Epigenetic and transcriptional control of adipocyte function by centenarian-associated SIRT6 N308K/A313S mutant

. 2024 Jul 20 ; 16 (1) : 96. [epub] 20240720

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39033117

Grantová podpora
LM2023042 MEYS CR
P01 AG047200 NIA NIH HHS - United States
Project 856871-TRANSTEM European Commission Horizon 2020 Framework Program
22-28190S Czech Science Foundation
R01 AG027237 NIA NIH HHS - United States
P01 AG051449 NIA NIH HHS - United States

Odkazy

PubMed 39033117
PubMed Central PMC11265064
DOI 10.1186/s13148-024-01710-1
PII: 10.1186/s13148-024-01710-1
Knihovny.cz E-zdroje

BACKGROUND: Obesity is a major health burden. Preadipocytes proliferate and differentiate in mature adipocytes in the adipogenic process, which could be a potential therapeutic approach for obesity. Deficiency of SIRT6, a stress-responsive protein deacetylase and mono-ADP ribosyltransferase enzyme, blocks adipogenesis. Mutants of SIRT6 (N308K/A313S) were recently linked to the in the long lifespan Ashkenazi Jews. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect adipogenesis at the transcriptional and epigenetic level. METHODS: We analyzed the role of SIRT6 wild-type (WT) or SIRT6 centenarian-associated mutant (N308K/A313S) overexpression in adipogenesis, by creating stably transduced preadipocyte cell lines using lentivirus on the 3T3-L1 model. Histone post-translational modifications (PTM: acetylation, methylation) and transcriptomic changes were analyzed by mass spectrometry (LC-MS/MS) and RNA-Seq, respectively, in 3T3-L1 adipocytes. In addition, the adipogenic process and related signaling pathways were investigated by bioinformatics and biochemical approaches. RESULTS: Overexpression of centenarian-associated SIRT6 mutant increased adipogenic differentiation to a similar extent compared to the WT form. However, it triggered distinct histone PTM profiles in mature adipocytes, with significantly higher acetylation levels, and activated divergent transcriptional programs, including those dependent on signaling related to the sympathetic innervation and to PI3K pathway. 3T3-L1 mature adipocytes overexpressing SIRT6 N308K/A313S displayed increased insulin sensitivity in a neuropeptide Y (NPY)-dependent manner. CONCLUSIONS: SIRT6 N308K/A313S overexpression in mature adipocytes ameliorated glucose sensitivity and impacted sympathetic innervation signaling. These findings highlight the importance of targeting SIRT6 enzymatic activities to regulate the co-morbidities associated with obesity.

Zobrazit více v PubMed

https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight, A.f. World Health Organization. Obesity and overweight. WHO Newsroom Fact Sheets. 2022.

Bankoglu EE, Stopper H. Obesity-related genomic instability and altered xenobiotic metabolism: possible consequences for cancer risk and chemotherapy. Expert Rev Mol Med. 2022;24: e28. 10.1017/erm.2022.22 PubMed DOI PMC

Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–38. 10.1038/nrm3293 PubMed DOI PMC

Tonkin J, et al. SIRT1 signaling as potential modulator of skeletal muscle diseases. Curr Opin Pharmacol. 2012;12(3):372–6. 10.1016/j.coph.2012.02.010 PubMed DOI

Kanfi Y, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388):218–21. 10.1038/nature10815 PubMed DOI

Korotkov A, Seluanov A, Gorbunova V. Sirtuin 6: linking longevity with genome and epigenome stability. Trends Cell Biol. 2021;31(12):994–1006. 10.1016/j.tcb.2021.06.009 PubMed DOI PMC

Tian X, et al. SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. Cell. 2019;177(3):622-638.e22. 10.1016/j.cell.2019.03.043 PubMed DOI PMC

Sundaresan NR, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med. 2012;18(11):1643–50. 10.1038/nm.2961 PubMed DOI PMC

Roichman A, et al. SIRT6 overexpression improves various aspects of mouse healthspan. J Gerontol A Biol Sci Med Sci. 2017;72(5):603–15. PubMed

