C., Nielsen E.C., Matthiesen R., Jensen L.H., Sehested M., Finn P., Grauslund M., Hansen A.M., Jensen O.N. Quantitative proteomic analysis of post-translational modifications of human histones. Mol. Cell. Proteomics. 2006;5:1314–1325. PubMed
Taverna S.D., Ueberheide B.M., Liu Y., Tackett A.J., Diaz R.L., Shabanowitz J., Chait B.T., Hunt D.F., Allis C.D. Long-distance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc. Natl. Acad. Sci. U. S. A. 2007;104:2086–2091. PubMed PMC
Toby T.K., Fornelli L., Kelleher N.L. Progress in top-down proteomics and the analysis of proteoforms. Annu. Rev. Anal. Chem. 2017;9:499–519. PubMed PMC
El Kennani S., Crespo M., Govin J., Pflieger D. Proteomic analysis of histone variants and their PTMs: Strategies and pitfalls. Proteomes. 2018;6:1–16. PubMed PMC
Sidoli S., Garcia B.A. Middle-down proteomics: A still unexploited resource for chromatin biology. Expert Rev. Proteomics. 2017;14:617–626. PubMed PMC
Gargano A.F.G., Shaw J.B., Zhou M., Wilkins C.S., Fillmore T.L., Moore R.J., Somsen G.W., Paša-Tolić L. Increasing the separation capacity of intact histone proteoforms chromatography coupling online weak cation exchange-HILIC to reversed phase LC UVPD-HRMS. J. Proteome Res. 2018;17:3791–3800. PubMed PMC
Holt M.V., Wang T., Young N.L. High-throughput quantitative top-down proteomics: Histone H4. J. Am. Soc. Mass Spectrom. 2019;30:2548–2560. PubMed
Janssen K.A., Coradin M., Lu C., Sidoli S., Garcia B.A. Quantitation of single and combinatorial histone modifications by integrated chromatography of bottom-up peptides and middle-down polypeptide tails. J. Am. Soc. Mass Spectrom. 2019;30:2449–2459. PubMed
Sidoli S., Bhanu N.V., Karch K.R., Wang X., Garcia B.A. Complete workflow for analysis of histone post-translational modifications using bottom-up mass spectrometry: From histone extraction to data analysis. J. Vis. Exp. 2016;2016:1–11. PubMed PMC
Meert P., Govaert E., Scheerlinck E., Dhaenens M., Deforce D. Pitfalls in histone propionylation during bottom-up mass spectrometry analysis. Proteomics. 2015;15:2966–2971. PubMed PMC
Sidoli S., Yuan Z.F., Lin S., Karch K., Wang X., Bhanu N., Arnaudo A.M., Britton L.M., Cao X.J., Gonzales-Cope M., Han Y., Liu S., Molden R.C., Wein S., Afjehi-Sadat L. Drawbacks in the use of unconventional hydrophobic anhydrides for histone derivatization in bottom-up proteomics PTM analysis. Proteomics. 2015;15:1459–1469. PubMed PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz Ş. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. PubMed PMC
Činčárová L., Lochmanová G., Nováková K., Šultesová P., Konečná H., Fajkusová L., Fajkus J., Zdráhal Z. A combined approach for the study of histone deacetylase inhibitors. Mol. Biosyst. 2012;8:2937–2945. PubMed
Lochmanova G., Ihnatova I., Kucharikova H., Brabencova S., Zachova D., Fajkus J., Zdrahal Z., Fojtova M. Different modes of action of genetic and chemical downregulation of histone deacetylases with respect to plant development and histone modifications. Int. J. Mol. Sci. 2019;20:5093. PubMed PMC
Filippakopoulos P., Picaud S., Mangos M., Keates T., Lambert J.P., Barsyte-Lovejoy D., Felletar I., Volkmer R., Müller S., Pawson T., Gingras A.C., Arrowsmith C.H., Knapp S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149:214–231. PubMed PMC
Feller C., Forné I., Imhof A., Becker P.B. Global and specific responses of the histone acetylome to systematic perturbation. Mol. Cell. 2015;57:559–572. PubMed
Bártová E., Lochmanová G., Legartová S., Suchánková J., Fedr R., Krejčí J., Zdráhal Z. Irradiation by γ-rays reduces the level of H3S10 phosphorylation and weakens the G2 phase-dependent interaction between H3S10 phosphorylation and ΓH2AX. Biochimie. 2018;154:86–98. PubMed
Liao R., Wu H., Deng H., Yu Y., Hu M., Zhai H., Yang P., Zhou S., Yi W. Specific and efficient N-propionylation of histones with propionic acid N-hydroxysuccinimide ester for histone marks characterization by LC-MS. Anal. Chem. 2013;85:2253–2259. PubMed
Maile T.M., Izrael-Tomasevic A., Cheung T., Guler G.D., Tindell C., Masselot A., Liang J., Zhao F., Trojer P., Classon M., Arnott D. Mass spectrometric quantification of histone post-translational modifications by a hybrid chemical labeling method. Mol. Cell. Proteomics. 2015;14:1148–1158. PubMed PMC
Meert P., Dierickx S., Govaert E., De Clerck L., Willems S., Dhaenens M., Deforce D. Tackling aspecific side reactions during histone propionylation: The promise of reversing overpropionylation. Proteomics. 2016;16:1970–1974. PubMed PMC
Marchione D.M., Lisby A., Viaene A.N., Santi M., Nasrallah M.L., Wang L.P., Williams E.A., Larque A.B., Chebib I., Garcia B.A., Wojcik J.B. Histone H3K27 dimethyl loss is highly specific for malignant peripheral nerve sheath tumor and distinguishes true PRC2 loss from isolated H3K27 trimethyl loss. Mod. Pathol. 2019;32:1434–1446. PubMed PMC
Li Q.L., Wang D.Y., Ju L.G., Yao J., Gao C., Lei P.J., Li L.Y., Zhao X.L., Wu M. The hyper-activation of transcriptional enhancers in breast cancer. Clin. Epigenetics. 2019;11:1–17. PubMed PMC
Shastrula P.K., Lund P.J., Garcia B.A., Janicki S.M. Rpp29 regulates histone H3.3 chromatin assembly through transcriptional mechanisms. J. Biol. Chem. 2018;293:12360–12377. PubMed PMC
Sidoli S., Lopes M., Lund P.J., Goldman N., Fasolino M., Coradin M., Kulej K., Bhanu N.V., Vahedi G., Garcia B.A. A mass spectrometry-based assay using metabolic labeling to rapidly monitor chromatin accessibility of modified histone proteins. Sci. Rep. 2019;9:1–15. PubMed PMC
Pham V., Pitti R., Tindell C.A., Cheung T.K., Masselot A., Stephan J.P., Guler G.D., Wilson C., Lill J., Arnott D., Classon M. Proteomic analyses identify a novel role for EZH2 in the initiation of cancer cell drug tolerance. J. Proteome Res. 2020;19:1533–1547. PubMed
Restellini C., Cuomo A., Lupia M., Giordano M., Bonaldi T., Noberini R. Alternative digestion approaches improve histone modification mapping by mass spectrometry in clinical samples. Proteomics Clin. Appl. 2019;13:1–7. PubMed
Leadem B.R., Kagiampakis I., Wilson C., Cheung T.K., Arnott D., Trojer P., Classon M., Easwaran H., Baylin S.B. A KDM5 inhibitor increases global H3K4 trimethylation occupancy and enhances the biological efficacy of 5-aza-2′-deoxycytidine. Cancer Res. 2018;78:1127–1139. PubMed PMC
Su Z., Wang F., Lee J.H., Stephens K.E., Papazyan R., Voronina E., Krautkramer K.A., Raman A., Thorpe J.J., Boersma M.D., Kuznetsov V.I., Miller M.D., Taverna S.D., Phillips G.N., Denu J.M. Reader domain specificity and lysine demethylase-4 family function. Nat. Commun. 2016;7:1–15. PubMed PMC
Arg-C Ultra Simplifies Histone Preparation for LC-MS/MS
Epigenetics and plant hormone dynamics: a functional and methodological perspective