Kim HS, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010;12(3):224–36. 10.1016/j.cmet.2010.06.009 PubMed DOI PMC

Zhong X, et al. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells. Cell Mol Gastroenterol Hepatol. 2020;10(2):341–64. 10.1016/j.jcmgh.2020.04.005 PubMed DOI PMC

Kuang J, et al. Fat-specific Sirt6 ablation sensitizes mice to high-fat diet-induced obesity and insulin resistance by inhibiting lipolysis. Diabetes. 2017;66(5):1159–71. 10.2337/db16-1225 PubMed DOI

Xiong X, et al. SIRT6 protects against palmitate-induced pancreatic β-cell dysfunction and apoptosis. J Endocrinol. 2016;231(2):159–65. 10.1530/JOE-16-0317 PubMed DOI PMC

D’Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Signal. 2018;28(8):711–32. 10.1089/ars.2017.7178 PubMed DOI PMC

Yao L, et al. Cold-inducible SIRT6 regulates thermogenesis of brown and beige fat. Cell Rep. 2017;20(3):641–54. 10.1016/j.celrep.2017.06.069 PubMed DOI

Kanfi Y, et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell. 2010;9(2):162–73. 10.1111/j.1474-9726.2009.00544.x PubMed DOI

Kivimaki M, et al. Body-mass index and risk of obesity-related complex multimorbidity: an observational multicohort study. Lancet Diabetes Endocrinol. 2022;10(4):253–63. 10.1016/S2213-8587(22)00033-X PubMed DOI PMC

Dani C, et al. Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci. 1997;110(Pt 11):1279–85. 10.1242/jcs.110.11.1279 PubMed DOI

Ambele MA, et al. Adipogenesis: a complex interplay of multiple molecular determinants and pathways. Int J Mol Sci. 2020;21:4283. 10.3390/ijms21124283 PubMed DOI PMC

Chen Q, et al. SIRT6 is essential for adipocyte differentiation by regulating mitotic clonal expansion. Cell Rep. 2017;18(13):3155–66. 10.1016/j.celrep.2017.03.006 PubMed DOI PMC

Simon M, et al. A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A. 2021:2021.12.13.472381. PubMed PMC

Atzmon G, et al. Clinical phenotype of families with longevity. J Am Geriatr Soc. 2004;52(2):274–7. 10.1111/j.1532-5415.2004.52068.x PubMed DOI

Atzmon G, et al. Evolution in health and medicine Sackler colloquium: Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc Natl Acad Sci USA. 2010;107(Suppl 1):1710–7. 10.1073/pnas.0906191106 PubMed DOI PMC

Santos-Lozano A, et al. Implications of obesity in exceptional longevity. Ann Transl Med. 2016;4(20):416. 10.21037/atm.2016.10.35 PubMed DOI PMC

Rajpathak SN, et al. Lifestyle factors of people with exceptional longevity. J Am Geriatr Soc. 2011;59(8):1509–12. 10.1111/j.1532-5415.2011.03498.x PubMed DOI PMC

Chiang DJ, Pritchard MT, Nagy LE. Obesity, diabetes mellitus, and liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2011;300(5):G697-702. 10.1152/ajpgi.00426.2010 PubMed DOI PMC

Frohlich J, et al. Human centenarian-associated SIRT6 mutants modulate hepatocyte metabolism and collagen deposition in multilineage hepatic 3D spheroids. Geroscience. 2023;45(2):1177–96. 10.1007/s11357-022-00713-1 PubMed DOI PMC

Arsenijevic T, et al. Murine 3T3-L1 adipocyte cell differentiation model: validated reference genes for qPCR gene expression analysis. PLoS ONE. 2012;7(5): e37517. 10.1371/journal.pone.0037517 PubMed DOI PMC

Pazienza V, et al. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenet Chrom. 2016;9:45.10.1186/s13072-016-0098-9 PubMed DOI PMC

Giallongo S, et al. Histone variant macroH2A1.1 enhances nonhomologous end joining-dependent DNA double-strand-break repair and reprogramming efficiency of human iPSCs. Stem Cells. 2022;40(1):35–48. 10.1093/stmcls/sxab004 PubMed DOI PMC

Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc. 2006;1(1):241–5. 10.1038/nprot.2006.37 PubMed DOI

Benegiamo G, et al. DNA methyltransferases 1 and 3b expression in Huh-7 cells expressing HCV core protein of different genotypes. Dig Dis Sci. 2012;57(6):1598–603. 10.1007/s10620-012-2160-1 PubMed DOI

Borghesan M, et al. DNA hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy-induced senescence to promote hepatocellular carcinoma progression. Can Res. 2016;76(3):594–606.10.1158/0008-5472.CAN-15-1336 PubMed DOI PMC

Frohlich J, et al. GDF11 rapidly increases lipid accumulation in liver cancer cells through ALK5-dependent signaling. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(6): 158920. 10.1016/j.bbalip.2021.158920 PubMed DOI

Andrews S. FastQC. 2010.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC

Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184–5. 10.1093/bioinformatics/bts356 PubMed DOI

Broad-Institute. “Picard Toolkit” Broad Institute, GitHub Repository. http://broadinstitute.github.io/picard/. 2018.

Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32(2):292–4. 10.1093/bioinformatics/btv566 PubMed DOI PMC

Chu J, et al. BioBloom tools: fast, accurate and memory-efficient host species sequence screening using bloom filters. Bioinformatics. 2014;30(23):3402–4. 10.1093/bioinformatics/btu558 PubMed DOI PMC

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12(1):323.10.1186/1471-2105-12-323 PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

Kolde R. "Package ‘pheatmap’." R Package 1.7. 2015.

Wickham H. ggplot2. 2011;3(2):180–185.

Kassambara A. "ggpubr:“ggplot2” based publication ready plots." R package version 0.1 7. 2018.

Cincarova L, et al. A combined approach for the study of histone deacetylase inhibitors. Mol Biosyst. 2012;8(11):2937–45. 10.1039/c2mb25136a PubMed DOI

Kucharikova H, et al. Trimethylacetic Anhydride-Based Derivatization Facilitates Quantification of Histone Marks at the MS1 Level. Mol Cell Proteomics. 2021;20: 100114. 10.1016/j.mcpro.2021.100114 PubMed DOI PMC

Lochmanova G, et al. Different modes of action of genetic and chemical downregulation of histone deacetylases with respect to plant development and histone modifications. Int J Mol Sci. 2019;20(20):5093. 10.3390/ijms20205093 PubMed DOI PMC

Borghesan M, et al. DNA hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy-induced senescence to promote hepatocellular carcinoma progression. Cancer Res. 2016;76(3):594–606. 10.1158/0008-5472.CAN-15-1336 PubMed DOI PMC

Bolasco G, et al. Cardioprotective mIGF-1/SIRT1 signaling induces hypertension, leukocytosis and fear response in mice. Aging (Albany NY). 2012;4(6):402–16. 10.18632/aging.100464 PubMed DOI PMC

Kugel S, et al. SIRT6 suppresses pancreatic cancer through control of Lin28b. Cell. 2016;165(6):1401–15. 10.1016/j.cell.2016.04.033 PubMed DOI PMC

Michishita E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008;452(7186):492–6. 10.1038/nature06736 PubMed DOI PMC

Tasselli L, et al. SIRT6 deacetylates H3K18ac at pericentric chromatin to prevent mitotic errors and cellular senescence. Nat Struct Mol Biol. 2016;23(5):434–40. 10.1038/nsmb.3202 PubMed DOI PMC

Suganuma T, Workman JL. Crosstalk among histone modifications. Cell. 2008;135(4):604–7. 10.1016/j.cell.2008.10.036 PubMed DOI

Bienertova-Vasku J, Vinciguerra M, Buzga M, Villaroya M. Adipokines as biomarkers in health and disease. Dis Markers. 2018;2018:5696815. 10.1155/2018/5696815 PubMed DOI PMC

Karmodiya K, et al. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genom. 2012;13:424.10.1186/1471-2164-13-424 PubMed DOI PMC

Munzberg H, Floyd E, Chang JS. Sympathetic innervation of white adipose tissue: to beige or not to beige? Physiology (Bethesda). 2021;36(4):246–55. PubMed PMC

Zhang K, et al. SINO syndrome causative KIDINS220/ARMS gene regulates adipocyte differentiation. Front Cell Dev Biol. 2021;9:619475. 10.3389/fcell.2021.619475 PubMed DOI PMC

Raimondi A, et al. Overlapping role of dynamin isoforms in synaptic vesicle endocytosis. Neuron. 2011;70(6):1100–14. 10.1016/j.neuron.2011.04.031 PubMed DOI PMC

van den Hoek AM, et al. Intracerebroventricular administration of neuropeptide Y induces hepatic insulin resistance via sympathetic innervation. Diabetes. 2008;57(9):2304–10. 10.2337/db07-1658 PubMed DOI PMC

Tiesjema B, et al. Sustained NPY overexpression in the PVN results in obesity via temporarily increasing food intake. Obesity (Silver Spring). 2009;17(7):1448–50. 10.1038/oby.2008.670 PubMed DOI

Long M, et al. Long-term over-expression of neuropeptide Y in hypothalamic paraventricular nucleus contributes to adipose tissue insulin resistance partly via the Y5 receptor. PLoS ONE. 2015;10(5):e0126714. 10.1371/journal.pone.0126714 PubMed DOI PMC

Xu P, et al. Mature adipocytes observed to undergo reproliferation and polyploidy. FEBS Open Bio. 2017;7(5):652–8. 10.1002/2211-5463.12207 PubMed DOI PMC

Li Q, Spalding KL. The regulation of adipocyte growth in white adipose tissue. Front Cell Dev Biol. 2022;10:1003219. 10.3389/fcell.2022.1003219 PubMed DOI PMC

Zhang Q, et al. Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle. 2012;11(23):4310–22. 10.4161/cc.22224 PubMed DOI PMC

Setayesh T, et al. Impact of obesity and overweight on DNA stability: few facts and many hypotheses. Mutat Res Rev Mutat Res. 2018;777:64–91. 10.1016/j.mrrev.2018.07.001 PubMed DOI

Groeneveld MP, et al. Acute knockdown of the insulin receptor or its substrates Irs1 and 2 in 3T3-L1 adipocytes suppresses adiponectin production. Sci Rep. 2016;6:21105. 10.1038/srep21105 PubMed DOI PMC

Tang Q, et al. Sirtuin 6 supra-physiological overexpression in hypothalamic pro-opiomelanocortin neurons promotes obesity via the hypothalamus-adipose axis. FASEB J. 2021;35(3):e21408. 10.1096/fj.202002607 PubMed DOI

Saxton SN, Withers SB, Heagerty AM. Emerging roles of sympathetic nerves and inflammation in perivascular adipose tissue. Cardiovasc Drugs Ther. 2019;33(2):245–59. 10.1007/s10557-019-06862-4 PubMed DOI PMC

Wang Y, Ye L. Somatosensory innervation of adipose tissues. Physiol Behav. 2023;265: 114174. 10.1016/j.physbeh.2023.114174 PubMed DOI

Jiang H, et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature. 2013;496(7443):110–3. 10.1038/nature12038 PubMed DOI PMC

Bsat M, et al. The conversion of human tissue-like inflammatory monocytes into macrophages. Curr Protoc. 2021;1(3):e74. 10.1002/cpz1.74 PubMed DOI

Poltronieri P, Celetti A, Palazzo L. Mono(ADP-ribosyl)ation enzymes and NAD(+) metabolism: a focus on diseases and therapeutic perspectives. Cells. 2021;10(1):128. 10.3390/cells10010128 PubMed DOI PMC

Bavec A. Mono-ADP-ribosyltransferase as a potential pharmacological drug target in the GLP-1 based therapy of obesity and diabetes mellitus type 2. Acta Chim Slov. 2013;60(2):237–42. PubMed

Lo Re O, Mazza T, Vinciguerra M. Mono-ADP-Ribosylhydrolase MACROD2 Is Dispensable for Murine Responses to Metabolic and Genotoxic Insults. Front Genet. 2018;9:654. 10.3389/fgene.2018.00654 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...